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The Earth’s magnetic field is generated by dynamo action driven by convection in the outer core.
For numerical reasons, inertial and viscous forces play an important role in geodynamo models;
however, the primary dynamical balance in the Earth’s core is believed to be between buoyancy,
Coriolis and magnetic forces. The hope has been that by setting the Ekman number to be as
small as computationally feasible, an asymptotic regime would be reached in which the correct force
balance is achieved. However, recent analyses of geodynamo models suggest that the desired balance
has still not yet been attained. Here we adopt a complementary approach consisting of a model
of rapidly rotating convection in which inertial forces are neglected from the outset. Within this
framework we are able to construct a new branch of solutions in which the dynamo generates a
strong magnetic field that satisfies the expected force balance. The resulting strongly magnetized
convection is dramatically different to the corresponding solutions in which the field is weak.

Convective fluid motions in the liquid outer core drive
the dynamo responsible for maintaining the Earth’s mag-
netic field over geological time scales [1]. Understanding
the nature of the geodynamo is essential in explaining
the observed spatial and temporal variations of the ge-
omagnetic field. The physical properties of the core are
characterized by strong rotation, very small viscosity and
vigorous buoyancy. These translate into an extremely
small Ekman number E (the ratio of viscous to Coriolis
forces) and a Rayleigh number Ra (a measure of the ther-
mal driving) far in excess of its critical value at the onset
of convection. Even though the system is very strongly
supercritical, the rotational constraints are such that the
convective turnover time greatly exceeds the rotational
period; inertial forces are therefore completely negligible.
Another distinctive feature of the geodynamo is that, un-
like in stellar dynamos, which operate at extremely high
values of the magnetic Reynolds number Rm (the ratio
of advection to diffusion of magnetic fields), with val-
ues O(1010 − 1014), in the geodynamo Rm is moderate,
O(102 − 103). These moderate values, based on adopt-
ing the outer core radius as the length scale, are only
somewhat larger than those required for the onset of dy-
namo action; they therefore impose a very strong con-
straint on the characteristic scales of the motion. In par-
ticular, if the scales were controlled by viscous stresses,
then the horizontal extent of a convective cell would be
O
(

E−1/3d
)

, where d is some characteristic length scale
[e.g. 2]. In the Earth, E ∼ 10−15; taking d as the depth
of the liquid core thus leads to very narrow convective
cells, of width O

(

102
)

m. Given the inferred slow char-
acteristic speed of the motions in the core, 10−3 ms−1,
and magnetic diffusivity η ≈ 1m2s−1, the local mag-
netic Reynolds number based on such convective cells is
Rml = O

(

10−1
)

. This small value of Rml is problem-

atic. Although dynamo action is not completely ruled
out, the only possibility is a mean-field, low Rm dynamo
[3, 4]. In such a dynamo, the field, however, is weak and
hence incompatible with estimates of the Earth’s field
strength [5]. Another dynamical ingredient is therefore
required to control the scale of the motions. This has
led to the idea that the convection in the Earth’s core is
strongly influenced by the magnetic field; the resulting
balance of forces is then between Magnetic, buoyancy
(Archimedean) and Coriolis forces, with inertial forces
and viscous stresses playing no role at all — so-called
MAC balance.

The notion of MAC balance, which has become central
to an understanding of the geodynamo, places a severe
constraint on the nature of the dynamo action that must
be taking place within the Earth’s core. For dynamo sat-
uration to occur, it is of course necessary that the mag-
netic forces modify the flow. In many cases these changes
are subtle and leave the velocity in the saturated state
close to what it would have been in the absence of a mag-
netic field; we may classify these as weak field dynamos.
This however is not the case if MAC equilibrium is real-
ized. Here the influence of the field is to cause substantial
changes in the fluid velocity that allow the field to grow
to a large amplitude; we classify this as a strong field

dynamo. It is worth noting that a very different distinc-
tion may be drawn when classifying dynamos — namely
that between small-scale and large-scale dynamos. In this
more traditional decomposition, the emphasis is on the
scale of the magnetic field generated, in comparison with
that of the velocity; by contrast, the distinction between
weak and strong field dynamos addresses the dominant
force balance. Thus it is possible to have weak and strong
field dynamos of both the large- and small-scale variety.

Even though there are powerful theoretical arguments
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supporting the existence of a strong field dynamo, con-
structing one has proven to be a non-trivial exercise.
Traditionally, the geodynamo problem has been tackled
through the computational framework of MHD in spher-
ical geometry. There are, broadly speaking, two comple-
mentary approaches. The majority of computations have
progressed through decreasing Ekman numbers, with the
idea that the regime of MAC balance will emerge natu-
rally. That said, to give a sense of the magnitude of the
difficulty in attaining the regime of the Earth, we note
that even the most heroic computations to date can re-
solve Ekman numbers no lower than 10−7. Of course,
the hope is that an Earth-like solution will emerge with-
out having to close this considerable gap. This ongoing
project, has, over the past two decades, provided tremen-
dous insight into dynamo modeling [e.g. 6–11]. How-
ever, crucially, simulations to date typically do not ex-
hibit MAC balance. From an analysis of scaling laws
applied to a large number of numerical dynamo mod-
els, [12] determine that current models are compatible
with a scaling in which viscosity plays a prominent role,
with no support for a MAC balance. A similar conclu-
sion is reached by [13], who conclude that in most of
the models considered, the characteristics of convection
are changed only very slightly by the growth and satura-
tion of a dynamo-generated magnetic field, i.e. that the
dynamos are weak field dynamos. It is though of inter-
est to note that in the plane layer dynamo simulations
of [14], there is a transition to large-scale convection at
low Ekman number. Indeed, the horizontal convection
scale grows until it is comparable with the size of the do-
main, which, for computational reasons was constrained
to be fairly small. Possibly because of this restriction, the
large-scale convective flow is not capable of maintaining
the strong field indefinitely; the field decays and the flow
reverts to being small-scale. Field amplification can then
restart, leading eventually to another transition to large-
scale convection. Thus the amplitude of the generated
magnetic field fluctuates strongly in time.

The alternative approach to retaining all of the terms
in the momentum equation and striving for the lowest
possible value of E, is to neglect inertia from the outset
[e.g. 15, 16]. Our aim in this letter is to investigate such a
model in order to tackle the fundamental problem of the
existence of dynamo solutions in MAC balance. As we
shall see, inertia-free systems not only have compelling
physical motivation in terms of the geodynamo, but also
afford a means of convincingly identifying MAC balance
if and when it arises.

The neglect of inertia in geodynamo modeling comes
not from the fact that the fluid Reynolds number Re
is small, but that the rotation is strong. Indeed, in the
Earth, Re is huge, rendering the problem extremely com-
putationally demanding. In order to make best use of
computational resources, we therefore study the simplest
possible model in which inertial forces can be neglected

in a self-consistent manner. Following the pioneering
study [17], we consider rapidly rotating, Boussinesq con-
vection at infinite Prandtl number (the ratio of viscous
to thermal diffusivity) in a plane layer. This allows us
to study inertia-less, turbulent dynamo action over an
extended spatial domain. Under the simplifying assump-
tion that the rotation axis is aligned with gravity (along
the z-axis), the dimensionless governing equations may
be written as

ẑ × u = −∇p+ (∇×B)×B +Rθẑ + E∇
2
u, (1)

∇ · u = 0, (2)

∂B

∂t
= ∇× (u×B) +

1

q
∇

2
B, (3)

∂θ

∂t
+ u ·∇θ = u · ẑ +∇

2θ, (4)

where u is the fluid velocity, B is the magnetic field, and
θ is the temperature perturbation. Equations (1)–(4) are
obtained by scaling lengths with the layer depth d, and
times with d2/κ, where κ is the thermal diffusivity. The
dimensionless quantities R, E and q are the rotational
Rayleigh number, Ekman number and Roberts number
respectively, defined by

R =
gαβd2

2Ωκ
, E =

ν

2Ωd2
, q =

κ

η
, (5)

where g is the (constant) acceleration due to gravity, α is
the coefficient of thermal expansion, β is the temperature
gradient of the basic state, Ω is the rotation rate, and ν
is the kinematic viscosity.
The distinctive feature of the model is that only the

Coriolis acceleration appears on the left hand side of (1),
which is now a diagnostic equation. Equation (1) is ob-
tained by considering the momentum equation, includ-
ing inertial terms, and then letting the Prandtl number
Pr = ν/κ tend to infinity, whilst keeping both R and E
finite. Thus this limit should not be thought of as ei-
ther ν → ∞ or κ → 0 with other parameters kept fixed.
A crucial aspect of taking Pr → ∞ is that the mag-
netic field must scale with Pr1/2 if it is to play any role.
As such, a comparison of the magnitudes of the magnetic
and kinetic energies in this limit becomes meaningless; in
particular, it cannot be used to distinguish between weak
and strong field dynamos. As discussed above, given the
motivation of the problem, it is thus most natural to
make this distinction by reference to the extent to which
the convection is influenced by the magnetic field.
We solve equations (1)–(4) in a domain with square

horizontal cross-section of length 5d. All variables are
periodic in the horizontal directions; the lower and up-
per boundaries are impermeable, stress-free and per-
fectly conducting, both thermally and electrically. The
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equations are solved numerically by standard fully de-
aliased pseudospectral methods [18], with a resolution of
256× 256× 97 or 512× 512× 193.

We are motivated by the case of small Ekman num-
ber E. Near onset, the convection assumes a colum-
nar structure, with a more complicated sheet-like pat-
tern emerging as R is increased. In this hydrodynamic
state, the balance is between the Coriolis force, buoyancy
and viscous stresses; simple considerations of the vortic-
ity equation show that the characteristic horizontal scale
ℓ ∼ E1/3. The expectation is that for large enough values
of q (i.e. large enough Rm), these flows will act to gen-
erate magnetic field. The crucial question is then what
sort of field emerges. As mentioned above, one possibil-
ity is that the generated field is weak, in the sense that
although the Lorentz force cannot be ignored, it does not
lead to a significant change in the convective pattern, the
dynamical balance remaining essentially the same. The
other more interesting possibility is that the Lorentz force
drives the system to a new state in which MAC balance
is attained. We show presently that, depending on pa-
rameters, both types of dynamo are possible.

We have performed an extensive exploration of the na-
ture of the convection and possible dynamo action when
rotational effects are important. It is, however, impor-
tant to recognize that, having neglected inertial terms
from the outset, we are not reliant on pushing E down
to extremely low values in order to access the appro-
priate asymptotic regime; the problem can thus be ad-
dressed via values of E that are small, but not so small
as to be computationally overwhelming. For each value
of E we vary R to study convection from close to on-
set up to substantially supercritical; for each case we
vary q to explore dynamo action at different values of
Rm. Each calculation is first evolved from random ini-
tial conditions to an unmagnetized convecting state. For
infinite Pr, the fluid motions have little variation with
depth; depending on the parameter values, the convec-
tive pattern takes the form of either cylindrical columns
or sheets. A small magnetic perturbation is then intro-
duced. For those cases where dynamo action ensues, the
magnetic energy first grows exponentially (the kinematic
phase), before reaching an amplitude at which Lorentz
forces modify the flow, the field growth ceases, and the
system settles down to a stationary state. Our interest
here is in the nature of these dynamical MHD states.
We present results from two representative cases, with
E, R and q given by (i) 10−3, 500, 5 and (ii) 10−4, 500,
20 respectively. We assess the influence of rotation by a
convective Rossby number, Rc, defined as the ratio of the
rotation period to the convective turnover time, with the
latter being determined a posteriori. For these two cases,
Rc is roughly 20 times smaller in case (ii) than case (i).

Several features of the solutions to the governing equa-
tions (1)–(4) are illustrated in figure 1. In case (i), the
growth and saturation of magnetic energy is accompa-

FIG. 1. Nonlinear evolution of convectively driven dynamos
for (a) case (i), and (b) case (ii). The leftmost panels show
the time histories of kinetic and magnetic energy densities.
The other panels are density plots of the temperature at rep-
resentative times in the kinematic (left) and dynamic (right)
regimes. The square panels are horizontal (xy) slices near
the upper boundary; the rectangular panels are vertical xz
slices at y = 0. Light and dark tones correspond to hot and
cold fluid. Case (i): E = 10−3, R = 500, q = 5. Case (ii):
E = 10−4, R = 500, q = 20.

nied by a slight decrease in kinetic energy. (Although, as
noted earlier, a comparison of the levels of magnetic and
kinetic energy is not meaningful, comparison of their tem-
poral evolution does provide useful information.) Even
though the velocity field has to be different in the kine-
matic and dynamic phases, the changes are subtle and
are certainly not reflected in any dramatic changes to the
convective planform; in particular, the horizontal scale of
the convection remains the same. In case (ii), the growth
of the magnetic energy is again reflected in changes to the
kinetic energy, although here the latter increases. The
dynamical effect of the magnetic field is thus to make
the convection more vigorous. This is manifest in the
dramatic changes to the convective planforms between
the kinematic and dynamic regimes. In the kinematic
regime, the horizontal scales are much smaller than in
case (i), reflecting the smaller value of E. Strikingly, the
dynamic regime shows the emergence of a much larger
scale pattern of convection.
These ideas can be made more evident by exploiting

an interesting consequence of the absence of inertia. The
momentum equation (1) is linear in u, thus allowing the
velocity to be decomposed into the sum of a thermal
component uT , satisfying

ẑ ×uT = −∇pT +Rθẑ +E∇
2
uT , ∇·uT = 0, (6)

and a magnetic component uM defined by

uM = u− uT . (7)
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FIG. 2. Snapshots of the flow structure in the dynamical
regime. Density plots of the vertical components of (a) the
full velocity (w), (b) the thermal component (wT ), and (c)
the magnetic component (wM ), near the upper boundary, for
the weak field dynamo (case (i), left column) and strong field
dynamo (case (ii), right column). Light and dark tones cor-
respond to up-flowing and down-flowing material. The weak
and strong field cases are scaled independently, but the same
color scaling is adopted for all three plots within the two cases.

This decomposition provides a useful way to visualize the
relevant contributions of thermal and magnetic forces to
the structure of the flow, as shown in figure 2. In case (i),
the total velocity is almost identical to the thermal veloc-
ity, with just a small change resulting from the magnetic
velocity, which is needed to saturate the dynamo. The
energy in uM is, on average, 13% of that in uT . By
contrast, in case (ii), the influence of the thermal and
magnetic velocities is comparable; features in each are
reflected in the total velocity. In this case the energy in
uM is 50% of that in uT . These considerations strongly
suggest that case (i) is a weak field dynamo, whereas
case (ii) is a strong field dynamo.

We recall that the idea of MAC balance was introduced
to argue that dynamo solutions could be found whose

FIG. 3. Transverse kinetic energy spectra for the kine-
matic and dynamical regimes for (a) the weak field and (b)
the strong field dynamo. The individual spectra are com-
puted from two-dimensional horizontal Fourier transforms;
the spectra are then averaged over the convective interior
(0.1 < z < 0.9) and in time. The normalized wavenumber is
the horizontal wavenumber kh =

√

k2
x + k2

y in units of 2π/5.

characteristic scales were not determined by viscosity.
Clearly this cannot be the case for a weak field solution;
inspection of equation (1) shows that if the Lorentz force
is not a factor in determining the scale then this role has
to be played by the viscous forces. It remains to be seen
whether, in strong field solutions, the viscous terms are
still significant, i.e. do strong field solutions necessarily
lead to MAC balance? This point can be further ex-
plored by considering the power spectra of the solutions,
as shown in figure 3. In case (i), the kinetic energy spec-
tra for both the kinematic and dynamic regimes peak at
approximately the same scale. This is consistent with the
designation as a weak field dynamo, namely one in which
the Lorentz force is unable to change the overall structure
of the flow. By contrast, in case (ii), the characteristic
scale apparent in the kinematic spectrum is completely
lost in the dynamic regime. Indeed, the shift of energy to
larger scales suggests that viscosity no longer plays a role
in determining the flow structure, which we interpret as
evidence that MAC balance is being attained. This how-
ever should not be interpreted as implying that there are
no small scales; indeed, inspection of the spectrum shows
that the velocity in the dynamical regime has more en-
ergy at small scales than in the kinematic regime.

It is important to speculate why the different choice of
parameters results in such different behavior. In answer-
ing this question we note that the effect of a magnetic
field, whether self-generated or externally imposed, may
be either to act as a constraint or, alternatively, to act
to alleviate another constraint. For example, in standard
magnetoconvection, the presence of an imposed uniform
magnetic field is always stabilizing [see 19]; however, if
the system is strongly rotating then there are circum-
stances in which the presence of a uniform field actually
facilitates the development of convection [2, 20]. The sys-
tem here is a little more complicated since the magnetic
field is self-generated, rather than imposed; nonetheless,
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it is reasonable to assume that some of the same princi-
ples apply. Thus we believe that the MAC equilibrium
is observed only in case (ii) since it is 20 times more ro-
tationally constrained than case (i). Given this, we may
conjecture that the existence of strong field solutions re-
quires two conditions: strong rotation and a sufficiently
high Rm should motions develop. These conditions are
likely to be satisfied, for instance, in some neighborhood
of marginal hydrodynamic stability.

How do these considerations relate to the modeling of
the geodynamo? On the one hand, the parameters we
have considered are not Earth-like; indeed, the Ekman
number is not particularly small and the Prandtl number
is formally infinite. That said, our strong field solutions
have the dynamic balance that is believed to be crucial
to the geodynamo. This should be contrasted with the
alternative approach, in which one tries to match the
realistic physical parameters as closely as possible, but
which offers no guarantee of exploring the physically rel-
evant branch of solutions. We note here the recent work
of [21], which shows that simply pushing the parame-
ters towards their values in the Earth, at ever-increasing
computational cost, does not lead to more Earth-like so-
lutions.

It is interesting to note that in one of the pioneering
computations that set in motion the modern approach to
modeling the geodynamo [15, 16], inertial terms were in
fact neglected. In spite of the computational limitations
of the time, the solutions were remarkable in display-
ing convectively driven dynamo action with a reversal.
However, it is not obvious whether the solutions were
in MAC balance; with the limitations in computational
resolution, the small scales that may be important in
determining MAC balance had to be suppressed by hy-
perdiffusivities. In view of the results of this article, it
would therefore be of great interest to revisit the inertia-
less spherical shell problem with today’s computational
resources.
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