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Abstract—An efficient recognition framework requires both

good feature representation and effective classification methods.

This paper proposes such a framework based on a spatial Scale

Invariant Feature Transform (SIFT) combined with a logistic

regression classifier. The performance of the proposed framework

is compared to that of state-of-the-art methods based on the

Histogram of Orientation Gradients, SIFT features, Support

Vector Machine and K-Nearest Neighbours classifiers. By testing

with the largest vehicle logo data-set, it is shown that the proposed

framework can achieve a classification accuracy of 99.93%,

the best among all studied methods. Moreover, the proposed

framework shows robustness when noise is added in both training

and testing images.

I. INTRODUCTION

Recognizing vehicle logos is important in Intelligent Trans-

portation Systems as the vehicle logo is one of the most

distinguishable marks on a vehicle [1], and can assist in vehicle

identification [2]. For instance, vehicle logo recognition can

detect fraudulent plates if the combination does not match the

data stored on the police security database [3]. As a result, this

gives a more robust vehicle identification system. In addition,

vehicle logo recognition is also very useful for commercial

investigations [4] and document retrieval [5].

Hand crafted features are often used to represent the content

in an image. There are global features which take all pixels

into account, such as the Histogram of Oriented Gradients

(HOG) feature [6], and local features which are only interested

in a few significant points, such as the SIFT feature [7].

Both global and local features are explored in vehicle logo

recognition applications [1], [8], [9], [10], [2], [11]. In general,

local features are more often used, as global features are

sensitive to illumination and scale changes, background noises

and rotations, whereas local features tend to be more robust

under these severe conditions [12].

As well as good feature representation schemes, for high

recognition accuracy we also require good classification meth-

ods. In literature, the K-Nearest Neighbours (KNN) [13]

classifier is often used as a base line [14], [15], whereas the

more advanced Support Vector Machine (SVM) classifier is

often a more appropriate choice [1], [8], [9], [14], [4], [16].

In this paper, we propose a classification framework based

on logistic regression (LR) and a spatial SIFT feature repre-

sentation scheme. The LR explores the confidence level of the

classification decision and the spatial SIFT feature represen-

tation adds the geographic information of SIFT features. This

framework is compared with methods based on HOG, SIFT,

SVM, and KNN to verify its effectiveness for both clean and

noisy images.

The rest of this paper is organized as follows. In Section

II, we explain how the HOG feature (global feature) and the

SIFT feature (local feature) are combined with the Bag of

Words (BOW) representation model. In Section III. A, we

explain how we implement the pyramid idea based on the SIFT

feature. Section III. B introduces how the logistic regression

is employed in order to solve the multi-classification problem.

Experimental result and discussions are presented in Section

IV and the Section V summarises the work.

II. RELATED WORKS

A good recognition system needs good features to represent

the image. In the following two state-of-the-art feature meth-

ods are introduced, namely the HOG feature and the SIFT

feature. Using the HOG feature, all images are represented

by a vector of the same length and therefore, they can be

classified directly. For local features such as the SIFT feature,

the number of features is normally different. Therefore, the

BOW representation model is required prior to classification.

A. HOG features

HOG calculates the horizontal gradient Gx and the vertical

gradient Gy on every pixel in the image using a 1-D filter [-1,



0, 1] [6], [17]

Gx(i,j) = f(i+ 1, j)− f(i− 1, j), (1)

Gy(i,j) = f(i, j + 1)− f(i, j − 1), (2)

where f(i, j) is the intensity value at pixel location (i, j). Then

the horizontal gradient and vertical gradient can be used to

calculate the orientation of gradient θ(i, j) and the magnitude

of gradient H(i, j) for every pixel in the image

θ(i, j) = arctan(Gx(i,j)/Gy(i,j)), (3)

H(i, j) =
√

G2
x(i,j) +G2

y(i,j). (4)

The image is then divided into cells and blocks, where a cell

is made up from a few pixels and a block is made up from

a few cells. Each block can be represented as a histogram

using the quantized orientations as the histogram bins and the

magnitude as the weights. For each histogram the orientations

are quantised into bins evenly spaced over the full angular

range. The HOG feature is the concatenation of the histogram

vectors of all blocks.

B. SIFT features

Local features are often more effective and more robust than

global features [12]. Compared with global features which

use information from the whole image, local features are only

interested in distinctive information from set point regions in

the image. As a result, local feature methods need to detect

which pixels are of interest and then describe these pixels

using their neighbourhood areas.

Among local features, the SIFT feature is the most success-

ful one. The SIFT feature [7] is invariant to scale, rotation,

affine distortion, and noise. It detects a set of interest points

and then calculates the histogram of gradients in a window

centered around them. In the interest points detection process,

different Gaussian filters G(x, y, kσ) are convolved with the

original image to get smoothed images L(x, y, kσ). Then the

Difference of Gaussians (DOG) D(x, y, σ) is generated by

calculating the differences between these Gaussian smoothed

images, which is defined as:

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ), (5)

where k is a constant multiplicative factor usually set to
√
2

[7]. L(x, y, σ) and L(x, y, kσ) are produced from variant

scale Gaussian filters convolved with the input image, I(x, y):

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (6)

where the Gaussian filter is defined as:

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

. (7)

The DOG is not only applied to the original image but

also the up-sampled and down-sampled images in order to

be scale invariant. The potential interest points are extrema

among their neighbours in the DOG maps. All the extrema are

then revalued in order to make interest points more robust by

rejecting the less significant extrema. Finally the locations of

remaining extrema are used as the locations of interest points.

After the location of an interest point has been detected,

its neighbourhood area is chosen in the corresponding scale.

In order to make each interest point invariant to rotation

changes, all gradient orientations are rotated relative to the

main orientation of the local area. Any other orientation, which

is within 80% magnitude of the main orientation, will be used

to create another descriptor with respect to that orientation. It

makes each local interest point can have multiple descriptors.

After the orientation assignment process, an area centered on

the interest point is chosen. A similar process of the HOG

model is then applied within the area. Unlike in the HOG

process, in SIFT all weights for orientations are decided by

both the magnitude of gradients and a Gaussian kernel which

is centered on the interest point. All histograms are then

concatenated into a vector of fixed length. Finally, the vector

is normalized in order to be invariant to illumination changes,

and the normalized vector is the SIFT descriptor.

For different images there may be a different number of

SIFT descriptors, as the number of interest points is deter-

mined by the extrema and the number of extrema does not

have to be the same in every image. In other words, images

are represented by matrices with different sizes. Therefore,

they cannot be directly classified. Besides, directly comparing

each descriptor from testing images with all the descriptors

in the training dataset seems impractical when the training

dataset is huge [18]. In order to solve this problem, the BOW

representation model is required prior to classification.

C. Bag of Words

Csurka et al [18] proposed the BOW model to represent

an image by a feature histogram, which is efficient in terms

of computational cost and practical implementation. It is also

often used in vehicle logo recognition [19], [20]. The BOW

model consists of two main steps: the dictionary generation

process by k-means clustering [21] and the histogram repre-

sentation process.

k-means clustering is an unsupervised vector quantization

algorithm. It clusters n observations into k clustering centroids

by allocating all the observations into its nearest centroid. The

algorithm involves four steps:

1) Randomly choose k points as the initial group centroids

in the training data.

2) Assign all the training data points to its nearest centroid.

3) When all data points have been assigned, find the center

of each group and assign it as the new centroid.



4) Repeat steps 2 and 3 until none of the centroids changes

any more.

By the k-means clustering method, all the training features

are used to generate a dictionary which is made up of k

‘words’ (centroids) and each ‘word’ has the same dimension as

a SIFT feature vector. For an image which consists of a few

local descriptors, each descriptor can find its closest ‘word’

from the dictionary, where the closest distance is defined as

the minimal l2 distance [22]. If a descriptor has found its

nearest ‘word’ in the dictionary, the number of occurrences

of this ‘word’ will have increased by 1. The BOW model can

represent an image as a histogram by using each ‘word’ in the

dictionary as a histogram bin and the occurring frequency of

each ‘word’ as its magnitude [18]. The normalized vector is

the final histogram vector.

III. PROPOSED FRAMEWORK FOR VEHICLE LOGO

RECOGNITION

The proposed vehicle logo recognition framework which

combines the spatial SIFT feature with logistic regression

classification is shown in figure 1. This section introduces

spatial SIFT and logistic regression, as the remaining stages

having been detailed in the previous section in this paper.

Fig. 1: Recognition framework by using local features.

A. Spatial SIFT

In the BOW model, the magnitude of each ‘word’ in the

histogram is only decided by its occurring frequency in the

image. Where the feature was originally from in the image

does not influence the histogram. Therefore it does not take

the geographic information into consideration. The geographic

information of the interest points is often deliberately avoided

in order to ensure that interest points at different locations can

be matched, making the process invariant to changes in interest

points locations. However, vehicle logos often occupy the

entire of the training and testing images after a segmentation

process. The geometric information might be useful in such

a case. For example, the ‘V’ is always above the ‘W’ in a

detected Volkswagen logo image and using such information

potentially can give a more accurate classification.

Lazebnik et al [23] proposed the idea of partitioning the

image into sub-regions and then using the BOW model over

each sub-region for natural images. Specifically, the original

image is firstly partitioned into 4 sub-regions, then into 16

sub-regions in the next level and so on. The BOW model is

applied over each sub-region and the final feature is formed

by concatenating the histograms from the original image and

all the sub-regions. The result is a pyramid-like structure,

where each level as you move down the pyramid is focused

on a smaller region of the image. Each level is often called a

pyramid scale.

This pyramid idea has been applied in vehicle logo recog-

nition tasks by using the Dense-SIFT global descriptor [4],

[19]. However, the Dense-SIFT feature takes all pixels in the

original map as interest points, which makes the interest points

not robust as a lack of feature detection process [24]. Instead,

here we propose using the pyramid idea with the SIFT local

feature descriptor for vehicle logo recognition.

Fig. 2: An example of spatial pyramid interest points. The center

of the yellow circles are locations of SIFT features in their corre-

sponding maps and the yellow bars represent the main orientations.

Since the interest points are from different DOG maps, the size of

the yellow circles varies.

Figure 2 illustrates the pyramid partition of an image. By

using the BOW representation model, the original image can

be represented by a histogram of k dimensions (k is defined

by k-means algorithm) in the first pyramid scale; then, the

image is divided into 4 sub-regions and 16 sub-regions in

the second and third pyramid scales, respectively. The BOW

model is applied over each region to obtain histogram vectors

and all these histogram vectors generated from both original

scale and sub-scales are concatenated into a histogram vector

to represent the image.

Figure 3 shows an example of how the BOW model

represent the image in figure 2, using the SIFT feature and

the spatial-SIFT feature. For illustration purpose, k=50 is used

in the k-means clustering and 2 pyramid levels are used for



the spatial-SIFT feature. By using the SIFT feature, the BOW

is only applied to the original image therefore the image

is represented by a histogram vector of length 50 (figure 3

(a)). However, using spatial SIFT, BOW is applied to both

the original image and the sub-regions. Hence, the image is

represented by a vector of length 250 (figure 3 (b)). Therefore,

as both SIFT and spatial SIFT are sharing the same dictionary,

the SIFT vector forms the first portion of the spatial SIFT

vector.
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( b ) BOW representation based on spatial-SIFT features

Fig. 3: The BOW representation for the image in figure 2 based on

the SIFT feature (a) and the spatial SIFT feature (b).

B. Logistic regression

Unlike SVM and KNN, the LR has not previously been

applied to vehicle logos recognition. Compared with the

conventional SVM and KNN which only classify data into

corresponding classes, LR explores the confidence level of the

decision that the data has been correctly classified [25]. The

following gives an introduction about how logistic regression

can be used in multi-class classification in order to solve the

multi-class vehicle logo recognition problem.

Given a training data (x, y), where x ∈ R
M×1, in linear

regression, we use the linear function:

y = wTx+ b, (8)

where w ∈ R
M×1 is the weight vector and the scalar b is the

bias associated with the linear regression. Starting with the

binary classification where y is a scalar which can either be

‘1’ (positive) or ‘0’ (negative). Using the ‘logistic’ function

f(x) = 1/(1 + e−x), the probability that the training point

belongs to class ‘1’ can be expressed by:

π = p(y = 1|x,w, b) = f(wTx+ b) =
1

1 + e−(wTx+b)
. (9)

Therefore, the probability of a negative outcome is 1− π:

p(y = 0|x,w, b) = 1− π =
e−(wT

x+b)

1 + e−(wTx+b)
. (10)

Assuming that we have N independent training data

(x1, y1), (x2, y2), · · · , (xN , yN ), a Bernoulli distribution can

be used to form the likelihood function for the ith point by

combining Equations (9) and (10), which gives:

p(yi|xi,w, b) = πyi

i (1− πi)
1−yi , (11)

where πi represents the probability that the ith point belongs

to the positive class. The likelihood of all the training data is

therefore given by the product:

p(y|w,X, b) =

N
∏

i=1

πyi

i (1− πi)
1−yi , (12)

where X = (x1,x2, · · · ,xN )T is the training dataset and

y ∈ R
N×1 is a vector representing all the training labels.

Maximising the likelihood in Eq. (12) is equivalent to min-

imising the negative of its log likelihood, i.e.

E = −log p(y|w,X, b)

= −
N
∑

i=1

yilogπi −
N
∑

i=1

(1− yi)log(1− πi)

= −
N
∑

i=1

yilog f(wTxi + b)−
N
∑

i=1

(1− yi)log(1− f(wTxi + b)).

(13)

In order to minimize Eq. (13), we take the gradient with

respect to w and b respectively and substitute f ′(x) =

f(x)(1− f(x)):

dE

dw
= −

N
∑

i=1

yi
f(wTxi + b)

f ′
xi +

N
∑

i=1

1− yi
1− f(wTxi + b)

f ′
xi

= −
N
∑

i=1

yi(1− f(wTxi + b))xi +

N
∑

i=1

(1− yi)f(w
Txi + b)xi

= −
N
∑

i=1

(yi − f(wTxi + b))xi, (14)

here f ′ represents the partial derivative of f(wTxi + b) with

respect to w. In the same way take the gradient with respect

to b:

dE

d b
= −

N
∑

i=1

(yi − f(wTxi + b)). (15)

Equations (14) and (15) are optimization problems which are

usually solved by gradient descent method such as stochastic

gradient descent [26] and Newton’s method [27]. For a new

testing point x∗, the probability that it belongs to the positive

class is:

p(y∗ = 1|x∗,w, b) =
1

1 + e−(wTx∗+b)
, (16)

and the probability that it belongs to the negative class is

therefore:

p(y∗ = 0|x∗,w, b) = 1− p(y∗ = 1|x∗,w, b), (17)



where y∗ represents the predicted label for the testing point.

Hence, the testing data can be allocated into the class which

has a higher probability. In practice an l2 regularizer is added

in the object function (shown in Equation (13)) in order to

avoid over-fitting [28]. The regularised object function is:

Ê = −log p(y|w,X, b) +
λ

2
(||w||22 + b2), (18)

where || · ||2 denotes l2-norm and λ is the weight controlling

the importance of the regularization term.

The logistic regression in binary classification can be easily

extended to multi-classification. Given the training dataset X

from K categories yi ∈ 1, 2, · · · ,K. In multi-classification,

the probability of p(yi = k|xi) for each k = (1, 2, · · · ,K)

can be denoted as:







p(yi=1|xi,W,b)
p(yi=2|xi,W,b)

...

p(yi=K|xi,W,b)






=

1
∑K

j=1 e
(wT

j
xi+bj)









e(w
T
1 xi+b1)

e(w
T
2 xi+b2)

...

e(w
T
K

xi+bK )









,

(19)

where W = (w1,w2, · · · ,wK) is a matrix consisting of the

weights and b = (b1, b2, · · · , bK) is the bias of the multi-

class logistic regression models. The term 1
∑

K
j=1 e

(wT
j

xi+bj)

normalizes the distribution so that all the probabilities sum

up to one.

Here we could use an indicator function:

g(a) =

{

1 if a = True statement,

0 Otherwise.
(20)

Therefore, the object function in Eq. (13) is adapted to:

Ê =

N
∑

i=1

K
∑

k=1

g(yi = k)

×
{

−log

(

e(w
T
k xi+bk)

∑K
j=1 e

(wT
j
xi+bj )

)

+
λ

2
(||wk||22 + b2k)

}

,

(21)

which is minimised to estimate wk and bk in the same way

as in binary classification. For a testing data point x∗, the

probability that its label y∗ equals k is :

p(y∗ = k|x∗,W,b) =
e(w

T
k x

∗+bk)
∑K

j=1 e
(wT

j
x∗+bj )

, (22)

and this incoming testing data is assigned to the class which

has the highest probability.

IV. PERFORMANCE EVALUATION

In this section we use the open dataset provided by Huang

et al [29] to evaluate the performance of our framework.

This dataset is currently the biggest available vehicle logo

dataset; it has 10 categories and each category contains 1000

training images and 150 testing images. All images have a

size of 70×70 pixels. Figure 4 shows an example of these

10 vehicle categories by randomly choosing one image from

each category in the training dataset and figure 5 shows some

challenging test images which can be easily mis-classified.

Fig. 4: Vehicle logo dataset

Fig. 5: Examples of some challenge images in the testing

dataset.

The performance evaluation is conducted in Matlab on a

computer with the following specification: I5, 3.4G Quad-

core, and 8G memory. The open source library VLFeat [30]

is used for SIFT feature extraction and LIBSVM toolbox [31]

is used for SVM classification. The following result shows

the performance of the HOG, SIFT and spatial SIFT features

when they are combined with different classifiers such as the

SVM, LR and KNN. Different levels of noise are added in

order to examine the robustness of the proposed framework.

A. The HOG feature

The framework for HOG features is only made up of feature

and classification, as no k-means process is needed. Three

classifiers are used in this section and the following for feature

classification, which are the KNN, SVM and LR. K is setted

to 5 to be more robust against noisy data [32]; the SVM uses

the default Radial Basis Function (RBF) kernel in LIBSVM

and λ = 0.1 is setted in the LR classifier.

TABLE I: Performance of HOG by using different classifiers.

HOG features

Classifier SVM LR KNN

Acc (%) 88.40 97.53 95.67

Misclassified images from

1500 testing images 174 37.05 64.95

From Table I we can see that LR outperforms SVM and

KNN in terms of classification accuracy. This validates the

use of LR in vehicle logo recognition.



TABLE II: Classification accuracies (µ ± σ) on 1500 testing images using SIFT features, according to different dictionary sizes in the

k-means process (30 runs).

SIFT features
K 50 100 200 300 400 500 600 700 800 900

SVM (%) 88.09± 1.01 92.87± 0.55 95.89± 0.61 97.09± 0.46 97.64± 0.27 97.77± 0.25 97.96± 0.26 98± 0.19 98± 0.25 98.05± 0.19

Misclassified images 178.65 106.95 61.65 43.65 35.40 33.45 30.60 30 30 29.25

LR (%) 88.76± 1.13 95.18± 0.62 98.56± 0.32 99.11± 0.22 99.37± 0.16 99.54± 0.12 99.63± 0.11 99.70± 0.10 99.70± 0.13 99.76 ± 0.14

Misclassified images 170.40 72.30 21.60 13.35 9.45 6.90 5.55 4.50 4.50 3.60

KNN (%) 96.55± 2.33 97.93± 0.37 98.55± 0.33 98.60± 0.26 98.46± 0.28 98.66± 0.25 98.68± 0.27 98.73± 0.29 98.69± 0.25 98.81± 0.24

Misclassified images 51.75 31.05 21.75 21 23.10 20.10 20.10 19.05 19.65 17.85

TABLE III: Classification accuracies (µ±σ) on 1500 testing images by using spatial-SIFT features, according to different dictionary sizes

in the the k-means process (30 runs).

Spatial-SIFT features
K 50 100 200 300 400 500 600 700 800 900

SVM (%) 89.52± 0.88 94.26± 0.59 96.36± 0.37 96.84± 0.32 97.04± 0.38 97.10± 0.26 97.12± 0.25 97.08± 0.31 97.08± 0.26 97.20± 0.24

Misclassified images 157.20 86.10 54.60 47.40 44.40 43.50 43.20 43.80 43.80 42

LR (%) 95.34± 0.63 98.55± 0.25 99.55± 0.16 99.71± 0.12 99.81± 0.13 99.87± 0.09 99.86± 0.08 99.90± 0.09 99.92± 0.08 99.93 ± 0.07

Misclassified images 69.90 21.75 6.75 4.35 2.85 1.95 2.10 1.50 1.20 1.05

KNN (%) 92.48± 0.45 93.11± 0.60 93.56± 0.69 93.85± 0.59 94.12± 0.53 97.14± 0.49 96.82± 0.68 97.02± 0.60 96.98± 0.35 96.77± 0.38

Misclassified images 112.80 103.35 96.60 92.25 88.20 42.90 47.70 44.70 45.30 48.45

B. The SIFT feature

For local features such as SIFT and spatial-SIFT, we expect

the dictionary size will influence the performance in terms of

accuracy. Hence, the SVM, KNN and LR with 10 different

dictionary sizes are tested. Centroids of k-means clustering

are randomly initialised which results different outcomes with

each run, therefore the experiments are conducted 30 times

and the mean results with variances are presented.

From Table II, we can see that increasing dictionary size im-

proves the classification accuracy. This is because the feature

naturally contains more information in a higher dimensional

space. Among these three classifiers, the LR classifier always

outperforms the SVM, while the KNN sometimes works better

than the rest when the dictionary size is smaller than 300.

However, when the dimension increases, the improvement

of KNN is not as obvious as for both the SVM and LR.

Furthermore, the variance of accuracy achieved when using

the LR is smaller than for both SVM and KNN. This indicates

that the performance of the LR classifier is more stable. By

combining SIFT features with the LR classifier, we have

obtained the recognition accuracy 99.76±0.14, which is higher

than the previous highest accuracy achieved by PCA-CNN

(99.13± 0.24) [29].

C. The spatial-SIFT feature

The pyramid level is set to 2 as the number of SIFT features

is very limited in such low resolution images. The recognition

accuracies using the spatial-SIFT feature and different clas-

sifiers are shown in Table III. For both SVM and LR, the

result indicates that the spatial-SIFT feature outperforms the

SIFT feature no matter how large the dictionary is. However,

for KNN, using spatial-SIFT has the opposite effect and

accuracy is reduced. This is because the feature has been

extended into a high dimension space by segmenting the

image into pyramid sub-regions and studies show that KNN

is not sufficient when it is applied in a high dimensional

space [33]. Since the pyramid SIFT outperforms the SIFT

by using both the LR and the SVM, we can conclude that

the spatial-SIFT feature outperforms the SIFT in terms of

accuracy, because the reduced accuracy by the fact that using

KNN can be explained by the data has been extended to a high

dimension. Furthermore, the pyramid SIFT combined with the

LR classifier has achieved a further improvement in accuracy

over that for LR combined with SIFT features.

D. Computational costs

TABLE IV: Computational costs by using different features with

the LR classifier on 10000 training images and 1500 testing images.

Features HOG SIFT spatial SIFT

Acc (%) 97.53 99.11 99.71

Misclassified images 37.05 13.35 4.35

Time-whole-process (s) 190 571 967

Time-per-test (s) 0.06 0.08 0.23

We have compared the efficiency of these features using the

LR classifier. In this subsection and the one that follows we

only use LR as the classifier. This is because the results up to

this point indicate that it is the most accurate of the classifiers.

We set k=300 as a compromise between computational cost

and accuracy. It is a dilemma here as increasing the dictionary

size also increases the computational cost. For example, by

the proposed framework, recognising all the testing images

needs 847 and 1291 seconds when k = 200 and k = 400

respectively with its accuracy increased by 0.27%. The result

in Table IV indicates that spatial SIFT obtained the highest



Fig. 6: An example of a training image and the effect by adding

Gaussian noise with zero means and variance values 0.02, 0.05, 0.1,

0.15, 0.2, 0.25, 0.3 from left to right respectively.

accuracy (99.71%) compared with the SIFT (99.11%) and the

HOG (97.53%), respectively.

E. Robustness to noise

In practice, we would not expect to always have clear

logos in the images. As a result, here noises are added to

the images in order to test the robustness of these features

with the LR classifier. The noise is Gaussian with zero mean

and differing levels of variance. Since the Gaussian noise is

random, we run all experiments for 10 times and choose their

mean values. Figure 6 shows an original training example

and the effects by adding noise with increasing variances.

Normally an image is highly contaminated if the Gaussian

noise variance is above 0.2. The noise is added to the training

and testing images separately with variances given by σtrain

and σtest, respectively.
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Fig. 7: Accuracy of recognition by using the HOG feature.

Figure 7 illustrates how different noise variance levels for

both training and testing images influence the accuracy when

using the HOG feature. Without surprise, adding noise in the

image decreases the accuracy compared to the noise free case.

Generally speaking, when the noise variance in the training set

is fixed, the higher the noise variance added to the test images

is, the lower the accuracy will be. For example, σ2
test=0.02

always outperforms σ2
test=0.3 in terms of accuracy. However,

when the noise in the testing images is fixed, the highest

accuracy tends to be found when the training images have

similar noise variance levels. For instance, the highest accuracy

for σ2
test=0.05 is found when σ2

train=0.05; on the contrary, the

model trained by clearer training images (when σ2
train=0.02)

gives a less accurate recognition result. As a result, a higher

accuracy can be achieved by matching σ2
train to σ2

test.
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Fig. 8: Accuracy of recognition by using the SIFT feature.

Compared with the HOG feature, the SIFT feature is more

robust to noise as shown in figure 8. The main reason why

some misclassifications occur in extreme noise scenarios is

that no SIFT features are detected. However, this doesn’t

always happen, meaning a good overall recognition accuracy

is achieved.
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Fig. 9: Accuracy of recognition using the spatial-SIFT feature.

As shown in figure 9, the spatial-SIFT feature gives the

highest accuracy when compared with the SIFT feature and

the HOG feature. All accuracy results in figure 9 are above

the corresponding ones in figure 8. This improvement shows

that the geographic information included in spatial-SIFT has

resulted in a more robust performance than for SIFT.



V. SUMMARY

In this work, a framework based on spatial-SIFT features
combined with logistic regression has been proposed for vehi-
cle logo recognition. The spatial-SIFT features which include
the geographic knowledge of SIFT features are more robust
than both SIFT and HOG in both noise-free and noisy cases.
Three classifiers (SVM, LR, and KNN) were tested and the
LR shows an overall higher accuracy than both the SVM
and KNN. The proposed framework achieved an recognition
accuracy of 99.93%, which exceeded the previous record.
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