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The Conserved Oligomeric Golgi complex is an evolutionarily conserved multisubunit
tethering complex (MTC) that is crucial for intracellular membrane traf�cking and
Golgi homeostasis. The COG complex interacts with core vesicle docking and fusion
machinery at the Golgi; however, its exact mechanism of action is still an enigma. Previous
studies of COG complex were limited to the use of CDGII (Congenital disorders of
glycosylation type II)-COG patient �broblasts, siRNA mediated knockdowns, or protein
relocalization approaches. In this study we have used the CRISPR approach to generate
HEK293T knock-out (KO) cell lines missing individual COG subunits. These cell lines were
characterized for glycosylation and traf�cking defects, cell proliferation rates, stability of
COG subunits, localization of Golgi markers, changes in Golgi structure, and N-glycan
pro�ling. We found that all KO cell lines were uniformly de�cient in cis/medial-Golgi
glycosylation and each had nearly abolished binding of Cholera toxin. In addition, all cell
lines showed defects in Golgi morphology, retrograde traf�cking and sorting, sialylation
and fucosylation, but severities varied according to the affected subunit. Lobe A and
Cog6 subunit KOs displayed a more severely distorted Golgi structure, while Cog2, 3,
4, 5, and 7 knock outs had the most hypo glycosylated form of Lamp2. These results
led us to conclude that every subunit is essential for COG complex function in Golgi
traf�cking, though to varying extents. We believe that thisstudy and further analyses of
these cells will help further elucidate the roles of individual COG subunits and bring a
greater understanding to the class of MTCs as a whole.

Keywords: COG complex, Golgi apparatus, CRISPR, vesicle tet hering, glycan processing, glycosylation, toxin
traf�cking

INTRODUCTION

E�cient docking and fusion of intracellular transport carriers in eukaryotic cells is tightly regulated
by a family of multi-subunit tethering complexes (MTC) that sequentially and/or simultaneously
interact with other components of vesicle docking and fusion machinery (Lupashin and Sztul,
2005; Yu and Hughson, 2010). The Conserved Oligomeric Golgi (COG) complex, the main MTC
functioning at the Golgi, is a key player in intra-Golgi retrograde tra�cking ( Suvorova et al.,
2002; Ungar et al., 2002; Miller and Ungar, 2012; Willett et al., 2013a,b). The COG complex is
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a hetero-octamer and a member of the CATCHR (complexes
associated with tethering containing helical rods) familyof
proteins (Yu and Hughson, 2010). It is comprised of eight
di�erent protein subunits (named Cog1–8) (Whyte and Munro,
2001; Ungar et al., 2002) that are organized into two functionally
distinct sub complexes or lobes: Cog1–4 in lobe A and Cog5–
8 in lobe B (Fotso et al., 2005; Ungar et al., 2005). The two
lobes are bridged together via an interaction between lobe A
subunit Cog1 and lobe B subunit Cog8 (Fotso et al., 2005;
Ungar et al., 2005). Previous studies on the interactome of
the COG complex have revealed protein-protein interactions
with several di�erent families of tra�cking regulatory proteins
including SNAREs, SNARE-interacting proteins, Rab GTPases,
coiled-coil tethers, and COPI subunits (Suvorova et al., 2002;
Shestakova et al., 2006, 2007; Sohda et al., 2007, 2010; Sun
et al., 2007; Miller et al., 2013; Willett et al., 2013a, 2014).
Further studies revealed that the COG complex is required for
the proper recycling of Golgi localized glycosylation enzymes
(Kingsley et al., 1986; Podos et al., 1994; Shestakova et al.,2006;
Steet and Kornfeld, 2006; Pokrovskaya et al., 2011; Cottam et al.,
2014). In humans, mutations in COG complex subunits result
in type II congenital disorders of glycosylation (CDG-II;Wu
et al., 2004; Foulquier et al., 2006, 2007; Kranz et al., 2007;
Paesold-Burda et al., 2009; Reynders et al., 2009; Ungar, 2009;
Lübbehusen et al., 2010; Kodera et al., 2015). These COG complex
de�ciencies cause many developmental impairments including
microcephaly, mental retardation, hypotonia, and issues with
hemostasis (for review seeClimer et al., 2015; Rymen et al., 2015).
In addition to its roles in glycosylation and Golgi homeostasis,
the COG complex is also hijacked by intercellular pathogens
such as HIV and Chlamydia (Pokrovskaya et al., 2012; Liu et al.,
2014). COG complex mutants have been found in a variety of
model organisms including plants, fruit �ies, worms, and yeast,
but the phenotypes between these di�erent model organisms vary
greatly. In humans, COG complex function has been studied
through case studies of CDGII-COG patients, patient �broblasts
in cell culture (which have limited proliferation potential,and
may still have small amounts of mutant COG protein), or by
using knock down and knock sideways assays in immortalized
cell lines. Though these approaches have proved useful, they fail
to allow for study of the long term e�ects of COG loss.

In the present study we report on a set of immortalized COG
subunit KO cell lines made using CRISPR/Cas9 technology in
HEK293T cells. These cells have allowed us to begin elucidating
contributions of each subunit to overall complex function and
stability, and also to probe the COG complexes' vast interactome
for unique interacting partners and functions of the various
subunits.

METHODS

Reagents and Antibodies
Reagents were as follows: GNL-Alexa 647 (Willett R. A.
et al., 2013), RCAI-Rho (Vector Labs), CTxB-Alexa 647
(Molecular Probes), Subtilase cytotoxin (1.49 mg/ml;Paton et al.,
2004). Antibodies used for immuno�uorescence microscopy
(IF) or western blotting (WB) were purchased through

commercial sources, gifts from generous individual investigators,
or generated by us. Antibodies (and their dilutions) were
as follows: rabbit a�nity puri�ed anti-hCog3 (WB 1:10,000;
Suvorova et al., 2001), hCog4 (WB 1:1000, this lab), hCog6 (WB
1:1000, this lab), hCog8 (WB 1:1000, this lab); mouse monoclonal
anti-LAMP2 (WB 1:100, DSHB), anti-Cathepsin D (WB 1:500,
Sigma), anti-GM130 (WB 1:1000, BD), and goat anti-GRP78
(WB goat 1:1000; Santa Cruz).

Cell Culture, Transfection, and Media
Collection
HEK293T cells (ATTC) were grown in DMEM/F12 medium
(Thermo Scienti�c) supplemented with 10% FBS (Atlas
Biologicals) and in the presence of antibiotic/antimycotics where
noted. Cells were kept at 37� and 5% CO2 in a 90% humidi�ed
incubator. Cells were passaged via gentle resuspension.

HEK293T Cog1 through Cog8 stable knockouts were
generated using CRISPR technique (Jinek et al., 2012; Cong et al.,
2013; Mali et al., 2013). gRNA sequences were either provided
by Horizon Discovery or purchased from Genecopoeia. From
Horizon: Cog8 Guide ID:123842 Target: GGTGGAGGATGA
AGGGCTCC, Cog1 Guide ID: 129696 Target: TTTCGAGAC
GCATGGAGCGG, Cog3 Guide ID: 113509 Target: GGCGCT
GTTGCTGCTGCCTG, Cog4 Guide ID: 123995 Target: CGA
ATCAAGGTCCGCCATCT, Cog6 Guide ID: 113368 Target:
GCTGCCAACGGCCTCAACAA. From Genecopia: Cog5
Catalog No. HCP200561-CG01-3-B-a Target: CAACTAGCA
AAACTTGCCCA, Cog2 Catalog No. HCP205454-CG01-3-B-a
Target: CTTGTTGATGAGTTCGACCA, Cog7 Catalog No.
HCP222287-CG01-3-B-b Target: CCAAGAGGTGAACCACGC
CG. HEK293T cells were transfected with plasmid containing
gRNA with Cas9-dasherGFP (Horizon Discovery) or Cas9 with
mCherry (Genecopia).

For transfection with Lipofectamine 2000 cells were plated
on a 6-well plate (one well for each set of plasmids) to reach
a con�uency of 50–70% the next day (� 1.5 � 106 cells/well).
Cells were placed in Optimem prior to transfection, the lipid-
DNA complex was added to the cells and cells were allowed to
incubate with the DNA overnight. The media was changed to
regular culture media the following morning. Cells were checked
at the 24 and 48-h time points to evaluate transfection e�ciency
(via �uorescence on the CRISPR/Cas9 plasmid).

To obtain conditioned media from the cells to analyze cell
secretions, cells went through the following protocol: Media
was removed then cells were washed with PBS 3x. Serum free,
chemically de�ned media (BioWhittaker Pro293a-CDM, Lonza)
supplemented with glutamine was then added to the cells and the
cells were incubated at 37� C and in 5% CO2 for 48 h before media
was collected. Media was then spun at 3000 g to remove any cells
or cell debris. The supernatant was removed and stored at� 20� C
until analyzed by SDS-PAGE and western blot.

Immuno�uorescence Microscopy
Cells were grown on 12 mm glass coverslips (#1, 0.17 mm
thickness) 1 day before transfection. After transfection cells were
�xed and stained as described previously (Pokrovskaya et al.,
2011). In short, cells were �xed in 4% paraformaldehyde (16%
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stock solution diluted in Dulbecco's phosphate-bu�ered saline
(DPBS); Electron Microscopy Sciences). Cells were then treated
with 0.1% Triton X-100 for 1 min and with 50 mM ammonium
chloride for 5 min. Cells were washed with DPBS and blocked
twice for 10 min with 1% BSA, 0.1% saponin in DPBS. Cells
then were incubated for 1 h with primary antibody diluted in
antibody bu�er (1% cold �sh gelatin, 0.1% saponin in DPBS)
at room temperature. Cells were washed four times with DPBS
and incubated for 30 min with �uorescently tagged secondary
antibody in antibody bu�er at room temperature. Coverslips
were washed four times with DPBS, rinsed with ddH2O, and
mounted on glass microscope slides using ProlongR
 Gold
antifade reagent (Life Technologies). Cells were imaged with
the 63X oil 1.4 numerical aperture (NA) objective of a LSM510
Zeiss Laser inverted microscope out�tted with confocal optics.
Image acquisition was controlled with LSM510 software (Release
Version 4.0 SP1). Processing was done using this software aswell
as ImageJ.

Lectin Staining and Immuno�uorescence
Lectin staining was performed as previously described (Willett
R. A. et al., 2013) with minor modi�cations. Cells were seeded
on to collagen coated glass. When cells were 75–100% con�uent
coverslips were removed and washed with warm PBS then �xed
in 1% paraformaldehyde in PBS for 15 min followed by a
wash and a 10-min block with 1% BSA in PBS. The blocking
step was repeated, then cells were incubated with the lectin
diluted 1:1000 in 1% BSA solution for 30–60 min. Cells were
washed 5 times and �xed for 15 min with 4% paraformaldehyde
in DPBS for intracellular staining. The above protocol for
traditional immuno�uorescence to look at intracellular proteins
was followed with an optional urea treatment (2–3 min) prior to
blocking for better antibody binding.

Flow Cytometry
Cells were grown to 80–100% con�uency then resuspened in ice
cold 0.1% BSA by gentle pipetting and placed in an Eppendorf
tube. Cells were pelleted at a low speed (600 g for 3 min) and
resuspended in 0.1% BSA containing the lectin of choice (GNL,
Ricin, or Cholera toxin) at a 1:1000 dilution. Cells were incubated
in lectin solution on ice for 30–60 min. Cells were then spun
down and resuspended in ice cold 0.1% BSA (plus DAPI for
viability gaiting) by gentle pipetting. Cells were analyzed using
the NxT Attune �ow cytometer. Cells were gated for live cells
(DAPI excluding cells), singlets, then for correct cell size vs.
complexity. Analysis was done using FlowJo software.

Cell Sorting and Colony Expanding
For cell sorting, lectin staining was done as detailed above. Cells
were spun down at a 600 g then resuspended in cell sorting media
[PBS, 25 mM Hepes pHD 7.0, 2% FBS (heat inactivated) 1 mM
EDTA, 0.2mm sterile �ltered] and �ltered through a �ltered
cap 5 ml- 12� 75 mm polystyrene round bottom tube before
single cell sorting. Sorting was based on high-GNL-Alexa 647
�uorescence into a 96-well plate containing culture medium plus
antibiotic/antimycotics. Cell sorting was done using FACSARIA
at the UAMS Flow Cytometry core facility.

The 96-well plates were analyzed for colonies 10–14 days after
sorting. Wells with colonies were marked and allowed to grow
for 1 week more before expanding. After 21 days, colonies were
expanded from 96-well to 12-well plates via resuspension. Cells
were maintained in antibiotic/antimycotic media and allowed to
grow further. Once colonies were split onto 10 cm dishes (around
4–6 weeks after initial transfection) aliquots were cryopreserved
in freezing media (90% FBS plus 10% DMSO) and the remaining
cells were used for other analysis, including sequencing, western
blot, and �ow analysis.

Chromosomal DNA Prep, PCR, and
Sequencing
For chromosomal DNA prep cells were resuspended in culture
media and an aliquot was taken for counting. After cell density
was determined 100,000 cells were removed and placed into a
microcentrifuge tube. Cells were spun down at low speed (600 g
for 3 min) and resuspended in PBS then spun down again. 0.5 mL
of Quick Extract DNA extraction solution was added then cells
were resuspended via vortex. Cells were placed at 63� C for 8 min,
vortexed and placed at 98� C for 2 min per the manufacturer's
instructions. Chromosomal DNA was stored at� 20� C until use.

PCR using chromosomal DNA as a template was done for a
300–800 base pair region surrounding the CRISPR cut site. Two
50mL reactions were done for each potential knock out cell line as
well as two reactions of a wild type control for each. Each reaction
contained the following: 2 mM each of targeted COG subunit
forward and reverse primer, 2–3mL of the chromosomal DNA,
2.5mL of DMSO, 4mL of dNTPs, 5mL of 5x exTaq bu�er, and 0.2
mL of exTaq polymerase. Reactions were run with the following
settings:

1. 95� C, 1:00 min
2. 95� C, 0:10
3. 57� C, 0:10
4. 72� C, 0:30
5. Repeat 2–4, 35x
6. 6 72� C, 0:30
7. 4� C,1

Reaction products were then gel puri�ed using a Gel Extraction
kit (Zymo Reaserch) and following the manufactures protocols.
Samples were then sent for sequencing at the UAMS DNA
Sequencing core facility.

Subtilase Cytotoxin Assay
Subtilase cytotoxin (SubAB) assay was essentially performedas
in Smith et al. (2009)with minor modi�cations. Both control
and COG KO HEK293T cells were grown on 12-well culture
plates to 70–80% of con�uency. Cells were placed in 10% FBS
in DMEM/F-12 (50:50) without antibiotics and antimycotics
for at least 1 h before the assay was performed. The subtilase
cytotoxin was diluted in the same medium (without antibiotic)
and warmed up to 37� C. The time course is 0-, 20-, 40-, 60- 120-,
and 180-min. Cells were incubated with the subtilase cytotoxin
(0.05 mg/ml for the appropriate times in the 37� C incubator
with 5% CO2). Cells were then washed o� with PBS and lysed
with 2% SDS warmed up to 95� C. Cell lysates, 10ml of each,
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were loaded on a 4–15% gradient gel and immunoblotted with
anti-GRP78 (Santa Cruz; C-20) antibody. All experiments were
performed in triplicates. The blots were scanned and analyzed
with an Odyssey Infrared Imaging System (LI-COR, Lincoln,
NE).

High Pressure Freezing, Freeze
Substitution, and Electron Microscopy
Sapphire disks were carbon coated then collagen coated
(Corning) per the manufacturer's instructions. Disks were then
sterilized under UV light and transferred to new sterile 3
cm dishes (one dish with 3 disks per sample), cells were
plated on top and allowed to grow until a con�uency of 80–
100% was reached on the disks. The media was then changed
for each of the plates to fresh culture media and cells were
allowed to incubate at 37� C for 2–3 h before high pressure
freezing. Disks containing cells were high pressure frozen in
cryoprotectant (PBS with 2% agarose, 100 mM D-mannitol, and
2% FBS) using a Leica EM PACT2 high pressure freezer with
rapid transfer system, then transferred under liquid nitrogen
into tubes containing a staining cocktail (acetone with 2%
osmium tetroxide, 0.1% Glutaraldehyde, and 1% ddH2O) pre
frozen in liquid nitrogen as well. Tubes were then transferred
to a freeze substitution chamber at� 90� C on the following
schedule:� 90� C for 22 h, warm 3� C/h to � 60� C, � 60� C for
8 h, warm 3� C/h to � 30� C, � 30� C for 8 h, warm 3� C/h
to 0� C.

Sample tubes were then placed on ice and washed with
acetone 3x. Samples were than stained with a 1% Tannic acid/1%
ddH2O solution in acetone on ice for 1 h before three more
acetone washes. Samples were than stained with a 1% osmium
tetroxide/1% ddH2O solution in acetone on ice for 1 h then
washed three more times in acetone before the embedding
process.

Samples were embedded in Araldite 502/Embed 812 resin
(EMS) with DMP-30 activator added in a Biowave at 70� C
under vacuum for 3 min for each embedding step. Samples were
then baked at 60� C for 48 h before sectioning. Samples were
stained post sectioning with uranyl acetate and lead citratebefore
imaging. Ultrathin sections were imaged at 80 kV on a FEI
Technai G2 TF20 transmission electron microscope and images
were acquired with a FEI Eagle 4kX USB Digital Camera.

Cell Lysis and Western Blot
Media was removed from one well of a 6-well plate (cells at� 90%
con�uency) for each cell line and cells were washed gently with
PBS. Cells were resuspended in PBS via gentle resuspension and
placed into a microcentrifuge tube. Cells were then pelleted at 600
g for 3 min. PBS was removed and 250mL of 95� C 2% SDS was
added to lyse cells. The mixture was vortexed and heated at 95� C
for 5 min. Fifty microliters of 6x sample bu�er containing 5%b-
mercaptoethanol was added and vortexed. Samples were stored
at � 20� C until use.

For western blot analysis 10–15mL lysates were added to
wells a 4–15% gradient gel. The gel was then run at 180 V
until the dye reached the bottom. Proteins were transferredto
a nitrocellulose membrane. The membrane was stained with

Ponceau S Stain and a picture was taken. The membrane was then
washed and blocked for 20 min. Primary antibodies in blocking
bu�er were added and the membrane was incubated overnight
at 4� C. The following day the membrane was washed 3x and
incubated with secondary antibody in 5% evaporated milk in
PBS for 40 min. Membrane was washed 4x and imaged using
the Odyssey imaging system. Analysis was done in Licor Image
Studio light.

Glycan Sample Preparation and Mass
Spectrometry
Procedure was performed as inAbdul Rahman et al. (2014)with
some modi�cations.

In brief, cells were grown to 80–90% con�uency. Media was
removed and cells were washed 5x with PBS. Cells were then
resuspended in PBS via gentle pipetting and placed on ice. Cells
were then spun down at 14,000 g for 5 min. PBS was then
removed and more was added. Cells were spun down again then
the supernatant was removed. Glycan lysis bu�er (4% (w/v) SDS,
100 mM Tris/HCl pH 7.6, 0.1 M dithiothreitol) was added in a
1:10 pellet/lysis bu�er volume ratio. The sample was heated to
95� C for 5 min. The lysate was centrifuged at 14,000 g for 10 min,
and the supernatant was collected and kept at� 80� C.

Filter-aidedN-glycan separation (FANGS) was performed as
described (Abdul Rahman et al., 2014). Speci�cally, following
dilution in urea bu�er (8 M urea, 100 mM Tris/Cl, pH
8.5) the lysate was transferred into a 30 kDa ultra�ltration
tube (Millipore). Subsequently repeated centrifugations and
dilutions with urea bu�er were performed interspersed with an
iodoacetamide treatment (40 mM in 300mL urea bu�er). Finally,
the membrane �lter was washed three times with ammonium
bicarbonate (50 mM, pH 8.0), and the sample treated with 8
units of PNGase F in 100mL ammonium bicarbonate bu�er
for 16 h at 37� C. Glycans were eluted from the �lter by
centrifugation followed by a wash in HPLC grade water. Released
N-glycans were dried and permethylated in alkaline DMSO using
iodomethane and dried as described (Abdul Rahman et al., 2014).
PermethylatedN-glycans were dissolved in 20mL of methanol,
2 mL of this solution was then mixed with 2mL of 20 mg/mL
2,5-dihydroxybenzoic acid (DHB) in 70% methanol and 1mL of
sodium nitrate (0.5 M), spotting 2mL of this onto a MALDI target
plate. Mass spectra were acquired on a 9 T solariX FTICR mass
spectrometer (Bruker Daltonics) recorded over the m/z range
400–4000 in positive ion mode with 500 laser shots. Eight scans
were averaged and the laser power was set between 30 and 40%.
Spectra were calibrated externally using a Bruker Peptide Mix
II. N-glycans were identi�ed by their accurate mass and isotope
pattern, and included in the analysis if at least two isotope peaks
were above a signal to noise ratio of three. Glycan intensities were
calculated by summing the peak area divided by the half maximal
width for each isotope. Relative quanti�cation was achieved by
normalizing glycan intensities within each spectrum to the sum
of intensities for the glycan species observed in all analyzed
cell lines. Relative abundances were averaged from biological
replicates and error bars indicate the standard error of the
mean.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 March 2016 | Volume 4 | Article 23

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Bailey Blackburn et al. Characterization of COG KO Cell Lines

RESULTS

Cells De�cient in COG Complex Subunits
Express an Increased Amount of Terminal
High Mannose Residues on the Plasma
Membrane
N-glycosylation begins in the ER where the forming glycan
chains are added to nascent proteins. The glycoprotein is then
modi�ed and transferred to the Golgi where the oligomannose

type glycans, which contain terminal mannose residues, are then
trimmed and processed. This process, which continues as the
protein progresses through the Golgi, leads to hybrid then �nally
mature, complex oligosaccharides (Stanley, 2011).

Our group has previously shown that COG complex subunit
knock downs (KD) in HeLa and HEK293T cells cause altered
binding of several lectins due to impaired glycosylation of plasma
membrane glycoconjugates while in the Golgi (Shestakova et al.,
2006; Richardson et al., 2009; Pokrovskaya et al., 2011; Willett

FIGURE 1 | COG KO validation. Left column : Sequence alignment of mutant and control DNA. ChromosomalDNA was ampli�ed at the CRISPR target region by
high �delity PCR. The expected cut site based on the guide RNA is highlighted in yellow. The central column shows plasma membrane staining of WT HEK293T and
COG KO cells withGalanthus nivalislectin (GNL-pink). Nuclei stained with DAPI (blue).Right column : cells were analyzed using �ow cytometry for GNL staining
(wild-type cells are in black, COG KO cells are in white).
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R. A. et al., 2013; Ha et al., 2014). We used this knowledge to
screen HEK293T cells subjected to CRISPR/Cas9–based gene
editing to isolate COG KOs. For this preliminary screen we
choseGalanthus nivaluslectin conjugated with Alexa 647 (GNL-
647) as a tool for selection. GNL binds to terminala1-3 linked
mannose residues (Shibuya et al., 1988) to all tested COG KD cells
(Pokrovskaya et al., 2011) making it a helpful probe for immature
glycans. By treating non-permeabilized cells with �uorescently
tagged GNL, only immature glycans on the cell surface bind the
lectin, making cells with glycosylation defects easy to sort from
the transfected population.

Preliminary analysis revealed that 8 days after transfection
with individual COG-subunit-speci�c CRISPR constructs a
subpopulation of cells (around 5% of the total population)
appeared that have high GNL binding compared to control
cells (data not shown). From the 5% GNL positive population
observed by �ow cytometry, presumed COG KO cells were
single cell sorted into a 96 well plate. Each plate yielded� 10–15
individual colonies. On the secondary GNL binding test several
colonies demonstrated diminished GNL staining (� 3 for each
plate) and these clones were always still positive for the targeted
subunit and served as an internal control. We preserved at

least 2–5 Cog negative clones for each subunit KO as assessed
by high GNL binding (assessed by IF,Figure 1). For further
con�rmation of COG KO induced high GNL binding, �ow
analyses were performed on these clones. KO cells labeled with
GNL-647 revealed a uniform, bright plasma membrane staining
that was distinct from control HEK293T cells (Figure 1). This
increased amount of plasma membrane glycoconjugates with
terminala1-3 linked mannose residues indicates altered activities
in cis-Golgi Mannosidase I enzymes (MAN1A1, MAN1A2,
MAN1C1) as well as incis/medial-Golgi localized Mannosidase
II (MAN2A) and/or GlcNAc-T1 (MGAT1) transferase that were
shown previously to be COG complex dependent (Pokrovskaya
et al., 2011). From this we concluded that GNL binding is a
powerful selection strategy for phenotypic sorting of all COG
subunits KOs. Clonal populations of COG KOs were further
validated by sequencing and western blot (Figures 1, 2). Because
all CRISPR gRNA sequences were designed to target the �rst
exon of COG genes, we have ampli�ed the �rst exon from
chromosomal DNA extracted from both control and KO cells
with high-�delity PCR. Sequencing of resulted PCR products
revealed signi�cant deletions and/or mutations in the �rst exon
of each of targeted genes (Figure 1). We also con�rmed a

FIGURE 2 | Growth and rescue of COG KO cells. (A) Growth of WT and KO cells. Cells were plated in 24 well plates in triplicate at 100,000 cells per well (Day 0).
Cells were counted at the indicated time points over a week and cell counts were plotted.(B) The average growth in a 24 h period was calculated by (# of cells on day
n/ # of cells on day n-1)*100 to get percent growth per day. Growth percentages over the week for each cell line were averaged.(C) Western blot analysis for each
COG subunit KO cell line.b-actin is used as a loading control. Asterisks indicate non-speci�c bands. (D) Rescue of COG dependent glycosylation defect. Missing
COG subunits (green) were transfected into KO cells. Seventy two hours later cells were �xed and stained with GNL-Alexa 647 (pink). Note that GNL binding was
signi�cantly reduced in cells expressing COG subunits.
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complete loss of corresponding COG subunits by Western blot
(WB) for Cog2–8 KOs (Figure 2C).

Because antibodies for Cog1 are currently not available for
western blot, we next sought to further validate this cell line
and others by rescuing the glycosylation defects by transient
expression of the myc-tagged knocked-out COG subunit
(Figure 2D). Four days after transfection, each replacement COG
subunit was observed on the Golgi in cells receiving the plasmids.
These cells also showed WT (decreased) levels of GNL-647
binding to plasma membrane in contrast to their untransfected
neighbors (Figure 2D). This rescue further validated the COG
KO cell lines and supports the idea that cis/medial-Golgi
glycosylation is dependent on the entire COG complex and that
this is not an o� target e�ect of our CRISPR protocol.

To further characterize the COG KO cell lines and test
if aberrant glycosylation or impairment of COG-dependent
interactions a�ected cell growth, cell proliferation was tracked
(Figures 2A,B). Surprisingly cell lines showed no change from
wild-type HEK293T cells in proliferation rates indicating that, in
HEK293T cells, every COG complex subunit is not essential for
cell growth and division.

To probe for the stability of remaining COG subunits in the
absence of individual subunits, lysates of KO and WT cells were
separated on SDS-PAGE and probed for antibodies to Cog3, 4,
5, 6, 7, and 8 (Figure 3A). (We were not able to include Cog1
due to lack of working antibodies. Cog2 was also omitted from
this assay due to lack of su�cient amounts of this antibody
to perform quanti�cation). We have found that Cog3 and 4
protein levels were drastically impacted in Cog2, 3, and 4 KO
cells indicating that these subunits are only stable in the context
of lobe A subcomplex. Similar situation was observed for lobeB.
Cog6 protein level was reduced in Cog5, 6, and 7 KO (Figure 3B).
Interestingly Cog5 and 7 protein levels appear to be decreased
to < 10% when the other protein is knocked out con�rming our
previous conclusion that interaction between these two partners
is essential for their stability (Ha et al., 2014). Cog8 protein levels
were reduced upon lobe partner loss but to a far less extent,
indicating that Cog8 gains stability from other partners as well,
likely from its interaction with Cog1. Cog1 interacts with Cog8,
and this interaction is responsible for bridging the two lobes
(Oka et al., 2005; Ungar et al., 2005). Cog proteins in opposing
lobe KOs were occasionally reduced, but the reduction was never
more than 45%, further supporting the bi-lobed model. We have
summarized the supposed subunit interaction based on these
assays inFigure 3C.

Cells De�cient in the COG Complex
Subunits Have an Altered Golgi
Morphology
We next investigated changes in Golgi structure in cells de�cient
for individual COG subunits. It has been previously shown that
Golgi morphology was altered in both �broblasts from COG-
CDG patients (Reynders et al., 2009; Kudlyk et al., 2013) and
in HeLa cells treated with siRNA to COG subunits (Zolov and
Lupashin, 2005; Shestakova et al., 2006). The defects associated
with the Golgi morphology were most notable in lobe A KDs.

FIGURE 3 | COG protein stability upon loss of other COG protei ns. (A)
All COG KO cells were probed by western blot for Cog3, 4, 5, 6, 7, and 8
protein levels.b-actin used as a loading control.(B) Quanti�cation of 2
separate western blot analyses. Each Cog protein amount was�rst
standardized tob-actin then compared to WT levels.(C) A model of COG
subunit interactions. lobe A is shown in shades of red and lobe B is shown in
shades of green. Cog1 and Cog8 are lighter in color to show that they also
gain stability from one another in addition to their lobe partners.

To study Golgi morphology in COG KO cells we subjected
cells grown on sapphire disks to high pressure freezing/freeze
substitution �xation prior to embedding and sectioning for
electron microscopy (EM) analysis. As shown inFigure 4, the
Golgi structure is severely distorted in all knock outs compared
to control. Golgi cisternae appear dilated and fragmented in all
cases, especially in lobe A and in Cog6 KOs (Figure 4, Cog1–4,
6 KOs, arrows). In these cells even Golgi mini-stacks appeared
to be disrupted with appearance of multiple autophagosome-like
membrane pro�les in the Golgi region (Figure 4, arrowheads).
In other lobe B KO cell lines strongly dilated Golgi membranes
were organized in mini-stacks with the least severe defect
observed in Cog5 KO cells (Figure 4, Cog5, 7, 8 KOs, arrows).
The morphological changes in the Golgi structure observed in
HEK293T KO cell lines appeared to be on par (or possibly even
more severe) compared to previously described Cog1 and Cog2
de�cient CHO cells (Ungar et al., 2002; Oka et al., 2004; Vasile
et al., 2006). Surprisingly this alteration in Golgi structure is only
readily apparent via EM. IF analysis of a comprehensive set of
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FIGURE 4 | Golgi structure is severely distorted in COG KO cel ls. Cells were grown on carbon and collagen coated sapphire diskthen subjected to high
pressure freezing and freeze substitution. Samples were stained with tannic acid and osmium before embedding then uranyl acetate and lead citrate staining post
sectioning. Arrows indicate Golgi stacks. Arrowheads indicate autophagosomal like structures.

Golgi and other secretory protein markers including ERGIC53,
GM130, Golgin 84, GalT, p230, Mannose-6-phosphate receptor,
Lamp2, and TGN46 in COG4 KO and COG7 KO cells, shows a
normal and/or perinuclear distribution, aside from Lamp 2 which
localized on large endosomal-like inclusions as well as thenormal
lysosome distribution (Figure 5and data not shown).

Cells De�cient in the COG Complex Show
Altered Toxin Binding at the Plasma
Membrane
The COG complex is a key player in retrograde tra�cking, so
we reasoned that intra-Golgi retrograde tra�cking should be
impaired in cells lacking COG subunits. To test this cell lines
were analyzed for their ability to tra�c various toxins. Toxins
commonly intoxicate a cell by binding to receptors on the plasma
membrane then hijacking the hosts' secretory pathway to reach
their functional location. For these assays we chose to use one

to two KOs for each lobe to represent the lobe as a whole
(we felt this was warranted based on KOs destabilizing their
lobe partners,Figure 3). The �rst toxin we attempted to use
for retrograde tra�cking analysis was Cholera toxin (whichis
secreted byVibrio choleraeand causes the well-known and deadly
e�ects of Cholera).V. choleraeinfects cells by utilizing the B
subunits of Cholera toxin (CTxB) to bind to glycolipid GM1
at the plasma membrane causing the toxin to be endocytosed
(Lencer et al., 1992). Strikingly upon knocking out either lobe A
or lobe B COG subunits, binding and endocytosis of CTxB-Alexa
647 in a 30-min pulse chase was almost completely abolished, a
phenotype that had not been seen in Cog KD cells. In contrast,
wild type cells bind and tra�c Cholera toxin to the Golgi after
30 min, visualized by co-localization with GM130 (Figure 6A).
The signi�cant reduction in bound CTxB-647 could also be seen
by �ow cytometry of Cog1, 3 and 8 KO cells compared to wild
type populations (Figure 6B). Similarly, it has previously been
shown that GM3 levels are signi�cantly reduced in CHO ldlC
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FIGURE 5 | Golgi and other secretory markers are largely undis turbed in Cog KO cells. Immuno�uorescence of Lamp2, Giantin, ERGIC53, TGN46, Vamp3,
and M6PR. Asterisks in Cog7 KO indicate Lamp2-positive, large, endocytic-like structures, Cog4 structures not pictured.

cells (which are de�cient for Cog2). This was attributed to the
Cog2 dependent mislocalization of SialT1, which is responsible
for the conversion of LacCer to GM3, in these cells (Spessott et al.,
2010).

For our next toxin binding and tra�cking test, Rhodamine
labeledRicinus communisAgglutinin I (RCA-I) was utilized.
R. communis,or more commonly known as the castor bean
plant, produces two kinds of lectins:R. communistoxin (RCA-
II) (which is well known for its toxicity even at low doses), and
RCA-I which is less toxic, but binds galactose residues withhigh
a�nity. RCA-1 has been shown to bind tumor cells (which also
have altered secretion) with higher a�nity than normal cells (You
et al., 2010). Interestingly, knocking out COG subunits in either
lobe caused a modest increase in RCA-I binding, assessed by
�uorescence (Figure 6B). In Cog KO cells RCA-I was also able
to tra�c to the Golgi after 30 min, though more remained on

the plasma membrane than in control cells, indicating a possible
delay in retrograde tra�cking (Figure 6A).

Cells De�cient in the COG Complex
Subunits Have Altered Intracellular
Traf�cking
Due to the di�erences in binding of CTXB and RCA-I between
wild type and COG KO cell lines that precluded the accurate
measuring of retrograde tra�cking e�ciency of these proteins
we turned to the Subtilase cytotoxin (SubAB) tra�cking assay
(SubAB is a toxin secreted by Shiga-toxigenicEscherichia coli).
Our group has previously used this assay to study retrograde
tra�cking in COG knock down cells, and has shown no change
in toxin a�nity to plasma membrane of COG depleted cells
(Smith et al., 2009). SubAB binds at the plasma membrane
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FIGURE 6 | COG KO cells are altered for the binding of RCA-I and C TxB to plasma membrane. (A) Pulse chase with labeled toxins was done at 37� C for 30
min before �xing and staining with GM130 antibodies. Cells were mounted in DAPI containing media. Coverslips were analyzed using a confocal microscope.(B) Cells
were incubated with the toxins on ice for 30 min then processed using a �ow cytometer and analyzed in FlowJo.

then is tra�cked in a retrograde fashion through the Golgi to
the endoplasmic reticulum where it cleaves its target, GRP78
(Glucose-Related protein of 78 kDa). To explore SubAB transport
in COG KO cells, these cells were treated with the toxin over
time and analyzed via WB for cleavage of GRP78 to smaller
fragments (Figure 7A). In all knock out cell lines tested there
was a dramatic delay in GRP78 cleavage (Figures 7B,C). Half
of GRP78 was cleaved in control HEK293T cells after� 25
min of toxin treatment, but not until � 80 min in COG KO
cells (Figures 7B,C). This indicates that retrograde tra�cking

is impaired in COG KO cells, but not abolished. Signi�cantly,
the amount of delay appeared similar in each KO tested
regardless of which lobe was a�ected indicating that the rapid
retrograde tra�cking of SubAB is dependent on the whole COG
complex.

COG De�cient Cells Missort Cathepsin D
Next we probed the COG KO cells lacking lobe A or B subunits
for other possible tra�cking defects by analyzing conditioned
serum-free, chemically-de�ned culture media taken after 48 h
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FIGURE 7 | Retrograde traf�cking of SubAB is impaired in COG su bunit KO cells. (A) Time course of SubAB-dependent cleavage of GRP78 in controland
COG KO cells. Western blot.(B) Quanti�cation of GRP78 cleavage.(C) Time required for SubAB-dependent 50% cleavage of GRP78 in control and COG KO cells.

FIGURE 8 | Pro-cathepsin D is secreted from COG subunit KO cell s but not WT cells. Cells at 80–100% con�uency were placed in chemically de�ned serum
free media. Media was collected at 24 h and then analyzed by western blot for Cathepsin D.

of incubation with cells. We found that all cells lacking COG
subunits (with the exception of Cog6) but not the original
HEK293T cells secrete immature Cathepsin D (a lysosomal
protease), indicating defects in post-Golgi sorting and/or
endosome/lysosome impairments (Figure 8). Interestingly some,
but not all KOs also secrete a small amount of mature Cathepsin

D. Because Cog6 KO was the only outlier for immature Cathepsin
D secretion we tested another Cog6 KO clone which yielded
a similar result (data not shown), though further analysis
of this cell line and generation and analysis of more Cog6
KO cell lines will be needed in the future to con�rm this
�nding.
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Cells De�cient in the COG Complex Show
Misglycosylated Lamp2, Reduced
Sialylation and Fucosylation, and Changes
in Oligomannose Composition
Increases in GNL binding to plasma membrane proteins, along
with mistargeting of Cathepsin D indicate potential severe defects
in cellular lysosomal machinery and speci�cally in lysosomal
Lamp2 protein. Earlier we had noted Lamp 2 labeling large
endosomal like inclusions by IF in COG KO cells from lobe
A and B, so we decided to investigate this further. Lamp2
is a heavily glycosylated protein (10 O-linked and 16 N-
linked glycosylation sites, most of which are utilized), and is
primarily located on lysosomal membranes. It is thought to
help in lysosomal biogenesis and dynamics (Eskelinen et al.,
2002; Saftig and Klumperman, 2009). We used western blotting
to assess the glycosylation status of Lamp2 by assessing shifts
in the protein's mobility. We have previously observed that
Lamp2 electrophoretic mobility is increased in cells treated
with siRNA to Cog3 and Cog7 (Shestakova et al., 2006).
Indeed, in cells lacking COG complex subunits Lamp2 had a
greatly increased mobility. This di�erence was not lobe speci�c,
though the absence of some subunits appears to cause a greater
increase in mobility than others (2, 3, 4, and 7 had the
highest mobility;Figure 9A). At the same time the majority of
hypoglycosylated Lamp2 was still properly localized to lysosome-
like intracellular structures as determined by colocalization with
Rab7a, indicating, indicating the tra�cking of transmembrane
proteins and general lysosomal biogenesis is mostly undisturbed
in COG KO cells (Figure 9B).

To gain a better understanding of the changes in glycosylation
upon loss of individual COG subunits we further analyzed COG
KO cell lysates by using �lter aidedN-glycan Separation (Abdul
Rahman et al., 2014) followed by mass spectrometricN-glycan
pro�ling. For this analysis we chose Cog4 and 7 KOs to represent
the 2 lobes (we later chose to analyze Cog2 KO as well to
con�rm the latter glycosylation impairments that were originally
thought to only occur in lobe B mutants). Pro�ling revealed
numerous glycosylation changes, the most prominent of which
are summarized inFigure 10. As observed previously for the
Cog1 and Cog2 de�cient ldlB and ldlC CHO cell lines (Abdul
Rahman et al., 2014) the oligomannose distribution shifts in the
mutants, with a signi�cant increase in the Man5GlcNAc2 species
and a concomitant decrease in the level of the Man6GlcNAc2
glycan (Figure 10A). The observed increase in the Man5 glycan
�ts well with the increased GNL a�nity of these cells, since this
glycan species has two terminal 1–3 linked mannose residues
(Shibuya et al., 1988). In addition to the increase in Man5 glycan
there is also a signi�cant decrease in the Man9GlcNAc2 glycan's
abundance, which was not observed in the CHO mutants. Other
functionally important changes are overall decreases in thelevels
of sialylation (Figure 10B) and fucosylation (Figure 10C) in all
KO mutants analyzed. These are changes that often a�ect the
binding of important ligands to cell surface glycans. A decrease
in protein sialylation has been observed before in CDG-II patient
�broblasts (Wu et al., 2004; Kranz et al., 2007; Zeevaert et al.,
2008), and defects in fucosylation have been seen inC. elegans

FIGURE 9 | Lamp2 is hypoglycosylated in COG subunit KO cells, b ut
still localizes to lysosome like structures. (A) Cell lysates were analyzed by
western blot for Lamp2 mobility.(B) WT and COG 2 KO cells were transfected
with Lamp2-mCherry and GFP-Rab7a. Arrows represent colocalization.
Asterisks represent large, late endocytic inclusions. Images taken of live cells.

Cog1 mutant (Struwe and Reinhold, 2012). Interestingly, all
observed glycosylation changes, no matter if dependent on early-,
medial,- or late-Golgi processing steps, were very similar for Lobe
A (Cog2 and 4) and Lobe B (Cog7) knockouts, indicating that
the whole complex is needed for proper glycan processing to take
place.

DISCUSSION

As a result of this work a complete set of HEK293T cell lines
void of individual COG subunits was created. These cells are an
improvement on past KD and mutant studies as they are all in
the same cell type. We believe that this set will provide the unique
opportunity not only in the ongoing investigation of the speci�c
function of each individual subunit of this multifunctional MTC
but also as a starting reference point for detailed and unbiased
characterization of the other MTCs. Each COG KO cell line can
also be used to characterize (and potentially �x) glycosylation and
tra�cking defects associated with naturally occurring mutations
in COG complex subunits that cause CDGII and other human
maladies.

Thus far all COG subunit knockouts have been shown to have:
alteredG. nivaluslectin (GNL) binding to plasma membrane
glycoconjugates, altered binding and tra�cking of toxins,cis,
medial, and trans-Golgi glycosylation defects, altered Golgi
morphology, and dramatic fragmentation of the trans Golgi
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FIGURE 10 | COG KO cells have global changes in N-linked glycans structures. N-glycans prepared from cell lysates were pro�led by mass spectrometry. The
normalized intensities for individual glycans grouped into different classes as indicated were summed. Error bars show SEM for n D 4 (WT, Cog2KO),n D 5 (Cog4KO),
n D 8 (Cog7 KO).(A) Oligomannose composition changes in KO cells vs. WT cells.(B) Sialyation changes in KO cells vs. WT cells.**denotes p < 0.01. (C)
Fucosylation changes in KO cell vs. WT cells*denotes p < 0.05. For (B,C) one-way ANOVA with a Sidak-Holmpost hoc statistical signi�cance test was utilized.

network, altered Cathepsin D secretion, and hypoglycosylated
Lamp2.

As mentioned above, in ldlC (Cog2 de�cient) CHO cells it
has previously been recognized that GM3 synthesis is impaired
(Spessott et al., 2010). GM3 is a precursor to GM1 (the binding
site for Cholera toxin) in the a-series ganglioside synthesis
pathway (Kolter et al., 2002). Spessott et al attributed this
reduction in GM3 synthesis to COG dependent mislocalization
of SialT1. Our COG KO cells show a global de�ciency in
sialylation, making a similar reduction GM1 the most likely
explanation for our drastic reduction of Cholera toxin binding
in our human COG subunit de�cient cells, but that this deserves
further investigation.

G. nivaluslectin (GNL) binding is known to be increased
in COG KD cells (Shestakova et al., 2006; Richardson et al.,
2009; Pokrovskaya et al., 2011; Willett R. A. et al., 2013; Ha

et al., 2014). We have shown that this increased lectin a�nity
is also seen in CRISPR created COG KO populations (with
perhaps even a higher a�nity than the COG KDs) and is
su�cient for e�ective FACS analysis and sorting to create clonal
COG KO populations. GNL binding shows a similar a�nity
for all of the COG subunit KOs indicating substantial defects
in cis/medial-Golgi glycosylation when either lobe of the COG
complex is impaired. This contradicts the previous COG complex
models which suggest lobe A but not lobe B having a primary
role in cis/medial glycosylation (Reynders et al., 2009; Peanne
et al., 2011). Mass spectrometric analysis of theN-linked glycan
revealed further similarities in glycosylation defects between cells
de�cient in all COG subunits tested so far (2,4,7), di�ering from
previous suggestions that lobe B is primarily responsible onlyfor
the latter stages of glycosylation (Peanne et al., 2011; Laufman
et al., 2013). We have observed that each of our COG KO cell lines
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have the same characteristic alteration in their oligomannose
distributions, as well as impaired sialylation and fucosylation.

Due to observed glycosylation changes, we decided to analyze
a panel of Golgi and other secretory markers; GM130 (a
rod-like protein with coiled-coil domains located in the cis-
Golgi), TGN46 (a protein localized to the trans-Golgi network),
ERGIC53 (a mannose speci�c lectin carrier in the ER-Golgi
intermediate compartment), Giantin, Lamp2, and Mannose-
6 phosphate receptors were analyzed by immuno�uorescence.
We observed no signi�cant e�ect on localization of tested
Golgi or other secretory markers in COG KO cells at the IF
level, aside from large Lamp2 positive endocytic like inclusions
that were observed in addition to normal lysosomal Lamp2
distribution. Further observations revealed that Lamp2 is also
hypoglycosylated in COG KO cells. Though properly localized
aside for the endocytic inclusions, this hypoglycosylation could
result in altered lysosomal function or tra�cking and will bean
interesting area of future investigation.

Following IF, more precise analysis of Golgi structure using
EM revealed that knocking out COG complex subunits causes
extensive dilation and fragmentation of the Golgi. Though all
subunits appear to be important for maintaining normal Golgi
structure, the level of Golgi dispersion is subunit dependentwith
the lobe A KOs and Cog6 KO having the most disrupted Golgi
structure, indicating certain COG subunit interactions may be
more important for Golgi stacking than others.

We have observed Cog3, 4, 5, 6, 7, and 8 subunit levels in
each of the COG KOs. Lobe A KOs a�ect Cog3 and Cog4 levels
(Cog2, 3, and 4 KOs dramatically a�ected these, while Cog1
KO has much less impact). Lobe B KOs have little/no e�ect on
lobe A. Cog6 and 8, protein levels also a�ect their lobe partners
the most with Cog6 being most a�ected in Cog5, 6, and 7, and
Cog8 being most a�ected in Cog5 and 6 with Cog1 and Cog7
KOs being moderately a�ected. This Cog1 KO and Cog8 protein
e�ect is expected and gives further support to the Cog1-Cog8
bridging interaction (Ungar et al., 2005), which could also lend
stability to each of the proteinsin vivo. Importantly, the dramatic
lobe speci�c e�ects on protein stability do not carry over to
the opposing lobe indicating that the similarity in phenotypes
between lobe A and lobe B subunit KOs is not due to instability
of the complex, but rather to the critical function of each lobe in
glycosylation and Golgi structure.

In line with impaired lysosomal tra�cking and/or function
indicated by lamp2 hypoglycosylation, immature Cathepsin
D secretion was observed in COG complex subunit KOs.

Cathepsin D is a lysosomal aspartic protease that undergoes a
conformational change in the lysosome to become catalytically
active. Its inactive form has also been shown to have a role in
apoptosis. Procathepsin D is also secreted from cancer cells where
it has a mitogenic e�ect on surrounding cells (Benes et al., 2008).
These results indicate that loss of COG function could a�ect
other aspects of the secretory pathway indirectly and change the
way organelles and cells function in their environment. To this
e�ect, we have also observed large intracellular accumulations
in the COG KO cells that appear to be of endocytic/phagocytic
origin. These accumulations appear mostly void of electron dense
material and, in the most severe cases take up� 50% of the cells'
volume (Blackburn and Lupashin, data not shown).

In the future, these COG KO induced accumulations, and
how other subunit speci�c interactions (with SNAREs, Rabs, and
other tethers) are a�ected in COG complex subunit KO cells will
be an important area of investigation. Improper Golgi structure
and function is a hallmark of human diseases ranging from
cancers to Alzheimer's. This makes further understanding the
key players of the secretory pathway, such as the COG complex
essential for human health.
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