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Abstract

The ornamental plant trade has been identified as a key introduction pathway for

plant pathogens. Establishing effective biosecurity measures to reduce the risk of plant

pathogen outbreaks in the live plant trade is therefore important. Management of

invasive pathogens has been identified as a weakest link public good, and thus is

reliant on the actions of individual private agents. This paper therefore provides an

analysis of the impact of the private agents’ biosecurity decisions on pathogen

prevention and control within the plant trade. We model the impact that an infectious

disease has on a plant nursery under a constant pressure of potentially infected input

plant materials, like seeds and saplings, where the spread of the disease reduces the

value of mature plants. We explore six scenarios to understand the influence of three

key bioeconomic parameters; the disease’s basic reproductive number, the loss in value

of a mature plant from acquiring an infection and the cost-effectiveness of restriction.

The results characterise the disease dynamics within the nursery and explore the

trade-offs and synergies between the optimal level of efforts on restriction strategies

(actions to prevent buying infected inputs), and on removal of infected plants in the

nursery. For diseases that can be easily controlled, restriction and removal are

substitutable strategies. In contrast, for highly infectious diseases, restriction and

removal are often found to be complementary, provided that restriction is

cost-effective and the optimal level of removal is non-zero.
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1. Introduction1

Increases in the movement of people and traded goods as a consequence of2

globalisation have led to growing concerns about the threat posed by invasive species.3

especially invasive pathogens of humans, plants and animals [e.g. 1–5]. Recent disease4

outbreaks in plants, such as the Chalara fungus (Hymenoscyphus pseudoalbidus)5

affecting ash trees across Europe [6] and the oomycete Phytophthora ramorum6

affecting many plants including larch in Europe [7] and oaks in the US [8], have7

focused attention on the policy options to reduce the risks of similar plant disase8

outbreaks occurring in the future, and the management options to reduce damage9

from newly established pathogen populations. These disease outbreaks have also10

raised concerns about patterns of plant trade, which has been identified as a key11

introduction pathway for invasive pathogens [9], and on the need for a more prominent12

role of the private sector in biosecurity practices to mitigate existing risk [10].13

Understanding the economic impacts of damage and mitigation is essential for14

determining optimal policy and management options for invasive pathogens [11].15

The body of the literature that combines invasion ecology with economic analysis16

to deal with these issues has drastically increased in the last decade (for an overview17

see [12, 13]). Bioeconomic studies explore the management problem from a central18

authority perspective, focusing on the potential social welfare benefits from policy19

intervention to limit the risk of invasive species damages using instruments that20

include port inspections, quarantine and import tariffs [14, 15], import risk screening21

programs [16, 17], the use of public funds to detect, eradicate and/or control22

established invaders, and habitat restoration [e.g. 18–20]. Other studies have23

examined the trade-off between preventive measures before the arrival and control24

measures after the invader is known to be in the country in order to determine the25

optimal allocation of limited public resources between these two strategies [e.g.26

21–26] Here we add to this literature by adopting a private sector perspective, in order27

to understand the biosecurity vulnerability and management incentives affecting28

individual businesses.29

One of the challenges for developing policy to reduce the risk of outbreaks of30
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pathogens is the fact that the potential routes of invasion are not only diverse, but31

also that they are controlled by a mixture of public and private agents. Trading32

decisions made by private decision-makers may have significant implications for public33

interest at a regional or national level, but the public costs of an outbreak are likely to34

far exceed the costs experienced by any one private business, and a privately optimal35

trading decision is very unlikely to match the publicly optimal one due to potential36

conflicting interests [27, 28]. Effective control of the risk posed by invasive pest and37

diseases has been defined as a ‘weakest-link’ public good [e.g. 29, 30]. Therefore, the38

risk of outbreak can be in the hands of a single private firm in the trading network.39

This can limit the level of success of decentralised biosecurity efforts, although it may40

also allow the firm to take a leadership role, creating incentives for other firms to take41

action [31].42

This paper studies the relationship between prevention and control strategies in the43

context of plant trade. We take a single nursery perspective in order to understand44

the biosecurity vulnerability and incentives affecting private firms, that can inform45

subsequent analysis on networks and policy development . We develop a simple46

bioeconomic model of a private nursery owner who buys in, grows and sells on plants47

in the face of the threats posed by an infectious pathogen. The management options48

available to the nursery owner are some combination of (1) restriction, i.e. prevention49

measures to reduce the number of infected plant materials coming from input sources50

(for example, inspecting inputs and/or investigating and discriminating input suppliers51

based on perceived cleanliness) and (2) removal, i.e. taking out infected plants within52

the nursery. Other means of management like cleanliness and fungicide use are53

assumed to at constant optimal levels.54

Prior bioeconomic research on the plant trade has focused on its role as a55

significant pathway to the introduction of potentially exotic invasive plants, exploring56

the use of taxes or annual license fee to reduce this risk and cover the expected57

environmental damages [32, 33]. However, implementing these market-based58

instruments is challenging due to the lack of support among stakeholders in the59

industry [34, 35]. In this paper, we follow current research on private biosecurity60

responses to livestock diseases, where disease risk does not only depend on agents’61

choices but also is characterized by an underlying epidemiological dynamics [36]. In62
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this framework, [37] are concerned on the management problem characterized by63

livestock-wildlife interactions in disease transmission; and [38] studied the role of64

government policies as regular testing on encouraging farmers’ biosecurity investments.65

More recently, [39] focused on assessing whether trade always increase risk or whether66

it can act as a disease management mechanism.67

Our focus, however, is the threat associated with private trading decisions, as68

infected goods can be bought in and sold on. We contribute to the above work by69

focusing on plant trade, and addressing the role of both private preventing and70

controlling behaviour to limit disease transmission risk characterized by71

epidemiological dynamics. Thus, we examine the potential trade-offs and synergies72

between these management decisions when the nursery owner’s objective is to minimize73

the expected private costs from infection management and revenue losses associated74

with the reduced value of infected plants. We find that if the disease spreads faster75

than the ability to control the disease, removal and restriction complement each other76

whereas if the disease is controllable, removal and restriction become substitutes.77

2. Model derivation78

2.1. Disease dynamics79

We consider a plant nursery with a nursery owner who constantly buys plant80

material, grows it and sells it on when the plant becomes mature (i.e. reaches a target81

age). A disease is introduced within the input plant material and spreads within the82

nursery. For simplicity and generality, we assume that the plant population is split83

into two classes, susceptible plants (S) and infected plants (I). Infected plants can84

infect susceptible plants, and once infected a plant remains infected for the rest of its85

time in the nursery; there is no recovery from the infection1. The consequence of86

infection for the nursery owner is that infection alters (assumed here to reduce) the87

net price obtained from selling of a mature plant.88

To combat the spread of the infection within the nursery, the nursery owner has89

two different control measures. The owner can invest (i) in restriction to reduce the90

1Although there is no recovery, infected plants can leave the system via being sold on or being
removed and be replaced by a susceptible plant. This means there is some kind of pseudo-recovery,
meaning the system behaves more like a classic SIS system than SI.
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proportion of infected inputs (be it from inspecting inputs and rejecting infected91

plants or by selecting suppliers with less infected material); and (ii) in the removal of92

infected plants within the nursery. Removal reduces the time an infected plant stays in93

the nursery, avoiding additional secondary invasions, but provides no revenue.94

Schematically, the plant-disease dynamics can be described as (see Fig 1):

Figure 1. A transfer diagram representing the disease dynamics within the nursery

95

Change in S = Input of S - Output of S - Disease Transmission,96

Change in I = Input of I - Output of I - Removal of I + Disease Transmission.97

For simplicity, we assume that the stock of plants at the nursery is fixed, N , which98

may mean for example that the nursery is always full (this is a simplifying assumption99

that is not necessarily realistic; we address this in the Discussion). To do this, we set100

Total Input=Total Output + Removal, where Output of S = δS and Output of I = δI,101

where δ is the rate of plants become mature and sold off (i.e. plants stay for an102

expected time of δ−1 in the absence of removal)2. This means instantaneous103

replacement of any removed plant is assumed; when something is either sold or104

removed by control, it is immediately replaced to keep the stock at nursery constant.105

We also set removal as proportional to the infected plant stock, i.e. removal of106

2Another approach is to have assume that infected plants stay longer in the nursery due to slower
growth. However, this approach would ultimately lead to the same reduction in revenue, since revenue
is price×output. Consequently, the only real difference would be that different output rates would lead
to a more complex replacement term.
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I = uremI, where urem is removal control effort (with units of removal effort per107

infected plant per unit time). We will assume that urem is bounded between 0 and108

uremmax, the maximum possible effort spent on removal. Incorporating this, we have:109

Total Input = δ(S + I) + uremI. (1)

This input is split between susceptible and infected plants; p(uins) is the proportion of110

plant inputs that are infected (as a function of restriction effort per unit time uins,111

which is a control variable) and thus (1− p(uins)) is the proportion of plant inputs112

that are susceptible.113

Incorporating the control measures into standard SI equations [40–42], and

assuming density dependent transmission (βSI), we get:

dS

dt
= (1− p(uins))(δ(S + I) + uremI)− δS − βSI, (2)

dI

dt
= p(uins)(δ(S + I) + uremI)− δI − uremI + βSI. (3)

Given the assumption of constant total plant stock at the nursery (S + I = N), we114

can reduce the system down to one equation by substitution S = N − I. We can also115

rescale the infected population by the total population and consider disease prevalence,116

i = I
N , the proportion of infected plants in the population (0 ≤ i ≤ 1).117

Then we get:118

di

dt
=

1

N

dI

dt
= p(uins)(δ + uremi)− δi− uremi+ βN(1− i)i. (4)

Furthermore, we rescale time by δ−1, the expected time a susceptible plant stays in119

the nursery. Consequently, τ(= δt) is the number of generations. Thus:120

di

dτ
= p(uins)(1 + ûremi)− i− ûremi+R0(1− i)i, (5)

where ûrem = uremδ−1, the removal effort per plant generation (which is bounded121

above by ûremmax = uremmaxδ
−1), and R0 = βNδ−1, the basic reproductive number,122

the expected number of secondary infections from a single infected plant over the123

lifespan of the infected plant in the nursery in an otherwise wholly susceptible plant124
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stock. The basic reproductive number is fundamental to whether a disease will spread125

and is discussed in the results section.126

As mentioned previously, the proportion of plants brought into the nursery being127

infected (p(uins)) is a function of restriction (uins). We assume that the proportion of128

infected plant inputs has the following properties:129

• p(uins) is a continuously differentiable function of the restriction effort uins.130

• With no restriction of plant inputs (uins = 0), some proportion of infected131

plants, a, will enter the nursery, i.e. p(0) = a where a ∈ (0, 1].132

• With any finite restriction effort, some proportion of infected plant will enter the133

nursery, i.e. p(uins) > 0 for all finite uins. This means that it is not possible to134

completely stop infected inputs from arriving no matter how high the level of135

effort, be it from the difficulty to recognise asypmtomatic infected inputs, or136

machine and human error.137

• For all restriction effort, increasing restriction effort reduces the proportion of138

infected plant entering the nursery, i.e. p(uins) is a monotonically decreasing139

function of uins (equivalently, dp
duins

≤ 0 everywhere).140

Any function that is (a) continuous, (b) bounded below (by zero in this case) and (c)141

monotonically decreasing, must converge to some limit as uins goes to infinity. We142

denote this limit b, the proportion of inputs that are infected when unlimited143

restriction effort is used, where b ∈ [0, a]. A simple candidate that satisfies all of these144

characteristics is p(uins) = (a− b) exp(−duins) + b, is plotted in Fig 2 for various145

values of d, where d can be interpreted as the effort-effectiveness of the restriction146

measures, i.e. the reduction in the proportion of infected plant inputs per unit of147

restriction effort.148

2.2. Bioeconomic model149

We consider a price-taking representative nursery owner who seeks to maximise150

profit, faced with the impact of an infectious plant disease. In our model, two types of151

outputs are taken into account: fully matured susceptible and infected plants with PS152
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Figure 2. Proportion of infected plant inputs, p(uins), where
p(uins) = (a− b)exp(−duins) + b with a = 0.2, b = 0 and various of values of d
The solid lines are values used in Scenarios found in the Results.

and PI representing the unit net price of those outputs, respectively3. We assume that153

PI < PS since the infection would likely decrease the plants value when mature and154

could incur higher production costs4. The dynamics of the proportion of infected155

plants within the nursery is given by equation (5). In addition, we assume that disease156

symptoms become more apparent as infected plants mature. This, together with an157

assumption of a regime of inspections within the nursery (inspection regime is158

independent of the state of the nursery, i.e. a constant cost and thus can be ignored),159

leads to the nursery owner having good knowledge of which plants are infected and so160

can act accordingly if desired. All the mature plants sold, or those subject to removal161

control, are immediately replaced given a constant price Pin of plant inputs. This is162

consistent with our earlier assumption of constant stock within the nursery.163

We also consider the costs of removing infected plants and undertaking restrictions164

measures to prevent buying infected input plant material. The cost of removing165

infected plants should increase both with the number of infected plants and with the166

removing control effort, urem. Consequently, we will assume for simplicity that the167

cost of removing infected plant is linearly dependent on the number of infected plants168

and to prevent the unfeasible case of unbounded removal control effort, we will set a169

maximal value of removal control effort of uremmax. Similarly, the cost of the170

3We assume a fixed price for plant outputs and inputs for simplicity. However, it has been suggested
that nurseries work under monopolistic competition[33].

4A few diseases can be beneficial, e.g. mild infestations of Botrytis cinerea on grapes results in noble
rot, which is desirable for dessert wines; in such cases where PI > PS , the optimal control is always to
do nothing, which is trivial.

8



restriction regime is proportional to the restriction effort uins, assumed to be171

dominated by fixed costs and thus is independent from the level of removal effort and172

number of infected plants (i.e. there is no additional cost from restricting measures173

when buying input material to replace the removed infected plants).174

The management decision problem is to maximise the present value profits by175

selecting the level of control in restriction and removal measures over the time horizon176

T and is characterised by the optimising equation:177

max
uins,urem

Profit =

∫ T

0

Discounting
︷︸︸︷

e−rt

(Revenue from selling S
︷ ︸︸ ︷

PSδS +

Revenue from selling I
︷ ︸︸ ︷

PIδI (6)

−
Purchase of replacement stock
︷ ︸︸ ︷

Pin(δN + uremI) −
Cost of removing
︷ ︸︸ ︷

cremuremI −
Cost of restriction
︷ ︸︸ ︷
cinsuins

)

dt

178

subject to Equations (2) and (3) where urem ∈ [0, uremmax] and uins ≥ 0, and where r179

is the discount rate. Equation (6) is very amenable to analytic techniques around180

static solutions if we focus on the terms within the brackets. This means ignoring the181

discounting terms and the effects around terminal and initial conditions by assuming182

the terminal time is large enough for dynamics solution to have converged to the static183

solution. These static solutions will be the focus of this paper. Appendix C184

demonstrates that taking the Hamiltonian approach with optimal conditions used in185

much of the economic literature (using Pontryagin’s maximum principle [43]) and then186

assume constant controls, will arrive at the same optimality conditions, perturbed by a187

term proportional to the discount rate (which is rescaled to r̂ = r
δ ). This discounting188

perturbation should be negligibly small since plant nurseries usually keep plants for a189

few months, possibly up to a couple of years.190

Taking the static problem, and rescaling parameters and variables in (6) as for (5),191

we get:192

max
ûins,ûrem

PS(1− i) + PI i− Pin(1 + ûremi)− cremûremi− ûins (7)
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subject to Equation (5) where ûrem = uremδ−1 ∈ [0, ûremmax] (as before),193

ûremmax = uremmaxδ
−1 and ûins = cinsuins(δN)−1).194

Note that uins has been rescaled to ûins, which now represents restriction control195

costs (with units of restriction cost per plant in nursery per unit time). Thus, we need196

to define the proportion of infected inputs as a function of this rescaled restriction197

control cost. For the case p(uins) = (a− b) exp(−duins) + b, as198

p̂(ûins) = (a− b) exp(−d̂ûins) + b where d̂ = dδNc−1
ins such that p̂(ûins) = p(uins). Here199

d̂ represents the cost-effectiveness of restriction efforts, i.e. the reduction in the200

proportion of infected inputs per dollar invested in restricting measures.201

Given some terms are constant and thus have no influence on the optimised202

solution, we can simplify slightly and gather terms in the objective function (7) to203

arrive at204

max
ûins,ûrem






revenue lost from infecteds
︷ ︸︸ ︷

PI − PS −
costs of removing and replacing infecteds

︷ ︸︸ ︷

(Pin + crem)ûrem




 i−

restriction costs
︷︸︸︷

ûins.

(8)

Equation (8) can be simplified further by setting L := PS − PI and205

C := Pin + crem. Therefore, L is the loss incurred from selling a mature infected plant206

instead of a mature susceptible plant, whereas C is the total cost of removing which207

includes both the expenses associated with the removal and replacement of an infected208

plant. Using this notation, it becomes clear that the nursery owner management209

problem consists of minimising the loss in revenue due to selling infected plants and210

the costs of management (removal and restriction). To simplify notation further, we211

will henceforth remove all the hats (i.e. set ûrem as urem, ûins as uins, p̂(ûins) as212

p(uins) and d̂ as d).213

Consequently, the nursery management decision is to choose between the two214

control strategies to minimise these costs of the infection,215

min
uins,urem

Q := (L+ Curem)i+ uins (9)
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subject to216

di

dτ
= p(uins)(1 + uremi)− i− uremi+R0(1− i)i, (10)

where uins ≥ 0 and urem ∈ [0, uremmax].217

2.3. Analysis218

We start the analysis of the system (9)-(10) by looking at the long term disease219

dynamics for a given constant control regime. We compare the case where restriction220

is perfect, i.e. all plant inputs are susceptible (p(uins) = 0) with a case where221

restriction is imperfect, i.e. some plant inputs are infected (p(uins) > 0). Following222

this, we derive the necessary conditions describing optimal level of effort in restriction223

and removal strategies, using the equilibrium found in the imperfect restriction section.224

Subsequently, we demonstrate some of the theoretical results with numerical solutions.225

For simplicity, we will focus on exploring how the optimal level of management226

changes with respect to changes in key parameters: the basic reproductive number227

(R0), the loss in revenue from selling an infected mature plant (L) and the228

cost-effectiveness (d) (the decay in the proportion of infected plant inputs per dollar229

spent in restriction efforts) and keep all other parameters fixed. This means, as a230

baseline, we assume that (i) the background level of infection within the input plant231

material is a = 0.2, so the disease is widespread within the traded plant material; (ii)232

it is possible to restrict all infected inputs with unlimited restriction b = 0, and (iii)233

the cost of removing and replacing an infected is set at C = 10. The nursery’s234

maximum level of effort on removal is assumed to take any value up to uremmax = 6.235

For the basic reproductive number, we will consider two cases, R0 = 0.5 (i.e. the236

disease cannot spread within the nursery, Scenario 1) and R0 = 5 (i.e. the disease237

spreads fast within the nursery, Scenario 2). Although the value of R0 will depend on238

the characteristics of the particular disease and the plant, given that established239

human diseases can have values up to the mid teens (measles has a value of240

R0 = 12− 18) and that many human diseases have basic reproductive numbers in the241

realms of 5 [41], values of R0 have rarely been found in plants diseases. Even though,242

one study has found that R0 is of the order of 50 for wheat stripe rust in large wheat243

fields [44]. Moreover, the values of R0 is a factor that depends not only on disease244

traits, but also on the properties of the nursery. For example, actions like the routine245
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application of fungicides, the routine cleaning of equipment or the arranging the246

nursery to limit contact between plants could lower R0. Consequently, one could247

consider Scenario 1 as the case where the nursery has effective cleanliness whereas248

Scenario 2 is where there is a lack of effective cleanliness.249

For the loss of revenue from selling an infected plant, we consider a value of L = 10250

as our baseline, which implies that the costs of removal are the same as the losses made251

from selling an infected plant; this would be compared to scenarios with smaller values252

for L, in particular, in Scenario 1b, L = 5 and in Scenario 2b, L = 1. It is reasonable253

to assume that smaller values of L would correspond to situations where the diseased254

plants have superficial damage and/or there are secondary markets for infected plant255

outputs with little difference in the net price of healthy mature plants. Higher values256

of L correspond to diseases that have a large impact on the net price of a highly257

valuable plant, without an effective secondary market for infected plants. In particular,258

plants with that take a long time to mature or bespoke plants sold to the landscape259

sector tend to sell for higher prices and thus prone to large losses from infection.260

Lastly, for the cost-effectiveness parameter, we consider d = 1 as the baseline.261

d = 1 corresponds with a (1− exp−1)× 100%(≈ 63%) reduction in the proportion of262

infected plants coming into the nursery (p(uins)) with an additional unit in restriction263

(solid red line in Fig 2). For comparison, we assume d = 0.3 for scenarios where the264

disease is costly to restrict (Scenario 1c and 2c). Using d = 0.3 corresponds with a265

(1− exp−0.3)× 100%(≈ 26%) reduction in p(uins) when the restriction costs increase266

by one unit (solid blue line in Fig 2). Traits of systems where d is large are where it is267

easy to detect infected plant inputs, because either the inputs have symptoms that can268

be spotted by eye or there exist diagnosic technology that is cheap, quick and easy to269

use. On the other hand, traits of systems where d is small are measures that require a270

lot of labour, time or machinery to detect infected plant inputs. We suspect that this271

is often true for bacteria, viruses and such with no clear symptoms in infected inputs,272

which need expensive and potentially time-consuming tests to detect infected inputs.273

Putting this all together, we have six different cases, three of which are where the274

disease is not particular infectious (which will collectively be known as Scenario 1) and275

three of which consider a highly infectious disease (collectively known as Scenario 2).276

A summary of all six Scenarios, including results, is in Table 1.277
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Table 1. The Scenarios and their key results.

Scenario R0 L d ↓ p Optimal result

1a 0.5 10 1 63% Maximum removal with restriction

1b 0.5 5 1 63% No removal with restriction

1c 0.5 10 0.3 26% Maximum removal, no restriction

2a 5 10 1 63% ‘Do nothing’ if uremmax . 3.5,
else maximum removal with restriction

2b 5 1 1 63% ‘Do nothing’ is optimal everywhere

2c 5 10 0.3 26% ‘Do nothing’ if uremmax . 4.75,
else maximum removal with restriction

Here, ‘↓ p’ is the reduction of infected inputs from an increase in costs of restriction in one unit (i.e.
(1− exp(−d))× 100% rounded to the nearest percentage point). ‘Do nothing’ means zero removal and
zero restriction.

3. Results278

3.1. Long term disease dynamics279

3.1.1. Perfect restriction (p(uins) = 0)280

In the absence of the removal of infected plants (i.e. urem = 0), we have two cases:281

(1) R0 < 1: In this case, on average, a single infected plant infects less than one282

susceptible plant over the lifetime of the infected plant and hence the disease will die283

out eventually. Consequently, the only stable state is the disease-free state and thus284

the disease cannot become endemic (i∗ = 0) (Fig 3(b)). (2) R0 > 1: Here, a single285

infected plant infects more than one susceptible over the lifetime of the infection and286

hence the disease will spread out from any single introduction. Hence, the only stable287

steady state is the endemic steady state i∗ = 1− 1
R0

and thus any introduction will288

result in the disease being endemic (Fig 3(a)).289

In the presence of the removal of infected plants (i.e. urem > 0), the results are290

similar to the absence of removal, except the threshold between a disease-free nursery291

and an endemic disease in the nursery is based on value of Rrem
0 = R0

1+urem
. For292

Rrem
0 > 1, for any introduction of disease, the disease will invade and approach the293

steady state i∗ = 1− 1
Rrem

0
(Fig 3(a)). For Rrem

0 < 1, the disease will not become294

endemic from any single introduction (Fig 3(b)).295

Now, for urem > 0, we have that Rrem
0 < R0. Thus, the disease will find it harder296

to survive as infected plants have less time in the nursery to infect other plants297
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Figure 3. Perfect restriction (p = 0)

(a) If Rrem
0 = R0

1+urem
> 1, then the prevalence equation is a form of Logistic growth. There are two

steady states (where di
dτ

), i∗ = 0 and i∗ = 1− 1
Rrem

0
. i = 0 is unstable and that for the region

between i = 0 and i = 1− 1
Rrem

0
, di

dτ
> 0 and thus disease prevalence will increase over time

(represented by the arrow at the top). (b) If Rrem
0 < 1, then the prevalence equation is negative for

all positive prevalence. There is one non-negative steady state, i∗ = 0, which is stable. Note that
when urem = 0, Rrem

0 = R0.

because of removal. In particular, if the removal effort (urem) is sufficiently large298

(urem > R0 − 1), we can reduce Rrem
0 below 1 and consequently rid the nursery of the299

disease in the long run.300

3.1.2. Imperfect restriction (p(uins) = p > 0)301

With imperfect restriction, the disease will always persist in the nursery plant stock302

to some level (Figure 4). There is always only one steady state that is non-negative,303

i∗ =
R0 − 1− (1− p)urem +

√

(R0 − 1− (1− p)urem)2 + 4pR0

2R0
, (11)

and it is always stable. The lack of a disease-free steady state is due to the constant304

inflow of infected plants into the system. In particular, di
dτ = p > 0 at i = 0 and thus305

disease prevalence will always increase when starting with a disease-free nursery.306

Despite the disease always persisting in the nursery, we wish to distinguish between307

two cases. If Rp
0 = R0

1+urem(1−p) > 1 (Fig 4(a)), the disease spreads through the plant308

stock like before. Notice that R0 > R
p
0 > Rrem

0 . This is because the removal control is309

only effective (1− p)× 100% of the time, since p× 100% of the time in the removing310

infected is replaced by another infected. In particular, if p = 0, Rp
0 = Rrem

0 , whereas311

for p = 1, Rp
0 = R0. Consequently, imperfect restriction undermines the removal312

control. In particular, if Rrem
0 > 1, the disease would persist without any infected313
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Figure 4. Imperfect restriction (p > 0)

(a) R
p
0 = R0

1+urem(1−p)
> 1 and (b) R

p
0 = R0

1+urem(1−p)
< 1. For both figures have only one steady

state that is stable; there is no disease-free steady state unlike the case with p = 0.

inputs (as shown in the previous subsection for perfect restriction). If R0

1+urem(1−p) < 1314

(Fig 4(b)); the disease does not spread effectively within the nursery and instead its315

persistence in the nursery is dependent on constant introduction of infected plant316

inputs into the nursery.317

The disease dynamics for the imperfect restriction are essentially logistic growth318

with an additional constant introduction of infected plants. In particular, Fig 4(a) can319

be seen as a shifted and transformed version of the logistic growth in Fig 3(a), which320

results in the loss of the disease-free steady state and an increase in the endemic321

steady state. Likewise, Fig 4(a) can be seen as a shifted version of the ‘negative322

logistic growth’ in Fig 3(b), where the disease-free steady state becomes an endemic323

steady state.324

Table 2 summarises the results about when the disease is endemic in the nursery325

for both the perfect and imperfect restriction.326

Table 2. Summary of Constant Control.

Endemic Disease-free

Perfect Restriction, no removal R0 > 1 R0 < 1
Perfect Restriction with removal Rrem

0 > 1 Rrem
0 < 1

Imperfect Restriction Always Never

Here, Rrem
0 = R0

1+urem
.

3.2. Optimal management: Analytical results327

Working with the prevalence steady state, we seek to find the optimal combination328

of removal and restriction, urem and uins that minimises the costs of the plant disease329
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at the nursery:330

Q = (L+ Curem)i∗ + uins = (L+ Curem)
M +

√

M2 + 4R0p(uins)

2R0
+ uins (12)

where M(uins, urem) = R0 − 1− (1− p(uins))urem. Note, M is fundamentally linked331

with R
p
0 with equivalent threshold properties: M = 0 corresponds with R

p
0 = 1, M > 0332

corresponds with R
p
0 > 1 and M < 0 corresponds with R

p
0 < 1.333

To find the combination of urem and uins that minimise Q, we need to consider the

partial derivatives of Q to find internal and boundary minima. When optimal

prevention and control policies are interior they satisfy the first order conditions:

∂Q

∂urem
=MCrem −MBrem = 0 (13)

∂Q

∂uins
=MCins −MBins = 0 (14)

where

MBrem =
(L+ Curem)(1− p(uins))

2R0

(

1 +
M

√

M2 + 4R0p(uins)

)

MCrem =
C

2R0

(

M +
√

M2 + 4R0p(uins)
)

MBins = −
(L+ Curem)∂p(uins)

∂uins

2R0

(

urem +
Murem + 2R0

√

M2 + 4R0p(uins)

)

MCins = 1

As expected, Equation (13) (Equation (14)) requires a nursery owner to allocate334

resources to removal (restriction) until the last dollar spent on removal (restriction)335

equals the marginal benefits gained in terms of reduction in infection costs. The336

analysis of the properties of local and global minima for removal (Equation (13)) and337

restriction (Equation (14)), can be found in Appendices A and B, respectively.338

Looking at Equations (13) and (14) and incorporating the results found in339

Appendices A and B, we have the following:340

• With respect to removal, if MBrem >MCrem at urem = 0 then MBrem >MCrem341

for all urem and thus urem = uremmax is the global minimum with respect to342

urem.343
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• If MBrem <MCrem at urem = uremmax then MBrem <MCrem for all admissible344

urem and thus urem = 0, i.e. no removal effort, is the global minimum with345

respect to urem.346

• The only other case with respect to urem is that there exists a value of347

urem ∈ (0, uremmax) such that MBrem =MCrem, and this internal solution is a348

local maximum. Both urem = 0 and urem = uremmax are local minima with349

respect to urem. One of these will be the global minimum with respect to urem350

and direct comparison of the values of Q at these local minima is required.351

• With respect to restriction, if MBins <MCins at uins = 0, then MBins <MCins352

for all uins > 0 and thus Q is minimised at uins = 0, i.e. no restriction is optimal.353

• Conversely, if MBins >MCins for uins = 0 (for fixed urem), then there is a value354

of uins > 0 such that MBins =MCins (i.e. a level of restriction where the355

marginal benefit is equal to the marginal cost), and this value is the global356

minimum with respect to uins, i.e. moderate restriction is optimal.357

• One can analyse whether removal and restriction work together as complements358

or as substitutes by analysing ∂2Q
∂uins∂urem

. For complements, ∂2Q
∂uins∂urem

< 0359

(since Q represents costs, not profit or utility) and ∂2Q
∂uins∂urem

> 0 for substitutes.360

The expression for ∂2Q
∂uins∂urem

is complex and can be either sign. In particular, if361

M and R0 are large and urem is zero, then ∂2Q
∂uins∂urem

< 0 and thus restriction362

and removal are complements; whereas, if urem is large and thus M is large and363

negative, ∂2Q
∂uins∂urem

> 0, making restriction and removal substitutes.364

From this and by looking at Equations (13) and (14), we can establish some rules365

of thumb. Firstly, by looking at Equation (14), we can see that increasing L and/or C,366

will increase the marginal benefits in damages avoided and thus generally results in367

higher restriction (in particular, it never leads to lower levels of restriction). Secondly,368

looking at Equation (13), we can see that increasing L and C proportionally results in369

no change in whether urem = 0 or urem = uremmax are optimal. Consequently, the370

values of L and C themselves have no impact on the optimal strategy for removal, only371

the ratio between L and C (in other words, the nursery owner would apply the same372

effort if losses for an infected plant were $1 and removal costs $1 as $10 losses with $10373
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removal costs, it is just a matter of scale). This is not the case for uins, since both,374

revenue losses and removal costs are compared with the cost of restriction.375

The effects of R0 and the parameters in p(uins) on Equations (13) and (14) are not376

straightforward, partly because they are also included within M , although the presence377

of ∂p(uins)
∂uins

in MBins suggests that increasing the cost-effectiveness of restriction, d,378

increases MBins around uins = 0, making restriction measures more likely.379

3.3. Optimal management: Numerical solutions380

Table 1 provides a summary of the results for all the scenarios analysed.381

3.3.1. Scenario 1: Low infectiousness382

Scenario 1 represents cases of diseases that would not persist in the nursery383

without the constant introduction of infected plant materials. First we will consider384

the baseline case where L = 10 and d = 1 (Scenario 1a), before focusing on the effects385

a reduction in L (to L = 5) has on the optimal solution (Scenario 1b) and then386

consider the effect of reducing the effectiveness per dollar in restriction effort d to 0.3387

(Scenario 1c).388

In Scenario 1a (Fig 5(a)), we have that the marginal benefit of removal is always389

greater than the marginal cost
(

since ∂Q
∂urem

< 0 at urem = 0
)

. Consequently, the390

optimal removal is maximum removal urem = uremmax. This is to be expected, since391

removing an infected plant prevents not only losses from that infected plants (which392

are assumed to be equal to the removal cost, L = C) but also losses from secondary393

infections. Given that R0 > p(uins) this additional loss from secondary infections is394

considerably greater than the potential loss that could result from the possibility of395

buying infected inputs when replacing plants that were subject to removal.396

In Fig 5(a) and all other contour plots, the optimal level of restriction is397

determined by the line MBins=MCins. For Scenario 1a (Fig 5(a)), with no removal398

effort, the optimal level of restriction is around uins = 1.2. As the nursery increases its399

capacity to remove infected plants, it slowly reduces the optimal level of restriction.400

Next, we consider the case where the revenue losses from infection are considerably401

lower (Scenario 1b, Fig 5(b)). Reducing the revenue losses from infection from L = 10402

to L = 5 has made removal less viable. It is better to leave an infected plant in the403
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Figure 5. Contour plots of Q with respect to both removal and restriction for (a)

Scenario 1a, (b) Scenario 1b and (c) Scenario 1c.

Red regions are the regions of lowest costs whereas blue regions signify highest costs. The

black solid line represents MBins=MCins (there are no lines for removal in this Scenario).

Black dots are local minima, white dots are local maxima and grey dots are saddle points

(points on the right boundary are local maxima/saddle point if we limit uins to regions in

these figures). R0, L and d are given in Table 1. Other parameters: C = 10, a = 0.2 and

b = 0.

nursery, because the costs of removing and replacing an infected plant is too expensive404

relative to the revenue loss associated to its lower net price.405

Now, in contrast to Scenario 1a, Scenario 1c (Fig 5(b)) simulates a situation where406

restriction is more costly. This is represented by decreasing d from 1 to 0.3 and407

consequently spending an extra unit in restriction results in a reduction in infected408

inputs of (1− exp−0.3) ∗ 100%(≈ 26%), considerably worse than the 63% in Scenario409

1a. This decrease in d has shifted the optimal restriction line where MBins=MCins to410

the left, in this case the line is now to the left of the y-axis and thus beyond the411

realms of reality, and consequently restriction has become inviable. Thus the optimal412

strategy in Scenario 1c is maximum removal with no restriction (Fig 5(c)).413
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3.3.2. Scenario 2: High infectiousness414

Increasing the basic reproduction number from R0 = 0.5 (Scenario 1) to R0 = 5415

(Scenario 2) increases the complexity of the results.416

When a disease is highly infectious, any small introduction of infected plants will417

spread the disease through the nursery quickly. Consequently, investing in restriction418

does not prevent the disease going through the plants growing in the nursery.419

However, restriction does have a mild effect on disease prevalence when prevalence in420

the nursery is high as the ‘cleaner’ inputted plants that replace those leaving the421

nursery will have a mild rinsing effect. Thus, without removal effort, restriction is422

often not viable (i.e. no restriction is optimal) when the disease is highly infectious.423

This is particularly the case here when contrasting the viable restriction in Scenario 1a424

(Fig 5(a) where R0 = 0.5) and the inviable restriction in Scenario 2a (Fig 6(a)) when425

there is no removal.426

In Scenario 2a (Fig 6(a)) there are up to two local minima. We know from the427

analytical results that optimal removal is either urem = 0 or urem = uremmax.428

Consequently we can argue about the importance of uremmax by varying429

urem = uremmax in the contour plots, following the MBins=MCins line. If the nursery430

capacity to remove is small, in particular such that uremmax is below the intersection431

of the MBins=MCins and MBrem=MCrem curves, then there is only one local (and432

thus global) minimum, which is to do nothing and let the disease take its course. If433

uremmax is beyond the intersection, then there are two local minima, the434

aforementioned ‘do nothing’ and urem = uremmax with the corresponding restriction435

level given by MBins=MCins. The global minimum is one of these two local minima436

and which one depends on the value of uremmax; if uremmax is small enough that the437

contour is either blue or green (below uremmax ≈ 3.5) then ‘do nothing’ is optimal,438

whereas beyond uremmax ≈ 3.5 where the contours are yellow to red, then maximum439

removal (urem = uremmax) is the optimal strategy. Consequently, there is a great440

range of values uremmax where the optimal solution is to ‘do nothing’, that it is futile441

to try and control the disease without being able to really get on top of it.442

One particularly interesting result in Scenario 2a (Fig 6(a)) is the kink that occurs443

in the MBins=MCins curve. This kink occurs indistinguishably close to R
p
0 = 1 since444

the kink occurs around where the MBins=MCins and R
p
0 = 1 curves intersect. Below445
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Figure 6. Contour plots of profit Q with respect to both removal and restriction

for (a) Scenario 2a, (b) Scenario 2b and (c) Scenario 2c.

Red regions are the regions of lowest costs whereas blue regions signify highest costs. The

black lines represent MBins=MCins and MBrem=MCrem whereas the grey line represents the

values of (uins, urem) that correspond to R
p
0 = 1. The dots have the same meaning as

Fig 5(a). R0, L and d are given in Table 1. Other parameters are the same as Fig 5.

this kink, we have that increasing level of removal is linked with increasing level of446

restriction, i.e. removal and restrictions are complements. This occurs since restriction447

improves the effectiveness of removal as it reduces the chances that an infected plant,448

which has been removed, is replaced by another infected plant. However, above the449

kink, we have that increasing level of removal results in a decrease in the optimal level450

of restriction, i.e. they are substitutes. This agrees with the final bullet point of451

the analytical results, where restriction and removal are complements452

when R0 is large and urem is small, whereas restriction and removal are453

substitutes when urem is substantially larger than R0.454

Going from Scenario 2a to 2b (Fig 6(b)), there is a reduction in the loss in revenue455

from selling an infected plant from L = 10 to L = 1 (note that this is a considerably456

smaller revenue loss than in Scenario 1b). The effect of this small revenue loss in the457
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optimal effort of controlling the disease is relatively minor with respect to Scenario 2a;458

MBins=MCins has shifted a little to the left, and thus the optimal level of restriction459

is reduced everywhere and MBrem=MCrem has shifted a bit to the right and a little460

up. The consequence of the move in MBrem=MCrem is that removal is also less viable461

everywhere. In particular, the intersection between these two lines that separates the462

two local minima has shifted up, increasing the region where there is only one local463

minimum; and consequently, ‘do nothing’ has become the optimal control irrespective464

to the value of uremmax.465

Notice that L has to be really small to achieve the result above. For L = 5, the466

global minimum is maximum removal as long as uremmax is sufficiently above the kink467

around R
p
0 = 1 (figure not given, use Fig 6(a) as guide). Conversely, a large increase in468

revenue losses, L, is needed to exclude ‘do nothing’ as an local optimal minimum; first,469

optimal restriction expenditure becomes positive for zero removal around L = 25 (i.e.470

MBins=MCins intercepts the x-axis), and this ‘restriction only state’ becomes a local471

minimum. The ‘restriction only state’ remains a local minimum while the curves472

representing MBins=MCins and MBrem=MCrem intercept. This intercept disappears473

around L = 45, beyond which there is no ‘zero-removal’ local minimum. This means474

that even for large revenue losses, if the nursery capacity to remove is small (uremmax475

small) then the nursery is very likely to be in the region where no expenditure in476

removal is optimal. This is because the disease will still spread through the nursery477

since R
p
0 is still considerably larger than 1, making removal efforts futile.478

Now, consider the case where restriction is less cost-effective as d is decreased to479

0.3 (Scenario 2c, Fig 6(c)). This decrease has a relatively minor effect on the removal480

line MBrem=MCrem in Fig 6(c), the line keeps the same intercept with the y-axis and481

it is flatter than in Fig 6(a). This is predictable since decreasing cost-effectiveness482

means that more needs to be spent in restriction in order to have the same effect in483

the reduction of the probability of buying infected inputs. Likewise, the line of484

MBins=MCins has (a) a higher intercept with the y-axis, making restriction less485

worthy if there is low removal, and (b) at the kink the expenditure on restriction has486

increased. The latter effect is due to the reduction in the cost-effectiveness (essentially487

an increase in the price of a 50% reduction in infected inputs) which does reduce488

restriction effort, but it does increase total spending on restriction.489
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4. Discussion and Conclusions490

In this paper, we have analysed the prevention and control management options491

available to a nursery owner in order to minimise the impacts of an infectious disease492

that may spread within the nursery. To this end, we derived a bioeconomic model of a493

plant nursery, where the manager can opt either to restrict the proportion of infected494

plant material coming into the nursery (prevention), or remove infected plants within495

the nursery (control), or a combination of both strategies. We assume that there is an496

upper limit on removal effort. Our analytical results show that (a) if infected inputs497

are always coming into the nursery, the disease would persist in the nursery, and will498

approach a unique endemic steady state (Section 3.1.2 and Figure 4); (b) the optimal499

removal is either maximum removal (i.e. the upper limit in removal efforts given the500

nursery’s capacity) or no removal, as long as restriction efforts are optimally allocated,501

i.e. where the marginal cost of restriction equals its marginal benefit in terms of502

disease damages avoided (Section 3.2); (c) optimal restriction expenditure increase503

with both the revenue losses for selling mature infected plants and costs of removal;504

while maximal removal is more likely to be optimal if either revenue infection losses505

increase or removal costs decrease (Section 3.2); (d) since any removed infected plant506

stock needs to be replaced buying new plant inputs, which could potentially be507

infected, the manager can increase the effectiveness of removal effort by increasing508

restriction effort (see expressions of Rp
0 and i∗ in Section 3.1.2).509

The numerical analysis of the Scenarios (summarised in Table 1) with varying510

conditions in the level of infectiousness of the disease, damages to the nursery, and511

cost-effectiveness of management efforts, highlights three relevant results for private512

biosecurity decisions. First, results indicate that it is optimal to spend on maximum513

removal efforts unless the revenue losses from selling infected mature plants are514

considerable lower than the cost of removal (especially for highly infectious diseases,515

e.g. Scenario 2).516

Secondly, if the capacity to remove infected plants is very limited, due for example517

to temporal or monetary constrains, it may be optimal to ‘do nothing’ (again,518

particularly for highly infectious diseases, Scenario 2). It is only worth removing519

infected plants if the efforts applied can limit the expansion of the disease through520
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secondary infections within the nursery, otherwise removal resources could be waste; it521

is not worthwhile removing an infected plant if the replaced plant will likely become522

infected. The private benefits of removal efforts in curbing the disease has therefore523

threshold properties. Benefits can only be achieved once at least a minimum amount524

has been contributed to their production. This property on removal efforts is expected525

to affect the probability of cooperating [e.g. 45, 46], when strategic decisions among526

private agents is relevant to limit the probability of outbreaks [e.g. 31, 47].527

A third result is the finding of synergies between restriction and removal strategies,528

which are determined by the reproduction number, i.e. how contagious a disease is and529

could be spread through trade. This contributes to previous existing literature that530

only focus on substitutionary effects between prevention and control. For example,531

Olson and Roy[48] examine the conditions under which the optimal policy relies solely532

on either prevention or control. Kim et al.[49] examine the optimal combination of533

pre-discovery prevention, post-discovery prevention and post-discovery control where534

the discovery time is stochastic, and find that post-discovery prevention and control535

are substitutes. Leung et al.[22] consider that if there is expensive control activities,536

this reduces social welfare at the post-invasion state, and consequently higher social537

welfare can be achieved from avoiding invasion, and substituting control by prevention538

efforts. Similarly, Finnoff et al. [24] conclude that a risk averse agent would substitute539

more prevention expenditures with control policies when compared to a risk neutral540

agent. Here, we found that the optimal level of restriction is complementary with541

removal efforts if the disease is beyond the nursery owner’s ability to limit its spread.542

The underlying reason for this is that, restriction measures may not be very effective543

in the case of highly infectious diseases (Scenario 2), since some infected plants544

materials will always get past the restriction regime, and once infected plants are in545

the nursery the disease will spread fast within the nursery. In those situations, if the546

manager increases the level of effort in removing infected plants, the disease becomes547

more manageable, and consequently making expenditures in restriction measures more548

effective. In addition, increased efforts on restriction makes also removal more effective,549

reducing the probability of buying infected inputs when the nursery owner has to buy550

new stock to replace those infected plants that were removed. Consequently, removal551

and restriction efforts are complementary for highly infected diseases.552
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This phenomenon where ‘prevention’ and ‘cure’ are complementary has been found553

in the human health literature in [50, 51]. Hennessy et al.[51] argue that for554

‘prevention’ and ‘cure’ being complements is that increasing prevention reduces the555

chance that cured individuals become sick again and thus improving the long term556

benefit of curing sick individuals. This argument is analogous to the reasons that can557

explain why restriction improves the effectiveness of removal in Scenario 2, as the558

replacement of a removed infected plant with an infected plant can be seen as559

(instantaneous) reinfection.560

We also show that this complementary relationship between prevention and control561

continues as removal level increase until around R
p
0 = 1. Beyond this point the disease562

no longer is able to spread through the nursery and instead relies on the constant563

introduction of infected plant inputs to persist in the nursery. In this case, the disease564

could be manageable through the removal programme, and the nursery owner can565

choose whether to remove it once it is in the nursery or prevent it from entering the566

nursery. This means, restriction and removal efforts are substitutes, akin to the classic567

‘prevention vs cure’ argument.568

However, it should be noted that the analysis in this paper is based on the long569

term dynamics of the disease and decision making, thus our work fits more the570

endemic stage of an infection with the nursery being subject to continual invasion571

pressure. Consequently, it neglects the epidemic/invasion stage, and uncertain benefits572

from delaying the spread of the disease through prevention and/or survelliance during573

this stage [e.g. 19, 25]. Moreover, we also recognise that many nurseries work on a574

shorter term basis than used in this model. For example, some nurseries are seasonal575

and only have a generation or two of plants in the nursery for one season before an576

annual reset of the nursery, with new plants stock. In this case, a steady state might577

not be appropriate analysis as not enough time has occurred for a steady state to be578

reached. Following the above literature, in cases like those in Scenario 2 with highly579

infectious diseases, restriction and removal may be more viable in the early stages of580

disease introduction (unlike the long term) since they can delay the inevitable disease581

spreading through the nursery. However, even in shorter time-scales,582

equilibrium-based analysis form a strong baseline for understanding optimal decisions.583

In the model derivation process we assumed that the nursery stock is fixed (i.e. the584
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nursery is always full). This is not always true, especially if seasonal effects (like585

weather or seasonal demand) occur or if the nursery owner reduces the size of the586

nursery as a disease management tool. During periods with a reduced nursery stock,587

the basic reproductive number R0 is reduced (since the disease is density dependent)588

as is the cost-effectiveness of restriction, ‘d’. The reduction in R0 means the disease589

will spread less within the nursery and thus is easier to control by removal.590

Consequently, the constant full nursery assumption used in this paper gives an upper591

limit to the extent of the disease will spread and thus a worst case scenario in terms of592

uncontrolled damages from a pathogen. On top of that, the reduction on R0 from a593

lower N reduces the range of urem where restriction and removal are complements. On594

the other hand, the reduction in the cost-effectiveness of restriction would result in a595

less stringent restriction regime (i.e. an increase in the proportion of infected plant596

inputs, p(uins)), akin to what is found when comparing Scenarios 1a and 2a with597

Scenarios 1c and 2c.598

In this paper, we have assumed the disease is an SI disease, i.e. each plant is either599

susceptible or infected and there is no recovery from the disease. This was for600

simplicity and generality. However, many plant diseases have recovery, latency,601

asymptomatic infection and immunity, as well as free-living stages in the environment602

(i.e. in the soil or water). The presence of asymptomatic and latent infected plant603

inputs undermines the owner’s ability to restrict infected inputs coming into the604

nursery since identifying infected plants material inputs becomes much more complex605

or even impossible if no symptoms of infection or clear evidence of pathogens are606

present. In addition, our analysis only focuses on diseases that can only enter the607

nursery via infected plant material inputs (i.e. though plant trade). However, for608

many different nurseries, pathogens and pests get into the nursery through a number609

of different pathways. In particular, contaminated water is often the reason for610

Phytophthora and other pathogens getting into plant nurseries [52, and references611

therein]. We suspect that in this situation, restriction strategies that focus on612

inspecting plant inputs would have a limited effect on preventing the diseases, which613

would reduce their cost-effectiveness and therefore their optimal level of provision.614

The level of restriction in this paper depends greatly on the choice of the function615

p(uins), the proportion of infected plant material inputs that are infected for a given616
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level of restriction. In this paper, we used an exponentially decreasing function to617

obtain numerical results since it was the simplest function that satisfies the desired618

properties of p(uins) (i.e. which, in short, is monotonic decreasing of uins). This619

function has the property that the first dollar spent on restriction is always the most620

effective, and that each dollar spent has a smaller effect on p(uins) than the previous621

dollar. This property would not necessarily be appropriate in several cases. For622

example, functions where a small investment in restriction has little effect and a623

substantial investment that more has to spent for a restriction regime to start to have624

a noticeable effect on the proportion of infected plant materials coming in could be625

more appropriate if substantial funds are needed for effective levels of knowledge,626

labour, machinery and skills to be maintained. A suggested simple function that could627

provide useful incite into management satisfies this property is (a− b) exp−du2
ins +b (in628

which case the most cost-effective level of restriction is at uins = (2d)−1/2).629

Finally, note that this paper deals with one disease of concern for the nursery630

owner to control. Generally, a nursery owner has a multitude of diseases to be631

concerned about. For example, the tomato Solanum lycopersicum is known to be a632

host for over 500 different pests and pathogens [53]. Likewise, a nursery can have633

many pathogens present. For example, at least 13 different species of Phytophthora634

were found in the irrigation water at three nurseries in northern Germany in 1995635

[54, 55]. Likewise, in Bavaria in 2002, there were five different species of Phytophthora636

found in the soil around a single open-planted alder seedling [T.Jung, LWF, D-85354637

Freising, personal communication cited in 55]. With a multitude of diseases to638

manage, a common optimal strategy on restriction and removal would be needed, a639

strategy that would likely differ from the strategy of each of the diseases in isolation.640
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Appendix A. Optimal solution with respect to urem: ‘all or nothing’

To find out what the optimal solutions with respect to urem, we need to investigate:

∂Q

∂urem
= (L+ Curem)

∂M
∂urem

+
2M ∂M

∂urem

2
√

M2+4R0p(uins)

2R0
+ C

M +
√

M2 + 4R0p(uins)

2R0
= 0,

(A.1)

where M(uins, urem) = R0 − 1− (1− p(uins))urem. First, we need to manipulate this

into something more manageable.

∂Q

∂urem

= −

(L+ Curem)(1− p(uins))

2R0

(

1 +
M

√
M2 + 4R0p(uins)

)

+
C

2R0

(

M +
√

M2 + 4R0p(uins)
)

(A.2)

= −

C

2R0

((
L

C
+ urem

)

(1− p(uins))

(

1 +
M

√
M2 + 4R0p(uins)

)

−

(

M +
√

M2 + 4R0p(uins)
)
)

(A.3)

= −

C

2R0

√
M2 + 4R0p(uins)

(((
L

C
+ urem

)

(1− p(uins))−M

)(√

M2 + 4R0p(uins) +M
)

− 4R0p(uins)

)

(A.4)

Consequently, solutions of ∂Q
∂urem

= 0 are solutions of
((

L
C + urem

)
(1− p(uins))−M

)
(
√

M2 + 4R0p(uins) +M)− 4R0p(uins) = 0. Now, if

such solutions exist and are admissible, we need to find out if one of these solution is a

maximum with respect urem. To do so, we need to look at the second derivative.
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∂2Q

∂u2
rem

= −

C

2R0

∂M

∂uins

∂

∂M

(

1
√

M2 + 4R0p(uins)

)

=0
︷ ︸︸ ︷
(((

L

C
+ urem

)

(1 − p(uins)) − M

)(√

M2 + 4R0p(uins) + M

)

− 4R0p(uins)

)

−

C

2R0

√
M2 + 4R0p(uins)

(

(1 − p(uins))

(√

M2 + 4R0p(uins) + M

)

−

∂M

∂uins

(

1 +
M

√
M2 + 4R0p(uins)

)

+

(
L

C
+ urem

)

(1 − p(uins))
∂M

∂uins

∂

∂M

(√

M2 + 4R0p(uins)

))

(A.5)

= −

C

2R0

√
M2 + 4R0p(uins)

(

2(1 − p(uins))

(√

M2 + 4R0p(uins) + M

)

− (1 − p(uins))

((
L

C
+ urem

)

(1 − p(uins)) − M

)(

1 +
M

√
M2 + 4R0p(uins)

))

(A.6)

= −

C(1 − p(uins))

2R0(M2 + 4R0p(uins))

(

2

(

M
2
+ 4R0p(uins) + M

√

M2 + 4R0p(uins)

)

−

((
L

C
+ urem

)

(1 − p(uins)) − M

)(√

M2 + 4R0p(uins) + M

))

(A.7)

= −

C(1 − p(uins))

2R0(M2 + 4R0p(uins))









2

(

M
2
+ 2R0p(uins) + M

√

M2 + 4R0p(uins)

)

−

=0
︷ ︸︸ ︷
((((

L

C
+ urem

)

(1 − p(uins)) − M

)(√

M2 + 4R0p(uins) + M

))

− 4R0p(uins)

)









(A.8)

= −

C(1 − p(uins))

R0(M2 + 4R0p(uins))

(

M
2
+ 2R0p(uins) + M

√

M2 + 4R0p(uins)

)

(A.9)

If M > 0, then ∂2Q
∂u2

rem
< 0 and thus all internal solutions are local maxima with

respect to urem. It is not completely clear if this is the case for M < 0 so instead look

to find the value of M where M2 + 2R0p(uins) +M
√

M2 + 4R0p(uins) has its

minimum. So we look at the properties of solutions of

∂
∂M

(

M2 + 2R0p(uins) +M
√

M2 + 4R0p(uins)
)

= 0.

∂

∂M

(

M
2 + 2R0p(uins) +M

√

M2 + 4R0p(uins)
)

= 2M +
√

M2 + 4R0p(uins) +
M2

√
M2 + 4R0p(uins)

(A.10)

=
2

√
M2 + 4R0p(uins)

(

M
2 + 2R0p(uins) +M

√

M2 + 4R0p(uins)
)

= 0 (A.11)

Solutions of this satisfy M = − M2+2R0p(uins)√
M2+4R0p(uins)

. Substituting this into
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M2 + 2R0p(uins) +M
√

M2 + 4R0p(uins) gives:

−

M2 + 2R0p(uins)
√

M2 + 4R0p(uins)

(

−

M2 + 2R0p(uins)
√

M2 + 4R0p(uins)
+
√

M2 + 4R0p(uins)

)

+ 2R0p(uins)

= −

M2 + 2R0p(uins)

M2 + 4R0p(uins)

(
−(M2 + 2R0p(uins)) +M

2 + 4R0p(uins)
)
+ 2R0p(uins) (A.12)

= 2R0p(uins)

(

1−
M2 + 2R0p(uins)

M2 + 4R0p(uins)

)

> 0

and thus M2 + 2R0p(uins) +M
√

M2 + 4R0p(uins) > 0 always and thus ∂2Q
∂u2

rem
> 0

and thus internal solutions are always local maxima with respect to urem. As there is

no internal minimum with respect to urem, the global minimum must occur on the

boundary, either at urem = 0 or urem = uremmax. If
∂Q

∂urem
< 0 at urem = 0 then

urem = 0 is a local (global) maximum and urem = uremmax is the global minimum.

Conversely, if ∂Q
∂urem

> 0 at urem = uremmax then urem = uremmax is a local (global)

maximum and thus urem = 0 is a global minimum. If ∂Q
∂urem

> 0 at urem = 0 and

∂Q
∂urem

< 0 at urem = uremmax, then you have must compare Q for urem = 0 and

urem = uremmax since both are local minima.

Appendix B. Optimal control with respect to restriction uins: ‘do

something or do nothing’

We need to find out the global minimum with respect to restriction uins by

analysing:

∂Q

∂uins
= (L+ Curem)

∂M
∂uins

+
2M ∂M

∂uins
+4R0

∂p(uins)

∂uins

2
√

M2+4R0p(uins)

2R0
+ 1 = 0. (B.1)

where M(uins, urem) = R0 − 1− (1− p(uins))urem. First, we will look at the second

partial derivative to see if ∂Q
∂uins

is an increasing or decreasing function of uins:
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∂2Q

∂u2
ins

=
∂2p(uins)

∂u2
ins

(L+ Curem)

2R0

(

urem +
Murem + 2R0

√
M2 + 4R0p(uins)

)

+

(
∂p(uins)

∂uins

)2
(L+ Curem)

2R0

(

−2R0(Murem + 2R0)

(M2 + 4R0p(uins))
3
2

)

(B.2)

=
∂2p(uins)

∂u2
ins

L+ Curem

2R0









urem +

(Murem + 2R0)(M
2 + 4R0p(uins))− 2R0

(
∂p

∂uins

)2

∂2p

∂u2
ins

(Murem + 2R0)

(M2 + 4R0p(uins))
3
2









(B.3)

=
∂2p(uins)

∂u2
ins

L+ Curem

2R0









urem +

M2 + 4R0p(uins)− 2R0

(
∂p

∂uins

)2

∂2p

∂u2
ins

M2 + 4R0p(uins)

Murem + 2R0
√

M2 + 4R0p(uins)
︸ ︷︷ ︸

always >−urem









(B.4)

Now, since we do not have sufficient knowledge on the properties of ∂2p
∂u2

ins

in

general, we will continue with p(uins) = b+ (a− b) exp(−duins). Thus

∂p
∂uins

= −d(a− b) exp(−duins) = −d(p(uins)− b) and

∂2p
∂u2

ins

= −d ∂p
∂uins

= d2(a− b) exp(−duins) = d2(p(uins)− b). Armed with this, we have:

∂2Q

∂u2
ins

=
(L+ Curem)d2(p(uins)− b)

2R0







urem +

∈(0,1)
︷ ︸︸ ︷

M2 + 2R0(p(uins) + b)

M2 + 4R0p(uins)

always >−urem
︷ ︸︸ ︷

Murem + 2R0
√

M2 + 4R0p(uins)
︸ ︷︷ ︸

>0








(B.5)

> 0 when L+ Curem > 0 (B.6)

Firstly, we note that if L+ Curem ≤ 0 (which could be true if L < 0), there are no

internal solutions from possible for Equation (17) from the main text and we have

∂Q
∂uins

is monotonically increasing to -1. Hence, ∂Q
∂uins

< 0 always and thus zero

restriction is always the best (a disease that is beneficial should not be restricted). For

L+ Curem > 0, we have that ∂Q
∂uins

is monotonically increasing (to 1 as uins → ∞). In

other words, increasing restriction has even diminishing returns, reducing the marginal

benefit, whereas the marginal cost remains the same. Given we have that ∂Q
∂uins

is

monotonically increasing to 1 (and is continuous), we know that there exists one and

only one admissible solution with respect to uins (for fixed urem) if ∂Q
∂uins

< 0 at
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uins = 0 and that this solution is a global minimum with respect to uins, i.e. the

optimal control involves some restriction. Otherwise, ∂Q
∂uins

≥ 0 at uins = 0, there is no

internal solution and the global minimum with respect to uins is at uins = 0, i.e. no

restriction is optimal.

If such solutions do not exist within admissible controls (urem ∈ [0, uremmax] and

uins ≥ 0), we need to pick the minimising values on the boundary, i.e. if ∂Q
∂uins

> 0 at

uins = 0, then either uins = 0 and uins = ∞ are the global maximum. However, since

∂Q
∂uins

→ 1 as uins → ∞ (because p(uins) is converging to b and thus ∂p(uins)
∂uins

→ 0,

uins = ∞ is always a local maximum and thus uins = 0 is the global minimum, i.e. the

cost minimising strategy, when ∂Q
∂uins

> 0 at uins = 0.

Appendix C. Linking dynamic and stationary approaches

Taking Equation (6) and following the rescaling and rearrangement that occur

between Equation (7) and (9) leads to:

min
uins,urem

∫ T̂

0

e−r̂t ((L+ Curem)i+ uins) dt (C.1)

where T̂ = Tδ and r̂ = r
δ (henceforth, we will drop these hats for simplicity, being

consistent with what was done in the main text). First, we establish and analyse the

Hamiltonian of Equations (9) and (10). This Hamiltonian is:

H = e−rt ((−L− Curem)i− uins) + λ (p(uins)(1 + uremi)− i− uremi+R0(1− i)i) .

(C.2)

Consequently, the adjoint equation is:

dλ

dt
= −∂H

∂i
= −

(
e−rt(−L− Curem) + λ (p(uins)urem − 1− urem +R0(1− 2i))

)
.

(C.3)

The optimality conditions for uins and urem are:

∂H

∂uins
= −e−rt + λ

(
∂p(uins)

∂uins
(1 + uremi)

)

= 0 (C.4)
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and

∂H

∂urem
= i(λ(p(uins)− 1)− Ce−rt) = 0, (C.5)

respectively.

To link the solutions in this paper to those of this Hamiltonian, we will assume an

infinite time interval, and treat urem, uins as constants. On top of this, we will insert

the steady state value of i∗ from Equation (11) given from the population dynamics.

Rearranging (C.4) gives:

λ =
e−rt

(
∂p(uins)
∂uins

(1 + uremi)
) . (C.6)

Inserting this into (C.3) gives:

dλ

dt
= e−rt

(

L+ Curem +
p(uins)urem − 1− urem +R0(1− 2i)

∂p(uins)
∂uins

(1 + uremi)

)

. (C.7)

From this, using the constant urem, uins and i∗ assumption and assuming λ = 0 at

infinity, gives:

λ = −1

r
e−rt

(

L+ Curem +
p(uins)urem − 1− urem +R0(1− 2i)

∂p(uins)
∂uins

(1 + uremi)

)

. (C.8)

Using the two expressions for λ (C.6) and (C.8), we get:

1
∂p(uins)
∂uins

(1 + uremi)
= −1

r

(

L+ Curem +
p(uins)urem − 1− urem +R0(1− 2i)

∂p(uins)
∂uins

(1 + uremi)

)

.

(C.9)

Inserting i∗ =
M+

√
M2+4p(uins)R0

2R0
, where M = R0 − 1− (1− p(uins))urem, and with a

little rearranging, we arrive at:

r = −
(

(L+ Curem)
∂p(uins)

∂uins

(

1 + urem
M +

√

M2 + 4pR0

2R0

)

+
√

M2 + 4pR0

)

.

(C.10)

Dividing everything by −
√

M2 + 4p(uins)R0 and rearranging gives:

− r
√

M2 + 4p(uins)R0

= 1−
(

−
(L+ Curem)∂p(uins)

∂uins

2R0

(

urem +
Murem + 2R0

√

M2 + 4R0p(uins)

))

.

(C.11)

Notice that the right hand side is dQ
duins

= MCins −MBins from Equation (14). Thus
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for zero discounting (r = 0), dQ
duins

= 0 gives the optimal restriction, whereas for a

positive discounting rate (r > 0), the optimal restriction satisfies

dQ
duins

= − r√
M2+4R0p(uins)

. However, since dQ
duins

is monotonically increasing function,

we know that increasing the discount rate (r) would lower the optimal level of

restriction. This effect is very dependent on how long the plant is expected to be in

the nursery due to the time rescaling (i.e. since r̂ = r
δ ). If the average plant stay is

short (i.e. weeks to months) then this discounting effect is negligible, whereas for

longer period (i.e. years), this term becomes larger, having more impact on the

optimal restriction.

Moving on to optimal removal, (C.5) is generally never satisfied, and instead the

optimal removal is a ‘bang–bang’ control (i.e. all or nothing) which is consistent with

the static analysis. Consequently, the optimal solution is either urem = 0 or

urem = uremmax, which depends on the sign of λ(p(uins)− 1)− Ce−rt.

To determine the sign, we will focus on the threshold λ(p(uins)− 1)− Ce−rt = 0.

Substituting Equation C.6 and rearranging gives:

C
∂p(uins)

∂uins
(1 + uremi) = −(1− p(uins)). (C.12)

Now, rearranging Equation (C.9) and inserting the steady state value of i∗ from

Equation (11) gives

∂p(uins)

∂uins
(1 + uremi) = −

r +
√

M2 + 4p(uins)R0

L+ Curem
. (C.13)

Substituting this into C.12 and arranging gives

Cr = (L+ Curem)(1− p(uins))− C
√

M2 + 4p(uins)R0. (C.14)

Multiplying by −1
2R0

(

1 + M√
M2+4R0p(uins)

)

we arrive at:

− rC

2R0

(

1 +
M

√

M2 + 4R0p(uins)

)

= (C.15)

C

2R0
(M +

√

M2 + 4p(uins)R0)−
(L+ Curem)(1− p(uins))

2R0

(

1 +
M

√

M2 + 4R0p(uins)

)

.
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This of condition is analogous with the static problem, with the right hand side being

dQ
durem

= MCrem −MBrem from Equation (13).

This alone does not give the global optimal since there are two λ’s to compare, one

where urem = 0, the other where urem = uremmax. In cases where

λ(urem = 0)(p(uins)− 1)−Ce−rt < 0 but λ(urem = uremmax)(p(uins)− 1)−Ce−rt > 0,

a comparison in terms of profit must be made, which is analogous to the two local

optima solutions found in the static solutions. Again, like with restriction, we have

that no discounting gives the same result, and increasing the discount rate makes

urem = uremmax less likely to be globally optimal.
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