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AbstractWe study kink oscillations of thin magnetic tubes. We assume that the
density inside and outside the tube (and possibly also the cross-section radius)
can vary along the tube. This variation is assumed to be of such a form that the
kink speed is symmetric with respect to the tube centre and it varies monotoni-
cally from the tube ends to the tube centre. Then we prove a theorem stating that
the ratio of periods of the fundamental mode and first overtone is a monotonically
increasing function of the ratio of the kink speed at the tube centre and the tube
ends. In particular, it follows from this theorem that the period ratio is smaller
than two when the kink speed increases from the tube ends to its centre, while
it is larger than two when the kink speed decreases from the tube ends to its
centre. The first case is typical for non-expanding coronal magnetic loops, and
the second for prominence threads. We apply the general results to particular
problems. First we consider kink oscillations of coronal magnetic loops. We prove
that, under reasonable assumptions, the ratio of the fundamental period to the
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first overtone is less than two and it decreases when the loop size increases. The
second problem concerns kink oscillations of prominence threads. We consider
three internal density profiles: generalized parabolic, Gaussian, and Lorentzian.
Each of these profiles contain the parameter α responsible for its sharpness. We
calculate the dependence of the period ratio on the ratio of mean density to the
maximum density. For all considered values of α we find that a formula relating
the period ratio and the ratio of the mean and maximum density suggested by
Soler, Goossens, and Ballester (2015) gives sufficiently good approximation to
the exact dependence.

Keywords: Corona, Coronal Magnetic Loops, Prominences, Waves, Oscillations

1. Introduction

Standing transverse oscillations of coronal magnetic loops were first observed
by TRACE in 1998 and reported by Aschwanden et al. (1999) and Nakariakov
et al. (1999). After that first observation dozens of similar events have been
observed and reported (e.g. Ofman and Aschwanden, 2002; Aschwanden, 2006;
Aschwanden and Terradas, 2008; Aschwanden and Schrijver, 2011). After the
first observation the coronal loop transverse oscillations were interpreted as
standing fast kink waves in magnetic tubes. These oscillations are one of the
most important tools of coronal seismology. Nakariakov and Ofman (2001) used
these oscillations to obtain an estimate for the magnetic field magnitude in
coronal loops. Verwichte et al. (2004) first reported simultaneous observation of
the fundamental mode and first overtone of coronal loop kink oscillations. An
important property of these modes was that the ratio of their frequencies was
less than two. After that Andries, Arregui, and Goossens (2005) suggested that
this deviation of the period ratio from two is related to the density variation
along the loop and developed a method for estimating the atmospheric scale
height using the observed period ratio. This method is now very popular in
coronal seismology (e.g. Arregui et al., 2007; Van Doorsselaere, Nakariakov, and
Verwichte, 2007; Andries et al., 2009).

In recent years the methods of coronal seismology have been successfully
applied to prominence seismology. Observations show that solar prominences are
formed by large numbers of long, thin substructures called threads (e.g. Okamoto
et al., 2007; Berger et al., 2008). Very often transverse oscillations of prominence
threads with periods between one and a few tens of minutes are observed (e.g.
Okamoto et al., 2007; Lin et al., 2007; Orozco Surez, 2014). These oscillations
are similar to the transverse oscillations of coronal magnetic loop and they were
also interpreted as kink oscillations of magnetic flux tubes (e.g. Terradas et al.,
2008; Lin et al., 2007; Soler et al., 2010, 2012; Arregui et al., 2011; Soler and
Goossens, 2011). An observational and theoretical review of prominence thread
oscillations was given by Arregui, Oliver, and Ballester (2012). Dı́az, Oliver, and
Ballester (2010) and Soler, Goossens, and Ballester (2015) suggested the use
of the ratio of the periods of the fundamental mode and first overtone of the
transverse prominence thread oscillations in prominence seismology.
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Andries, Arregui, and Goossens (2005) considered coronal loops with a cir-
cular cross-section of constant radius and with a half-circle shape immersed in
an isothermal atmosphere. They assumed that the plasma temperature is the
same inside and outside of the loop. They then calculated the ratio of periods
of the fundamental mode and first overtone. It was found that this ratio was
always less than two. It was also a decreasing function of the loop height. Later
the results obtained by Andries, Arregui, and Goossens were confirmed by other
authors (e.g. Safari, Nasiri, and Sobouti, 2007). Similar results were obtained for
other density profiles (e.g. Dymova and Ruderman, 2006a,b; Dı́az, Donelly, and
Roberts, 2007). The general property of all these density profiles was that they
were symmetric with respect to the apex point and the kink speed monotonically
increased from the footpoint to the loop apex.

Verth and Erdélyi (2007a,b) considered the transverse oscillations of expand-
ing coronal loops. They found that the loop expansion causes an increase of the
period ratio. When the density is constant in an expanding loop the density
ratio exceeds two. It also exceeds two when the density variation along the loop
is weak. In all examples where the ratio was larger than two the kink speed
monotonically decreases from the loop footpoints to its apex.

Dı́az, Oliver, and Ballester (2010) calculated the ratio of periods of the fun-
damental mode and the first overtone for the model of a prominence thread
in the form of a straight magnetic tube with constant cross-section radius and
with a piecewise constant density profile. They obtained that the period ratio is
larger than two and it increases with the increase of the contrast between the
dense and rarefied parts of the prominence thread. Soler, Goossens, and Ballester
(2015) carried out a similar analysis for the parabolic, Gaussian and Lorentzian
density profile. Again they obtained that the period ratio is larger than two and
increases with the increase of the ratio of densities at the thread centre and its
footpoints. An important property of the equilibria studied by Dı́az, Oliver, and
Ballester (2010) and Soler, Goossens, and Ballester (2015) is that the kink speed
monotonically decreases from the thread footpoints to the thread centre.

Summarising we can state that it was shown for a few particular density
profiles that the period ratio is larger than two when the kink speed at the
footpoints is larger than that at the tube centre and smaller than two when the
kink speed at footpoints is smaller than that at the tube centre, at least when
the kink speed satisfies two conditions. These conditions are (i) the kink speed
is symmetric with respect to the tube centre, and (ii) it varies monotonically
from the footpoints to the tube centre. Now the question arises if the same
statement is true for any kink velocity profile satisfying conditions (i) and (ii).
This article aims to answer this question. The article is organised as follows.
In the next section we consider the general problem. In Section 3 we apply the
general theory to particular examples. Section 4 contains the summary of the
results obtained and our conclusions.

2. General Results

We consider kink oscillations of a magnetic tube with the density varying along
the tube. Both coronal magnetic tubes and prominence threads are very thin
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structures, so the thin tube approximation can be used to describe kink os-
cillations. Dymova and Ruderman (2005) showed that in the thin flux-tube
approximation the eigenmodes of kink oscillations of a magnetic tube with a
circular cross-section of constant radius are described by the Sturm-Liouville
problem

d2η

dz2
+

ω2

C2
k

η = 0, (1)

η = 0 at z = ±L/2. (2)

Here η is the tube axis displacement, ω the eigenfrequency, z the coordinate
along the tube, L the tube length, and Ck the kink speed defined by

C2
k =

2B2

µ0(ρi + ρe)
, (3)

where B is the magnetic-field magnitude, ρi and ρe are the plasma density inside
and outside of the tube, and µ0 the magnetic permeability of free space. Later
Ruderman, Verth, and Erdélyi (2008) showed that Equation (1) remains valid
even when the tube cross-section radius varies along the tube. The only difference
in comparison with the case of constant cross-section radius is that now η is the
tube axis displacement divided by the cross-section radius R(z), and B is a
function of z. When R = const, only ρi and ρe vary along the tube, while B
remains constant. The tube cross-section and the magnetic field magnitude are
related by the equation

B(z)R2(z) = const. (4)

Dı́az, Oliver, and Ballester (2010) verified the accuracy of the thin tube approx-
imation and found that it is very high.

Now we assume that the kink speed satisfies two conditions: (i) its profile is
symmetric with respect to the tube centre, Ck(−z) = Ck(z), and (ii) it varies
monotonically from the footpoints to the tube centre, dCk/dz ̸= 0 for z ∈
(−L/2, 0). We introduce the dimensionless variables

s =
2z

L
, λ =

ω2L2

4C2
kf

χ =
C2

kf

C2
k(0)

− 1, f(s) =
1

χ

(
C2

kf

C2
k(z)

− 1

)
, (5)

where Ckf = Ck(±L/2) is the kink speed at the ends of the magnetic tube. It
follows from the assumptions made with respect to Ck(z) that f(s) is an even
function, f(−s) = f(s), which grows monotonically in the interval (−1, 0) and
that f(±1) = 0 and f(0) = 1. It follows from the definition of χ that −1 < χ < 0
when Ck(z) takes a maximum at z = 0 (which corresponds to the case of non-
expanding coronal magnetic loops), while χ > 0 when Ck(z) takes its minimum
at z = 0 (which corresponds to the case of prominence threads).

In the new variables Equation (1) and the boundary conditions (2) are trans-
formed to

η′′ + λ[1 + χf(s)]η = 0, (6)
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η = 0 at s = ±1, (7)

where the prime indicates the derivative with respect to s.
We aim to prove that the ratio of periods of the fundamental mode and first

overtone, P1/P2, is smaller than two when χ < 0 (the case of non-expanding
coronal magnetic loops), while it is larger than two when χ > 0 (the case of
prominence threads). Note that, in the research related to the coronal loop
oscillations, the period ratio is often defined as P1/2P2. If we adopt such a
definition, then the period ratio must be compared not with two, but with one.
Since

P1

P2

=
ω2

ω1

=

√
λ2

λ1

, (8)

where ω1 and ω2 are the frequencies of the fundamental mode and first overtone,
respectively, and λ1 = ω2

1 and λ2 = ω2
2 , it is enough to prove that λ2/λ1 < 4

when χ < 0 and λ2/λ1 > 4 when χ > 0.
We carry out the proof in three steps. In the first step we prove the following.

Lemma 1. Let u and v be solutions of the equations

u′′ + p(s)u = 0, (9)

v′′ + p(s)v = q(s), (10)

satisfying the initial conditions

u = v = 0, u′ = v′ = α > 0 at s = a, (11)

where p(s) and q(s) are continuous functions, q(s) ≥ 0, and u(s) > 0 in the
interval (a, b). Then v(s) ≥ u(s) in the interval [a, b].

Proof. The proof of this lemma is similar to the proof of the Sturm theorem
(e.g. Coddington and Levinson, 1955). We multiply Equation (9) by v, Equa-
tion (10) by u, and then subtract the first from the second. As a result we
obtain

uv′′ − vu′′ = uq(s). (12)

Integrating this equation and using integration by parts we obtain with the aid
of Equation (11)

u(s)v′(s)− v(s)u′(s) =

∫ s

a

q(y)u(y) dy. (13)

First we show that v(s) > 0 in the interval (a, b]. Assume that this is not true
and v(s) changes the sign in this interval. Let s0 be the first zero of v(s). Since
v(s) changes the sign at s0 from positive to negative, it follows that v′(s0) < 0.
Substituting s = s0 in (13) yields

u(s0)v
′(s0) =

∫ s0

a

q(y)u(y) dy. (14)
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The left-hand side of this equation is negative, while the right-hand side is
positive and we arrive at a contradiction. This implies that v(s) > 0 in the
interval (a, b].

It follows from (13) that u(s)v′(s)− v(s)u′(s) ≥ 0. Since, for s > a, v(s) > 0
and u(s) > 0 by assumption, this inequality can be rewritten as

v′(s)

v(s)
≥

u′(s)

u(s)
. (15)

Integrating this inequality we obtain

ln(v(s))− ln(v(a+ ϵ)) ≥ ln(u(s))− ln(u(a+ ϵ)), (16)

where ϵ is a positive sufficiently small quantity. This inequality can be trans-
formed to

v(s)

u(s)
≥

v(a+ ϵ)

u(a+ ϵ)
. (17)

Taking ϵ → +0 and using l’Hôpital’s rule yields

v(s)

u(s)
≥ lim

ϵ→+0

v(a+ ϵ)

u(a+ ϵ)
= lim

ϵ→+0

v′(a+ ϵ)

u′(a+ ϵ)
= 1. (18)

Lemma 1 is proved.

In the second step we prove the following.

Lemma 2. Let η1(s) and η2(s) be eigenfunctions of the Sturm-Liouville prob-
lem (1), (2) corresponding to the fundamental mode and first overtone. Since
η1(s) does not change the sign, and η2(s) is only equal to zero at s = 0 in the
interval (−1, 1), it follows that

(i) η1(s) > 0 for s ∈ (−1, 1) and η2(s) > 0 for s ∈ (0, 1).

Since the eigenfunctions are defined only up to multiplication by an arbitrary
non-zero constant, we can impose the normalization condition

(ii)

∫ 1

0

η21(s) ds =

∫ 1

0

η22(s) ds = 1.

Then there exists s1 ∈ (0, 1) such that η2(s) < η1(s) when s ∈ (0, s1) and
η2(s) > η1(s) when s ∈ (s1, 1).

Proof. The function η1(x) takes its maximum at x = 0, while η2(0) = 0.
Therefore η2(x) < η1(x) in a vicinity of x = 0. If we assume that η2(x) < η1(x)

in the interval (0, 1), then we obtain that
∫ 1

0
η22(x) dx <

∫ 1

0
η21(x) dx, which

contradicts the normalization condition (ii). Hence, the function η̃(x) = η1(x)−
η2(x) must change sign in the interval (0, 1).
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Let s1 ∈ (0, 1) be the first zero of the function η̃(s). We now prove that
η̃(s) < 0 for s ∈ (s1, 1). We assume that this is not true, that is η̃(s) changes
sign in the interval (s1, 1). Let s2 be the first zero of η̃(s) in this interval. It
follows from the equations determining η1(s) and η2(s) that s2 cannot be an
inflection point. Since η̃(s) changes sign at s2 from negative to positive, we
obtain η̃′(s2) > 0. It follows from Equation (6) written for the fundamental
mode and first overtone that η̃(s) satisfies the equation

η̃′′ + λ1[1 + χf(s)]η̃ = (λ2 − λ1)[1 + χf(s)]η2. (19)

In addition, the function η̃(s) satisfies the initial conditions

η̃(s2) = 0, η̃′(s2) = γ > 0. (20)

Consider the function u(x) satisfying the equation

u′′ + λ1[1 + χf(s)]u = 0, (21)

and the initial conditions

u(s2) = 0, u′(s2) = γ. (22)

It follows from the uniqueness theorem that

u(s) =
γ

η′1(−1)
η1(s− s2 − 1). (23)

Since −1 < s − s2 − 1 ≤ −s2 when s ∈ (s2, 1], it follows that u(s) > 0 and
that u(s) monotonically increases in the interval (s2, 1]. Since the right-hand
side of Equation (19) is positive, it follows from Lemma 1 that η̃(s) ≥ u(s) for
s ∈ (s2, 1]. This, in particular, implies that η̃(1) > 0, which contradicts the
condition η̃(1) = 0. Hence, the assumption that η̃(s) changes sign in the interval
(s1, 1) is false and, consequently, η̃(s) > 0 for s ∈ (0, s1) and η̃(s) < 0 for
s ∈ (s1, 1). Lemma 2 is proved.

Now we are in a position to make the third step, which is the proof of the
following.

Theorem. Let λ1 be the eigenfunction of the Sturm-Liouville problem (6), (7)
corresponding to the fundamental mode and λ2 the eigenfunction corresponding
to the first overtone. Then the ratio λ2/λ1 is a monotonically increasing function
of the parameter χ.

Proof. We now consider λ in Equation (6) as a function of χ, and η as a
function of two variables, s and χ. As before we use the prime to indicate
the derivative with respect to s, while the derivative with respect to χ will
be indicated with the subscript χ. For example, ηχ = ∂η/∂χ. Below we consider
Equation (6) in the interval [0, 1]. Then the fundamental mode satisfies the
boundary conditions

η′(0) = 0, η(1) = 0, (24)
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while the first overtone satisfies the boundary conditions

η(0) = η(1) = 0. (25)

Differentiating the boundary conditions (24) and (25) with respect to χ we obtain
that η1χ satisfies the boundary conditions (24), while η2χ satisfies the boundary
conditions (25). Differentiating Equation (6) with respect to χ we obtain

η′′χ + λχ[1 + χf(s)]η + λf(s)η + λ[1 + χf(s)]ηχ = 0. (26)

Using integration by parts, the boundary conditions (24) for η1 and η1χ, and the
boundary conditions (25) for η1 and η1χ yield

∫ 1

0

ηη′′χ ds = ηη′χ

∣∣∣
1

0

−

∫ 1

0

η′η′χ ds = −η′ηχ

∣∣∣
1

0

+

∫ 1

0

η′′ηχ ds =

∫ 1

0

η′′ηχ ds. (27)

Now we multiply Equation (26) by η, integrate with respect to s, and use
Equations (6) and (27) to obtain

λχ[1 + χI(χ)] + λI(χ) = 0, (28)

where

I(χ) =

∫ 1

0

f(s)η2 ds. (29)

We rewrite Equation (28) as

d

dχ
lnλ = −

I(χ)

1 + χI(χ)
. (30)

Now we write this equation for the fundamental mode and first overtone and
subtract one from the other. As a result we obtain

d

dχ
ln

λ2

λ1

=
I1(χ)

1 + χI1(χ)
−

I2(χ)

1 + χI2(χ)
=

I1(χ)− I2(χ)

[1 + χI1(χ)][1 + χI2(χ)]
. (31)

It follows from the definition of I(χ) that

I1(χ)− I2(χ) =

∫ 1

0

f(s)[η21(s)− η22(s)] ds. (32)

In accordance with Lemma 2 there is s1 such that the integrand on the right-
hand side of this equation is positive when s < s1 and negative when s > s1.
Then, taking into account that f(s) is a monotonically decreasing function in
the interval (0, 1) we obtain with the aid of normalization condition (ii)

I1(χ)− I2(χ) =

∫ s1

0

f(s)[η21(s)− η22(s)] ds

+

∫ 1

s1

f(s)[η21(s)− η22(s)] ds > f(s1)

∫ s1

0

[η21(s)− η22(s)] ds
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+ f(s1)

∫ 1

s1

[η21(s)− η22(s)] ds = f(s1)

∫ 1

0

[η21(s)− η22(s)] ds = 0. (33)

Hence, I1(χ) > I2(χ) and the right-hand side of Equation (32) is positive. Then
it follows that ln(λ2/λ1) and, consequently, λ2/λ1 is a monotonically increasing
function of χ.

Corollary. When χ = 0 we obtain λ1 = π2/4 and λ2 = π2, meaning that
λ2/λ1 = 4. Hence λ2/λ1 < 4 when χ < 0 (the case of non-expanding coronal
loops) and λ2/λ1 > 4 when χ > 0 (the case of prominence threads).

3. Particular Examples

3.1. Kink Oscillations of Coronal Magnetic Loops

In this subsection we apply the general theory developed in the previous section
to kink oscillations of coronal magnetic loops. Ruderman (2015) showed that a
thin magnetic tube with the circular cross-section of constant radius immersed
in a potential magnetic field can have arbitrary shape. Hence, we can consider a
coronal loop with a prescribed shape. The axis of this loop is defined in Cartesian
coordinates with the vertical z-axis by equations

x = σx0(s), z = σz0(s), (34)

where s ∈ [−1, 1], z(−1) = z(1) = 0, and σ > 0 is a free parameter. Without
loss of generality we can assume that z(0) = H, where H is the atmospheric
scale height. Hence, we have a whole one-parametric family of coronal loops.
Each member of the family is obtained by a similarity transformation from one
member corresponding to σ = 1. An example of such a family is the family of
loops with a half-circular shape. More generally, we obtain such a family if we
take the base member corresponding to σ = 1 in the form of an arc of a circle like
in Dymova and Ruderman (2006b). Below we assume that the curve defined by
Equation (34) does not have self-intersections, it is symmetric, x(−s) = −x(s),
z(−s) = z(s), and z(s) monotonically increases in the interval (−1, 0), that is
there are no dips in loops.

We also assume that the loop is immersed in an isothermal atmosphere and
the temperature is the same inside and outside of the loop. Then the density
inside and outside of the loop is given by

ρi = ρf exp

(
−
σz0(s)

H

)
, ρe =

ρi
ζ
, (35)

where ζ > 1 and ρf is the density at the loop footpoints. For the kink speed we
obtain

Ck = Ckf exp

(
σz0(s)

2H

)
, (36)
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where Ckf is the kink speed at the loopfoot points. In the dimensionless variables
the wave equation determining the eigenfunctions and eigenvalues of the loop
oscillations reduces to Equation (6) with

χ = e−σ − 1, f(s) =
1− exp(−σz0(s)/H)

1− exp(−σ)
. (37)

It is straightforward to see that the function f(s) is even and monotonically
increasing in the interval (−1, 0). Then it follows from the Theorem proved in
the previous section that the period ratio is a monotonically increasing function
of χ. Since χ is a monotonically decreasing function of σ, it follows that the
period ratio decreases when σ increases. Andries, Arregui, and Goossens (2005)
proved numerically that the period ratio of kink oscillations of a loop with a
half-circle shape decreases when the loop height increases. We have shown that
the same is true for the loop with an arbitrary fixed shape under the conditions
that it is symmetric and does not have dips.

3.2. Kink Oscillations of Prominence Threads

Now we apply the general theory to the kink oscillations of prominence threads.
When considering coronal loops we assumed that they do not have dips. We
have made this assumption because it is usually believed that the temperature
variation along the loop is weak. This implies that the density distribution along
the loop is mainly determined by the loop shape. In that case the presence of a
dip would cause the density to vary non-monotonically from the loop footpoint
to the apex. The situation is completely different in the case of prominence
threads. Here the density variation along a thread is mainly determined by the
temperature variation that usually decreases from the coronal temperature of
the order of 1 MK at the thread footpoints to about 104 K at the thread central
region. The thread shape plays a minor role in the density variation along the
thread. Therefore there is no need to assume the absence of dips when applying
the general theory to the prominence thread kink oscillations.

Below we consider three types of density profiles inside the thread defined by

ρi(z) = ρ0

[
1−

θ − 1

θ

(
2|z|

L

)α]
, (38)

ρi(z) = ρ0 exp

[
− ln θ

(
2|z|

L

)α]
, (39)

ρi(z) =
ρ0

1 + (θ − 1)(2|z|/L)α
, (40)

where θ = ρi(0)/ρ(±L/2) > 1 and α > 1. The external density is taken to be
constant and equal to ρe = ρ0/ζ, where ζ > 1. Soler, Goossens, and Ballester
(2015) considered these profiles with α = 2 and called them parabolic, Gaussian,
and Lorentzian profiles, respectively. By analogy, we call the profiles defined by

SOLA: manuscript.tex; 7 April 2016; 16:30; p. 10



On the Period Ratio of Magnetic Tube Kink Oscillations

Figure 1. Dependence of ρi(z)/ρ0 on 2z/L for the generalized parabolic profile for
θ = ζ = 100. The dashed, solid, dash-dotted, and dotted lines correspond to α = 1.5, α = 2,
α = 3, and α = 4, respectively. The horizontal lines show the mean values of the density,
⟨ρi⟩/ρ0.

Equations (38)–(40) the generalized parabolic, Gaussian, and Lorentzian profiles.
These profiles are shown in Figs. 1–3 for α = 1.5, 2, 3 and 4 for θ = ζ = 100.

It follows from Equations (5) and (38)–(40) that the expression for the pa-
rameter χ is

χ =
ζ(θ − 1)

θ + ζ
(41)

for all three density profiles. The expression for f(s) is

f(s) = 1− sα (42)

for the generalized parabolic profile

f(s) =
θ exp(−sα ln θ)− 1

θ − 1
(43)

for the generalized Gaussian profile, and

f(s) =
1− sα

1 + (θ − 1)sα
(44)

for the generalized Lorentzian profile. It is straightforward to see that f(s) is
an even function which monotonically increases in the interval (−1, 0) for all
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Figure 2. Dependence of ρi(z)/ρ0 on 2z/L for the generalized Gaussian profile for
θ = ζ = 100. The dashed, solid, dash-dotted, and dotted lines correspond to α = 1.5, α = 2,
α = 3, and α = 4, respectively. The horizontal lines show the mean values of the density,
⟨ρi⟩/ρ0.

three density profiles. Then it follows from the Theorem proved in the previous
section that the period ratio is a monotonically increasing function of χ. Since
in accordance with Equation (41) χ is a monotonically increasing function of
θ, it follows that the period ratio is a monotonically increasing function of θ.
Previously this result was obtained numerically by Soler, Goossens, and Ballester
(2015) for α = 2.

Soler, Goossens, and Ballester (2015) calculated the dependence of the period
ratio on the ratio of the density mean value, ⟨ρi⟩, defined by

⟨ρi⟩ =
1

L

∫ L/2

−L/2

ρi(z) dz, (45)

to its maximum value, ρ0. They found that this dependence is very well approx-
imated by

P1

P2

≈ 1 +

(
⟨ρi⟩

ρ0

)
−1/2

. (46)

The mean density is given by

⟨ρi⟩

ρ0
=

αθ + 1

θ(α+ 1)
(47)
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Figure 3. Dependence of ρi(z)/ρ0 on 2z/L for the generalized Lorentzian profile for
θ = ζ = 100. The dashed, solid, dash-dotted, and dotted lines correspond to α = 1.5, α = 2,
α = 3, and α = 4, respectively. The horizontal lines show the mean values of the density,
⟨ρi⟩/ρ0.

for the generalized parabolic profile, by

⟨ρi⟩

ρ0
=

∫ 1

0

exp(−sα ln θ) ds (48)

for the generalized Gaussian profile, and by

⟨ρi⟩

ρ0
=

∫ 1

0

ds

1 + (θ − 1)sα
(49)

for the generalized Lorentzian profile. We calculated numerically the dependence
of P1/P2 on ⟨ρi⟩/ρ0 for all three kinds of the density profiles and for α = 1.5, 2, 3,
and 4 for θ = ζ = 1. The results are shown in Figs. 4–6. In these figures the
dependence of P1/P2 on ⟨ρi⟩/ρ0 given by Equation (46) is also shown. We see
that Equation (46) gives an excellent approximation in the case of the generalized
Gaussian and Lorentzian profiles, but the approximation is not very good in the
case of a generalized parabolic profile. It seems that this property is related
to the fact that the density is more concentrated at the middle of the thread
in the case of generalized Gaussian and Lorentzian profiles than in the case
of the generalized parabolic profile. Observations show that the dense part of
a prominence thread usually only occupies a small part of the thread close to
its centre. Hence, it seems that the density distribution in prominence threads
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Figure 4. Dependence of the period ratio P1/P2 on the mean density ⟨ρi⟩/ρ0 for the gener-
alized parabolic profile for θ = ζ = 100. The dashed, solid, dash-dotted, and dotted lines
correspond to α = 1.5, α = 2, α = 3, and α = 4, respectively. The squares show the
approximate dependence of the period ratio on the mean density described by Equation (46).

is much better described by the Gaussian and Lorentzian profiles than by the
parabolic profile.

4. Summary and Conclusions

In this article we have studied kink oscillations of thin magnetic flux-tubes. We
assume that the density inside and outside the tube (and possibly also the cross-
section radius) vary along the tube. This variation is assumed to be of such a
form that the kink speed is symmetric with respect to the tube centre and it
varies monotonically from the tube ends to the tube centre. We proved a theorem
stating that the ratio of periods of the fundamental mode and first overtone is
a monotonically increasing function of a dimensionless parameter equal to the
ratio of the kink speed at the tube centre and the tube ends minus one. In
particular, it follows from this theorem that the period ratio is smaller than two
when the kink speed increases from the tube ends to its centre, while it is larger
than two when the kink speed decreases from the tube ends to its centre. The
first case is typical for non-expanding coronal magnetic loops, and the second
for prominence threads.

We then applied the general results to particular problems. First we consid-
ered kink oscillations of coronal magnetic loops. We assumed that the loop has
circular cross-section of constant radius and its axis is a planar curve in a vertical
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Figure 5. Dependence of the period ratio P1/P2 on the mean density ⟨ρi⟩/ρ0 for the gener-
alized Gaussian profile for θ = ζ = 100. The dashed, solid, dash-dotted, and dotted lines
correspond to α = 1.5, α = 2, α = 3, and α = 4, respectively. The squares show the
approximate dependence of the period ratio on the mean density described by Equation (46).

plane that is symmetric with respect to the apex point. We also assumed that the
curve has no dips, meaning that the vertical coordinate of a point of the curve
monotonically increases from the footpoint to the apex. Finally, we assumed
that the atmosphere is isothermal and the temperature is the same inside and
outside of the loop. Applying the theorem proved in the previous section, we
proved that the period ratio of the fundamental mode and first overtone of kink
oscillations of such a loop is less than two. We also considered a family of loops
obtained by the similarity transformation from one of them. All these loops have
the same shape, but different sizes. We proved that the period ratio decreases
when the loop size increases.

The second problem concerns kink oscillations of prominence threads. We
considered three profiles of the internal density: generalized parabolic, Gaussian,
and Lorentzian. Each of these profiles contains a parameter α responsible for its
sharpness. We calculated the dependence of the period ratio on the ratio of mean
density to the maximum density. For all values of α that we considered we found
that a formula relating the period ratio and the ratio of the mean and maximum
density suggested by Soler, Goossens, and Ballester (2015) gives sufficiently good
approximation to the exact dependence. However the approximation is much
better in the case of generalized Gaussian and Lorentzian profiles than in the
case of the generalized parabolic profile. We suggest that this result is related
to the fact that the density is much more concentrated at the thread central
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Figure 6. Dependence of the period ratio P1/P2 on the mean density ⟨ρi⟩/ρ0 for the gener-
alized Lorentzian profile for θ = ζ = 100. The dashed, solid, dash-dotted, and dotted lines
correspond to α = 1.5, α = 2, α = 3, and α = 4, respectively. The squares show the
approximate dependence of the period ratio on the mean density described by Equation (46).

point in the generalized Gaussian and Lorentzian profiles than in the generalized
parabolic profile.

All the results concerning the ratio P1/P2 obtained in this article are based
on the use of the thin tube approximation. However, we can anticipate that they
would remain valid even beyond this approximation. This anticipation is based
on numerical results obtained using the full set of the linearised MHD equations.
In particular, Andries, Arregui, and Goossens (2005) showed that P1/P2 < 2 for
non-expanding coronal loops of a half-circular shape immersed in an isothermal
atmosphere, while Soler, Goossens, and Ballester (2015) obtained that P1/P2 > 2
for prominence threads with the density increasing from the footpoints to the
centre.
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