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Abstract

Despite the complexity and variability of decision processes, motor responses are generally stereotypical and independent
of decision difficulty. How is this consistency achieved? Through an engineering analogy we consider how and why a
system should be designed to realise not only flexible decision-making, but also consistent decision implementation. We
specifically consider neurobiologically-plausible accumulator models of decision-making, in which decisions are made when
a decision threshold is reached. To trade-off between the speed and accuracy of the decision in these models, one can
either adjust the thresholds themselves or, equivalently, fix the thresholds and adjust baseline activation. Here we review
how this equivalence can be implemented in such models. We then argue that manipulating baseline activation is
preferable as it realises consistent decision implementation by ensuring consistency of motor inputs, summarise empirical
evidence in support of this hypothesis, and suggest that it could be a general principle of decision making and
implementation. Our goal is therefore to review how neurobiologically-plausible models of decision-making can manipulate
speed-accuracy trade-offs using different mechanisms, to consider which of these mechanisms has more desirable decision-
implementation properties, and then review the relevant neuroscientific data on which mechanism brains actually use.

Citation: Marshall JAR, Bogacz R, Gilchrist ID (2012) Consistent Implementation of Decisions in the Brain. PLoS ONE 7(9): e43443. doi:10.1371/
journal.pone.0043443

Editor: Ramesh Balasubramaniam, McMaster University, Canada

Received February 10, 2012; Accepted July 20, 2012; Published September 12, 2012

Copyright: � 2012 Marshall et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: IG is supported by a Biotechnology and Biological Sciences Research Council (BBSRC) Career Development Fellowship. RB and IG are supported by
Engineering and Physical Sciences Research Council (EPSRC) grant EP/I032622/1. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: JARM is an Associate Editor for PLoS ONE. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and
materials.

* E-mail: James.Marshall@sheffield.ac.uk

Introduction

The Neural Implementation of Decision-Making
Consider a simple binary decision-making task, such as the

choice of making a saccadic eye movement to one of two possible

flickering objects, one of which is the slightly brighter target (e.g.

[1]). In this kind of task the participant is able to favour decision-

accuracy at the expense of decision-speed, or vice-versa, according

to the instructions or the reward structure induced by the

experimental design. Delaying a response would allow the

participant to accrue more information about the probability of

the target being at a particular location, and hence improve

decision accuracy, but this would inevitably have a cost in terms of

speed of the response. Remarkably, however, decision implemen-

tation can be highly stereotypical, and independent of decision

difficulty (e.g. [2]).

This scenario is one that is simplified for experimental

tractability, yet is sufficiently rich to illustrate general principles

of decision-making. Accumulator models have been proposed that

implement decision-making using competing neural populations

that integrate evidence, with one accumulator for each alternative

(e.g. [3–7]; figure 1). When an accumulator reaches a threshold,

the decision is made for the corresponding alternative. For two

alternatives, many such models can be parameterised to approx-

imate the drift-diffusion model of decision making [8], which in

turn realises the statistically optimal decision-making strategy, the

Sequential Probability Ratio Test (SPRT), that minimises expect-

ed decision-time while obtaining a given error rate. Such models of

decision-making account for neural activation patterns (see

references earlier in the paragraph), give good fits to experimental

data on decision accuracy and reaction-time distributions, and can

be used to model a range of more complex tasks (e.g. [9]).

In accumulator models, the compromise between the speed and

the accuracy of decision-making is typically achieved by adjusting

the threshold that precipitates these decisions. It has been

remarked, however, that for several classes of models, changing

baseline activation of integrator populations has an equivalent

effect (e.g. [10]). In the next section we illustrate that for a certain

class of models manipulation of the threshold while holding fixed

the baseline activation of the accumulators, and manipulation of

the baseline activation while holding fixed the threshold, are

formally equivalent. Researchers interested in the neural imple-

mentation of speed-accuracy trade-offs have therefore recently

started to investigate which of these two alternatives is realised in

the brain. Several recent studies, reviewed in [10], have presented

emerging evidence for the baseline manipulation hypothesis, while

little evidence has been presented for the threshold manipulation

hypothesis to date.

While researchers have investigated whether the brain imple-

ments adjustable baseline activation, or adjustable thresholds, as

yet there has been no principled explanation of why, at a

computational level, one alternative is better than the other. We

address this question by considering not only decision-making, but

also the implementation of decisions reached. We then ask what

characteristics would be desirable in a combined decision-making

and implementation system, and how to design such a system.
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Results

Equivalence Between Changing Threshold and Baseline
Activation

In this section we explain how, for a certain class of models,

lowering decision threshold and increasing the initial activation of

accumulators produce the same changes to probability of error

and reaction time distributions [11]. Thus, under such equivalence

speed-accuracy trade-offs can be mediated in exactly the same way

by changes in threshold or baseline activation, meaning that

existing results showing that accumulator models with variable

threshold between speed and accuracy instructions can fit

behavioural data (e.g. [12]) imply that the models with variable

baseline activation would describe these data equally well.

Equivalence of these two mechanisms is also interesting because

these models can be parameterised to implement statistically

optimal decision-making, by approximating the drift-diffusion

model described above [13]. This then allows us to consider the

effect on decision implementation of choosing either variable baseline

activation or variable thresholds, remaining confident that the

dynamics of decision making are unaffected by the choice.

The equivalence just described is easiest to explain for the race

model [14] which consists of two accumulators corresponding to

two alternative choices (figure 1a). In each time step the activity of

each accumulator increases proportionally to the input from a

corresponding sensory neural population. The choice is made

whenever the activity of any accumulator exceeds a threshold. In

this model the time to reach the threshold depends on the

difference between the initial activation of the accumulators at the

stimulus onset and the threshold. Therefore reducing the threshold

and increasing the initial activation have the same effects on

model’s behaviour. Similar logic applies to closely related models

with independent accumulators like LATER [7] and the linear

ballistic accumulator model [6].

For other models, the following two conditions are necessary for

the equivalence of changing threshold and initial activation. First,

the model needs to include separate accumulators corresponding

to individual choice alternatives. Thus, the equivalence does not

hold for the drift-diffusion model [8]. This model has a single

accumulator integrating the difference between sensory evidence

supporting the two alternatives. The choice is made when the

activity of this single accumulator exceeds one threshold or falls

below another threshold (situated below the initial state of the

accumulator). In the diffusion model, changing the distance

between thresholds affects the speed-accuracy trade-off, while

changing the initial activation of the accumulator changes the bias

towards choosing one or other of the alternatives. It is also difficult

to conceive of a direct neurobiologically-plausible implementation

of the drift-diffusion model, since it appears to require the

possibility for negative activation levels of the accumulator.

However, note that the diffusion model is an abstract model

which can be implemented by embedding it in a more

complicated, neurobiologically-plausible model [13]. For example

in the feed-forward inhibition model (figure 1b; [15]), two

accumulators act to integrate the difference between the input

for the corresponding alternatives. Thus the activity of the first

Figure 1. Accumulator models of decision-making. Sensory neuron populations for each decision alternative feed into corresponding
accumulators, which must reach a threshold for an appropriate action to be initiated. Lines with arrows denote excitatory inputs, while circles denote
inhibitory inputs. Arrowed lines with no target denote activation leakage from populations. (a) race model [14]. (b) feed-forward inhibition model
[22]. (c) mutual inhibition model [5]. (d) pooled inhibition model [17].
doi:10.1371/journal.pone.0043443.g001
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accumulator in the feed-forward inhibition model is proportional

to the activity of the accumulator in the diffusion model, while the

activity of the second accumulator is proportional to the negative

of the activity of the accumulator in the diffusion model. In the

feed-forward inhibition model, the choice is made when the

activity of any of the accumulators exceeds a threshold, thus the

model generates the same behaviour as the diffusion model.

Nevertheless in the feed-forward inhibition model lowering the

threshold and increasing initial activation produce equivalent

changes to models’ behaviour.

The second condition necessary for changes in the threshold

and initial activation to be equivalent is the lack of non-linear

terms in the equations describing the model. Thus the equivalence

does not hold for the non-linear versions of the models shown in

figures 1c and 1d [16–17], in which changing the range of activity

in which the model operates very significantly changes the

dynamics of the model. This is a limitation of our approach,

since real neurons and neural populations are non-linear; however

by considering linear models as abstract models of the underlying

biology considerable progress has already been made in under-

standing the neural bases of decision making. For example linear

accumulator models based on the feed-forward inhibition model

(figure 1b) were successfully used to describe neural activity in

lateral intraparietal area during decision making [15,18–23],

Furthermore, linear accumulator models based on the mutual

inhibition model (figure 1c) were used to understand and map the

functions of different neural populations in the frontal eye field

during choice [24]. We return to this issue in the discussion.

We now demonstrate that, in the linear version of the mutual

inhibition model, lowering thresholds, and increasing baseline

activity of accumulators by means of common input to both

accumulators, give the same changes to the speed and accuracy of

choices. The mutual inhibition model (figure 1c) includes two

accumulators that integrate corresponding inputs until the activity

of any of the accumulators reaches a threshold. Additionally, the

accumulators inhibit each other and include leak (so their activity

decays in the absence of inputs). Figure 2a shows a sample

evolution of the activities of accumulators during a simulation.

Initially both accumulators quickly increase their activities due to

input (their trajectory moves from the origin up-right), but when

they are sufficiently active they inhibit each other, so that when

one increases its activity, the other decreases. Thus the state of the

model slowly evolves along an attracting diagonal line (dotted line

in figure 2a) until one of the thresholds is reached.

Since the mutual inhibition model includes leak, unlike race and

feed-forward inhibition models, the baseline activity of the

accumulators cannot be increased in a stable manner by simply

setting the activities of accumulators to higher values, because the

accumulators would quickly decay their values to 0 through

leakage (in absence of any other input). Figure 2b illustrates that

such a change in initial activities of accumulators also has almost

no effect on the decision time, because this change only affects the

movement towards the attracting line, but does not affect the

position of the attracting line and hence evolution along it.

To increase the baseline activity of accumulators in a way that it

is maintained, an additional input to both integrators needs to be

provided before and during the decision process; this input could

be achieved by increasing the base-level firing rate of neurons in

the integrator populations. Figure 2c shows how the state of the

system evolves when such an input is provided before stimulus

onset (i.e. when no sensory input is provided). Although both

accumulators continuously receive input, they do not increase all

the time, because of leak and inhibition, and converge to the state

when the input balances leak and inhibition. Figure 2d shows the

simulation of decision-making in which the additional input is also

provided throughout the choice process. This additional input

shifts the position of the attracting line such that a smaller portion

of the attracting line is between the thresholds, resulting in a faster

decision.

All simulations in figure 2 were run with the same initial seed of

the random number generator; note that the trajectories in panels

2a and 2d have the same shape but are shifted (as we show in

Methods and Results). Therefore, shifting the trajectories towards

thresholds by means of the common input to the accumulators has

the same effect on the model’s behaviour as lowering the

thresholds in the mutual inhibition model.

The same shape of trajectories in figures 2a and 2d also implies

that the additional input does not change the mean ‘rate of drift’

along the attracting line (see Methods and Results). As a result,

decision-speed and accuracy are affected solely by the movement

of the attracting line relative to starting activation levels of the

accumulators, achieved by manipulating the common baseline

input to both accumulators.

In Methods and Results we also show that the increasing

baseline activity in the linear version of the pooled inhibition

model (figure 1d) by means of increased input to accumulators has

the same effect on the model’s behaviour as lowering thresholds,

for analogous reasons to those for the mutual inhibition model.

Implementing Decisions
The majority of simple decisions lead to a motor response – in

the example given in the introduction this is the generation of a

saccade to one location or another. One desirable property of the

combined decision process and response generation system is that

the nature of the response generated should not depend on how

the decision was reached. For example a decision that was made

following only weak evidence in favour of that alternative should

not result in a movement that itself is slow or inaccurate. Once the

system has decided on a particular response, the response itself

should be as accurate and as well executed as possible. This could

be formulated as a minimisation problem, where the optimal

implementation mechanism is that which minimises variability in

decision implementation, across decision scenarios.

We consider the interrelation between the decision and response

processes with a simple analogy to the design of an electrical circuit

for making decisions and then implementing corresponding motor

actions. Figure 3 shows our circuit, designed to mimic the race

model of decision-making shown in figure 1a. As with the race

model we have two ‘accumulators’, which are actually capacitors

in our circuit. Current flows into these at rates that vary randomly

over time, such that nevertheless one of the currents, correspond-

ing to the best decision alternative, is higher than the other on

average. The capacitors thus accumulate charge over time. When

one of the two decision-making capacitors reaches some threshold,

the circuit should implement a decision. Thus far we have done no

more than reproduce the race model as an electrical circuit

diagram; we have chosen the race model for simplicity, but we

could easily extend this basic model to implement something like

the leaky competing accumulator model (figure 1c), with cross-

inhibition and leakage from the capacitors. We now extend the

original model by considering decision-implementation, repre-

sented in our model as connecting the output of each capacitor to

a motor for the corresponding alternative. Each capacitor is

accompanied by a simple control circuit (v in figure 3) that detects

when its charge has reached the requisite threshold, and when it

has done so fully discharges the capacitor across the motor.

Consider what happens to the circuit described above when

making decisions under the adjustable decision-threshold model.

Consistent Decision Implementation in the Brain
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For high decision-thresholds corresponding to slower, more

accurate decisions, the capacitor reaching threshold first will

contain a high charge, which will subsequently be discharged

across the motor resulting in a large movement. For low decision-

thresholds however, corresponding to quicker, less accurate

decisions, the winning capacitor will contain a low charge, giving

a small motion to the motor. Thus slow, accurate decisions lead to

‘powerful’ motor commands, while quick, inaccurate decisions

lead to ‘weak’ motor commands. This dependence of motor

behaviour on decision behaviour seems undesirable, and it is easily

seen to be avoided under the adjustable baseline activation model.

In this model, the baseline charge in the capacitors is changed

while the activation threshold is kept fixed. Now slow, accurate

decisions correspond to low baseline charge (or the common input

to both capacitors; see Methods and Results), while quick,

inaccurate decisions correspond to high baseline charge. In both

cases however, the charge achieved in the winning capacitor when

the decision is made is constant, and thus the motor implemen-

tation of the decision is consistent across decision types.

The electrical circuit described above is a caricature of a real

neural decision-making system; it is unlikely that any such system

works by translating neural population activation levels directly

into motor commands. However if, instead, the output from a

neural decision-making population acted as a switch, disinhibiting

some motor pathway for example, the same principle of

consistency of decision-implementation signal across the full range

of decision types would seem useful. To consider such scenarios we

can use an electronic analogy, the transistor. Transistors can be

used as switches, in just the same way as a neural decision-making

population disinhibiting a motor pathway acts as a switch. The

current crossing a transistor varies as a saturating function of its

controlling input, so when used as switches, the controlling input

to the transistor must be either consistently low or consistently

high, in order that the current crossing the transistor remains

either consistently low or high; intermediate inputs result in

intermediate current transfer, so in an electronic circuit emulating

the disinhibition of a motor pathway by a neural decision

population (figure 3b), consistency of input would also be

desirable. The generality of this argument can also be seen

Figure 2. Dynamics of the mutual inhibition model (equations A1 and A2). In each panel the curve shows the evolution of the state of the
model during a simulation, i.e. different points on the curve correspond to different time instances, and their co-ordinates correspond to levels of the
activity of the accumulators at corresponding time. The simulations were performed using the Euler method with an integration constant of 0.001s.
In all simulations k = w = 10, I1 = 4,41, I2 = 3, c = 0.33 (values of I1, I2, c were estimated from behaviour of a sample participant performing motion
discrimination task as described in [13]) and the decision threshold was 0.4. The dashed lines indicate the positions in the state space in which one of
the accumulators reaches a decision threshold. The arrows indicate the average direction in which the state moves from the point indicated by the
arrow’s tail, and its length corresponds to the speed of movement (i.e., rate of change) in the absence of noise. The dotted diagonal lines show the
positions of the lines to which the state of the system is attracted. (a) Simulation of the model with y1(0) = y2(0) = 0. (b) Simulation of the model with
y1(0) = y2(0) = 0.1. (c) Simulation of the model before stimulus onset (i.e. when I1 = I2 = c = 0). The simulation starts at Y1(0) = Y2(0) = 0, and the
accumulators receive constant input I0 = 2 for 1s. (d) Simulation of the model with Y1(0) and Y2(0) set to the last state in panel c, in which the
accumulators receive additional constant input of I0 = 2.
doi:10.1371/journal.pone.0043443.g002

Consistent Decision Implementation in the Brain

PLOS ONE | www.plosone.org 4 September 2012 | Volume 7 | Issue 9 | e43443



without recourse to an electronic analogy. Consider the position of

a neural circuit disinhibiting a motor pathway to be that of an

observer tasked with deciding whether the signal from a neural

decision population means they should or should not disinhibit the

pathway; any variability in that signal introduces an unnecessary

and undesirable signal detection problem for that observer, and

thus introduces an additional potential for mistakes in the

sensorimotor pathway.

Having established the general engineering principle, in the

next section we briefly review some relevant neurophysiological

evidence from the literature.

Discussion

Neurophysiological Data on Variable Baseline Activation
A recent review by Bogacz et al. [10] analyses a variety of

studies into the neurophsyiological bases of speed-accuracy trade-

offs in decision-making. Two of their conclusions are of particular

relevance to the hypotheses presented here; first, their survey of

three recent fMRI studies [12,25–26], where speed or accuracy

was cued in human subjects, concludes that speed-accuracy trade-

offs are mediated in the decision-circuits rather than in early

sensory or primary motor brain areas; hence mathematical models

of the kind shown in figure 1 have the right general structure for

formally analysing speed-accuracy trade-offs. Second, these three

studies also provide evidence supporting the variable baseline

hypothesis; Ivanoff et al. [25] and van Veen et al. [26] both found

that cues for speed increased brain activity in frontal and parietal

areas including the dorsolateral pre-frontal cortex, while For-

stmann et al. [12] found evidence of increased activity in the pre-

supplementary motor area. Bogacz et al. [10] concluded that these

data directly supporting the variable baseline hypothesis, as well as

other data from animals consistent with this hypothesis, combined

with a lack of consistent experimental data supporting the variable

threshold hypothesis, give a strong overall indication that speed-

accuracy trade-offs in decision-making are mediated by changing

baseline activation of neural integrator populations. There is also

evidence that this variable baseline activation can be implemented

by varying levels of input from additional neural populations. For

example, Forstmann et al. [27] present evidence that increased

connections between pre-supplementary motor area and the

striatum perform better in modulating speed-accuracy trade-offs

according to instruction, implicating the pre-SMA as providing

variable additional input to the striatum to modulate baseline

activation.

Conclusions

We have presented a design principle for how decision-making

should be implemented in the brain, and briefly summarised

supporting evidence; specifically we propose that decision-making

in threshold-based systems should compromise between speed and

accuracy of decision-making by manipulation of baseline activa-

tion in decision-making neural populations, rather than a

manipulation of thresholds, in order to implement stereotypical

decisions under varying speed-accuracy tradeoffs. This could be

formalised as an optimality argument, that decision-making

systems should minimise variability in decision implementation,

across decision scenarios; such optimality arguments are com-

monplace in behavioural disciplines such as behavioural ecology,

where their predictions are tested against empirical data, and any

disagreement used to refine the theory [28]. In applying this

normative approach from evolutionary biology to models of

neuroscience, we hope to make a modest contribution to the

programme of reconciling functional and mechanistic explana-

tions of behaviour [29]. One potential limitation of our analysis is

that equivalence of changes in threshold and changes in baseline

activation has only formally been demonstrated for linear models.

Real neural systems are typically non-linear, but we argue that

even though the aforementioned equivalence does not hold for

Figure 3. (a) An electrical circuit implementation of the race model
(figure 1a). Noisy inputs for each decision alternative, in the form of
fluctuating currents, are accumulated by capacitors. These capacitors
continue to accumulate charge, until they reach a specified threshold
(assessed by the circuit v). On reaching threshold, the capacitor
discharges across a motor, which is taken to be the implementation of
the decision reached. Variable capacitor thresholds result in variable
inputs to the motor, according to decision type (low threshold, fast but
inaccurate decisions result in weak motor movements, while high
threshold, slow but accurate decisions result in strong motor
movements). In contrast, holding capacitor thresholds constant but
varying baseline capacitor charge realises consistent inputs to motors,
and hence consistent decision implementation. (b) The circuit of (a),
modified such that motor commands are implemented by disinhibiting
a motor pathway. This is achieved by using the output from the
capacitor corresponding to accumulated evidence for one alternative as
the input to a transistor, which acts as a switch on the motor pathway.
Since the current crossing a transistor varies as a function of its input,
consistent outputs from the capacitor are also desirable in order to
implement consistent motor actions.
doi:10.1371/journal.pone.0043443.g003
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certain important non-linear models, the principle of maintaining

a consistent threshold and varying baseline activation, even if the

decision-dynamics are changed as a result and this needs to be

compensated for by the neural mechanisms, remains an important

one that we should expect to see realised; the neurophysiological

evidence supporting this hypothesis, reviewed above, supports this

view.

We suggest that our principle is not specific but should be

applicable to any response system. Decision-making takes place at

many different levels of brain processing, and while more complex

decision-related motor sequences undoubtedly can be affected by

decision-task difficulty, we believe our principle should also hold at

the most fundamental levels of action selection in the brain. Even

the conceptually simplest decision-making mechanisms, such as

the race model [14] can be expressed as accumulator models.

Accumulators are also likely to be involved in more complex

decision-making processes; the basal-ganglia have been demon-

strated to be involved in action selection, mediating access to

motor control by different competing brain regions. A biologically-

plausible mathematical model of the basal-ganglia has been

proposed that is able to implement statistically optimal decision-

making over multiple alternatives [30]. As with the accumulator

models outlined above, this model is based on decision-making

populations that must reach a threshold in order to precipitate the

corresponding action, and this threshold may be adjusted to

compromise between the speed and accuracy of decision-making.

There is an interesting difference however that, in this model, the

output nuclei of the basal ganglia must fall below an activation

threshold in order for the corresponding action to be taken.

However the principle is the same, that in order for consistency of

decision-implementation we would expect this threshold to remain

constant; therefore we would predict that accurate decisions

should be implemented by raised baseline activation levels of

decision-making neural populations in the basal ganglia, while fast

decisions should be implemented by lower baseline activation.

Bogacz et al. [10] review four main theories of how speed-accuracy

trade-offs can be managed in the cortico-basal ganglia circuit, and

note that three involve a change in activation of some part of the

circuit, whether striatum [12], cortical integrators [31–32], or

subthalamic nucleus [33], while none modifies threshold of the

output nuclei. We suggest that it could be of interest to interpret

not only models but also other data already extant, or yet to be

generated, in terms of the proposal we have made here for how

consistent decision-implementation should be achieved.

Methods and Results

Equivalence of Threshold Change and Baseline Activation
Change in the Mutual and Pooled Inhibition Models

Let us denote the activities of the accumulators in the mutual

inhibition model (figure 1c) (Usher & McClelland, 2001) by y1 and

y2. The changes of activity of the accumulators during a small time

interval dt are given by:

dy1~ I1{ky1{wy2ð ÞdtzcdW1

dy2~ I2{ky2{wy1ð ÞdtzcdW2

�
ðA1Þ

According to equations A1, each accumulator i receives sensory

input with mean Ii and noise with magnitude c (dWi denote

random numbers from normal distributions with mean 0 and

variance dt). Furthermore, the activities decay with rate k, and each

accumulator receives inhibition from the other accumulator

weighted by w.

To increase the baseline activity of accumulators in a way that it

is maintained, an additional input I0 to both integrators needs to

be provided:

dY1~ I1zI0{kY1{wY2ð ÞdtzcdW1

dY2~ I2zI0{kY2{wY1ð ÞdtzcdW2

�
ðA2Þ

We use Yi to denote the activities of integrators in the model with

the additional input, to distinguish it from activities of integrators

in the model without such input (A.1) which we denoted by yi.

When such an input is provided before stimulus onset (figure 2c),

both accumulators converge to the state when the input balances

leak and inhibition Y1 = Y2 = I0/(w+k), which is a fixed point of

equations A2 for I1 = I2 = c = 0.

We now show formally that the model of equations 1 starting at

y1 = y2 = 0 (illustrated in figure 2a), and model of equations A2

starting at Y1 = Y2 = I0/(w+k) (illustrated in figure 2d) produce the

same shape of trajectories. Note that if the following condition is

satisfied (for i = 1,2):

Yi~yiz
I0

wzk
ðA3Þ

then dY1 = dy1 and dY2 = dy2, because substituting equation A3 into

the right hand sides of equation A2 gives the right hand sides of

equations A1. Therefore the model of equations 1 starting at

y1 = y2 = 0, and the model of equations A2 starting at Y1 = Y2 = I0/

(w+k) will change the levels of activity of accumulators in exactly

the same way in each interval dt, and hence the models will

produce the trajectories with exactly the same shape but starting

from different initial conditions.

The same shape of trajectories of models of equations A1 and

A2 shown above also implies that the evolution along the

attracting line is unaffected by the additional input. To provide

more intuition for this invariance (which may seem surprising) let

us note that the position along the attracting line x is proportional

to the difference between Y1 and Y2 (Bogacz et al. 2006):

x~
Y1{Y2ffiffiffi

2
p ðA4Þ

Taking the derivative of equation A4, and substituting equations

A2 we obtain the equation describing the dynamics of the

evolution along the attracting line:

dx~

I1zI0{kY1{wY2ð Þdt{ I2zI0{kY2{wY1ð Þdtffiffiffi
2
p zcdW

ðA5Þ

Note that the increased inputs to both accumulators I0 cancel in

equation A5, so the mean drift rate of diffusion along the attracting

line and the magnitude of noise in this diffusion are unaffected by

I0, for any parameter values.

Below we show that the same equivalence also holds for the

linear version of the pooled inhibition model (figure 1d) (Bogacz

et al. 2006). This model consists of two populations of

accumulator neurons, which project and receive input from a

third population of inhibitory neurons with activity level denoted

by y3. The changes of activity of these neural populations are

described by:

Consistent Decision Implementation in the Brain
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dy1~ I1{ky1{wy3zvy1ð ÞdtzcdW1

dy2~ I2{ky2{wy3zvy2ð ÞdtzcdW2

dy3~ w0 y1zy2ð Þ{kinhy3ð Þdt

8><
>: ðA6Þ

In equation A6, k and kinh denote the leak of accumulators and

inhibitory population respectively, w and w9 are respectively the

weights of connection from inhibitory population to integrators

and vice versa, and v is the weight of the self-excitatory

connection within each neuronal population corresponding to

an accumulator. The common input to both accumulators can be

introduced as in the mutual inhibition model:

dY1~ I1zI0{kY1{wY3zvY1ð ÞdtzcdW1

dY2~ I2zI0{kY2{wY3zvY2ð ÞdtzcdW2

dY3~ w0 Y1zY2ð Þ{kinhY3ð Þdt

8><
>: ðA7Þ

Analogously as for the mutual inhibition model, if the common

input is provided before the start of the decision (i.e. when

I1 = I2 = c = 0), the activities of populations will converge to a

fixed point of equation A7:

Y �1 ~Y �2 ~
I0

kz2ww0=kinh{v

Y �3 ~
2w0

kinh

I0

kz2ww0=kinh{v

8>><
>>:

ðA8Þ

Analogously as for the mutual inhibition model, since Yi = yi+Yi*,

then dYi = dyi, which implies that adding common input to

accumulators before and during the choice process will simply

shift the trajectories towards the thresholds, thus it will have

exactly the same effect on accuracy and reaction time as lowering

the thresholds.
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27. Fortsmann BU, Anwander A, Schäfer A, Neumann J, Brown S, et al. (2010)

Cortico-striatal connections predict control over speed and accuracy in
perceptual decision making. Proc Natl Acad Sci 107: 15916–15920.

28. Parker GA, Maynard Smith, J(1990) Optimality theory in evolutionary biology.
Nature 348: 27–33.

29. McNamara JM, Houston AI (2009) Integrating function and mechanism.
Trends Ecol Evol 24: 670–675.

30. Bogacz R, Gurney K (2007) The basal ganglia and cortex implement optimal

decision making between alternative actions. Neur Comp 19: 442–477.
31. Furman M, Wang XJ (2008) Similarity effect and optimal control of multiple-

choice decision making. Neuron 60: 1153–1168.
32. Roxin A, Ledberg A (2008) Neurobiological models of two-choice decision

making can be reduced to a one-dimensional nonlinear diffusion equation. PLoS

Comp Biol 4: e1000046
33. Frank MJ, Scheres A, Sherman SJ (2007) Understanding decision making

deficits in neurological conditions: Insights from models of natural action
selection. Phil Trans Roy Soc B 362: 1641–1654

Consistent Decision Implementation in the Brain

PLOS ONE | www.plosone.org 7 September 2012 | Volume 7 | Issue 9 | e43443


