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As the strength of a stimulus increases, the proportions of correct binary responses
increases, which define the psychometric function. Simultaneously, mean reaction times
(RT) decrease, which collectively define the chronometric function. However, RTs are
traditionally ignored when estimating psychophysical parameters, even though they
may provide additional Shannon information. Here, we extend Palmer et al’s (2005)
proportional-rate diffusion model (PRD) by: (a) fitting individual RTs to an inverse Gaussian
distribution, (b) including lapse rate, (c) point-of-subjective-equality (PSE) parameters, and,
(d) using a two-alternative forced choice (2AFC) design based on the proportion of times a
variable comparison stimulus is chosen. Maximum likelihood estimates of mean RT values
(from fitted inverse Gaussians) and binary responses were fitted both separately and in
combination to this extended PRD (EPRD) model, to obtain psychophysical parameter
values. Values estimated from binary responses alone (i.e., the psychometric function)
were found to be similar to those estimated from RTs alone (i.e., the chronometric
function), which provides support for the underlying diffusion model. The EPRD model
was then used to estimate the mutual information between binary responses and stimulus
strength, and between RTs and stimulus strength. These provide conservative bounds for
the average amount of Shannon information the observer gains about stimulus strength on
each trial. For the human experiment reported here, the observer gains between 2.68 and
3.55 bits/trial. These bounds are monotonically related to a new measure, the Shannon
increment, which is the expected value of the smallest change in stimulus strength
detectable by an observer.
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1. INTRODUCTION
For over a 100 years, it has been known that the ability to dis-
criminate between two stimuli increases as a sigmoidal function
of the difference between those stimuli, where this is tradition-
ally measured using binary observer responses. However, when
an observer makes a response, there is a trade-off between speed,
or reaction time (RT), and accuracy of responses. This speed-
accuracy trade-off has been the subject of numerous papers,
notably (Ratcliff, 1978; Harvey, 1986; Swanson and Birch, 1992;
Wichmann and Hill, 2001; Palmer et al., 2005), and more recently
in Bonnet et al. (2008).

Here, we propose four extensions to the proportional-rate
diffusion model (PRD) proposed in Palmer et al. (2005). First,
we introduce a new parameter, the point-of-subjective-equality
(PSE), which takes account of systematic shifts or bias in observer
perception. This parameter is incorporated into the chronomet-
ric and psychometric functions. Second, we use a maximum
likelihood estimate (MLE) of the RT mean based on a phys-
ically motivated diffusion model of RTs which involves fitting
individual RTs to an inverse Gaussian distribution. Third, we
take account of lapses in observer concentration by introducing
a lapse rate parameter, which is estimated simultaneously with

other psychophysical parameters. Fourth, we use a two-alternative
forced choice (2AFC) design where the psychometric function
is defined, not by the proportion of correct responses (range
50–100%), but by the proportion of times a variable compari-
son stimulus is chosen in preference to a fixed reference stimulus
(range 0–100%). Note that the 2AFC experimental procedure is
the same whether one chooses to measure the proportion of cor-
rect responses or the proportion of times a variable comparison
stimulus is chosen.

Once the model has been fitted to these data, it can be used
to estimate the mutual information (Shannon and Weaver, 1949;
MacKay, 2003; Stone, 2014) between binary responses and stim-
ulus strength, and between RT and stimulus strength. Finally, the
mutual information provides a value for the Shannon increment,
which is the expected value of the smallest change in stimulus
strength detectable by an observer.

2. THE PROPORTIONAL-RATE DIFFUSION MODEL
We provide a brief summary of Palmer et al’s PRD model (Palmer
et al., 2005) here, and describe extensions below. In the experi-
ment described in Palmer et al. (2005), an observer is presented
with an array of moving dots. Stimulus strength x is defined by
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coherence (i.e., the percentage of dots moving in the same direc-
tion), and the observer is required to indicate which one of two
directions the dots are moving. Note that coherence, and there-
fore stimulus strength x, varies between zero and some upper
bound.

The PRD model is based on a diffusion model of RT, where the
mean RT τ̄PRD varies as a sigmoidal function of x

τ̄PRD = A

Kx
tanh(KAx) + τ̄res, (1)

where K is a measure of observer sensitivity, and A represents a
decision boundary associated with RT. The first term on the right
hand side represents the time to make a decision, and τ̄res is a fixed
residual RT (e.g., time to respond after a decision is made). Notice
that this model requires that the mean RT τ̄PRD decreases mono-
tonically as the motion signal increases above zero, a requirement
which will be relaxed in the model proposed below.

Within the PRD model, the probability PPRD of making a cor-
rect response is defined by the logistic psychometric function

PPRD = 1

1 + e−2AK|x| , (2)

where |x| indicates the absolute value of x. In Equation (2), the
product AK acts as a single parameter which modulates the steep-
ness of the sigmoidal function, and therefore acts as a measure of
sensitivity to changes in stimulus strength. Note that the stim-
ulus strength cannot fall below zero in Palmer et al’s moving
dot experiment, and that, when the stimulus motion strength is
x = 0%, the observer has to guess, so that PPRD = 0.5, whereas if
x = 100% then PPRD = 1.0.

3. THE EXTENDED PROPORTIONAL-RATE DIFFUSION (EPRD)
MODEL

The model proposed here is based on the assumption that
responses arise from a two-alternative forced choice (2AFC) pro-
cedure. On each trial, the observer is presented with two stimuli,
and the task is to choose the stronger stimulus, where strength can
be defined in terms of differences in any physical quantity, such
as speed, luminance, or contrast. The two stimuli are a reference
stimulus with a stimulus value sR that remains constant within a
specific subset of trials, and a comparison stimulus with a value sC

that varies between trials. A comparison response is obtained if the
observer chooses the comparison stimulus. The stimulus strength
x within one trial is defined as the difference between the reference
value sR and the comparison value sC , specifically x = sC − sR.

We measure performance in terms of the proportion P of
times that a variable comparison stimulus is chosen in preference
to the fixed reference stimulus, which we define as a compar-
ison stimulus response, so P varies between zero and one. A
direct translation from PPRD to P would guarantee that a stimu-
lus strength of zero corresponds to P = 0.5. However, if observer
perception is biased, such that a stimulus difference of x = 0 is
not perceived as zero, then a stimulus strength of zero would not
coincide with P = 0.5. This perceptual bias can be accommodated
with a second modification, a new parameter sPSE, which is the
point-of-subjective-equality (PSE) between the comparison and

reference stimuli. Specifically, sPSE is the value sC of the compari-
son stimulus which is perceived to be the same as the value sR of
reference stimulus.

Given that the stimulus strength is x = sC − sR, the perceived
stimulus strength x′ is

x′ = sC − sPSE (3)

= x − �x, (4)

where �x is the error in the perceived value of sC . The probability
of choosing the comparison stimulus is defined as

P = 1

1 + e−2AKx′ . (5)

Note that the product AK effectively acts as a single parameter,
and will be treated as such for binary response data (but not for
RT data, see below).

In order to take account of observer lapses in concentration,
which result in a pure guess, we introduce a lapse rate parame-
ter γ. Evidence presented in Wichmann and Hill (2001) suggests
that failure to take account of the lapse rate can lead to substantial
errors in estimated psychophysical parameter values. If the lapse
rate were zero then we would expect that P = 0 for highly negative
stimulus strengths, and that P = 1 for highly positive stimulus
strengths, so that observed deviations from P = 0 and P = 1 at
extreme stimulus strengths can be used to provide an estimate of
the lapse rate. Thus, the lapse rate parameter limits the lower and
upper bounds of the psychometric function to Pmin = γ/2 and
Pmax = 1 − γ/2, respectively, such that1

P =
[

1

1 + e−2AKx′ − 0.5

]
(1 − γ) + 0.5. (6)

Thus, the three parameters to be estimated for Equation (6) define
the vector variable

θP = (sPSE, AK, γ). (7)

Similarly, we model the observer’s mean RT for a perceived
stimulus strength x′ as

τ̄ = A

kx′ tanh(KAx′) + τ̄res. (8)

Here, the effects of A and K are separable, and so the four param-
eters to be estimated for Equation (8) define the vector variable

θτ = (sPSE, A, K, τ̄res). (9)

The lapse rate parameter is not included here because lapses have
no predictable effect on RT.

Finally, we can adapt results from Luce (1986) and Palmer et al.
(2005) to relate RT to response probability. The mean decision

1Notice that, if the lapse rate is γ = 0.01 then the upper and lower bounds
are 0.995 and 0.005, respectively, because half of the observer’s guesses will be
correct, on average.
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time is defined as τ̄dec = τ̄i − τ̄res, so that Equations (5, 8) can be
combined to provide a mapping between mean decision time τ̄dec

and the probability P of choosing the comparison stimulus

τ̄dec = (A/K)
(2P − 1)

x′ . (10)

Thus, if the perceived stimulus strength x′ has a large positive or
negative value then P = 0 or P = 1 (respectively), and so τ̄dec =
A/(K|x′|) in both cases. This predicts that, for a given perceived
stimulus strength, the probability of choosing the comparison
stimulus is proportional to the mean decision time.

4. USING OBSERVER RESPONSES
For each trial, we obtain a RT and a binary response from the
observer, which indicates whether the observer has chosen the
comparison stimulus or the reference stimulus. At each stimulus
strength xi, the comparison and reference stimuli are presented to
the observer on Ni trials, and the number of times the observer
chooses the comparison and reference stimulus is recorded as ni

and Ni − ni, respectively. For a given putative value of Pi, a stan-
dard binomial model gives the probability of the observed binary
responses as

p(ni|Ni, Pi) = Cni
Ni

× Pni
i × (1 − Pi)

Ni−ni , (11)

where Pi is a function of the parameters Ak, γ and PSE as defined
in Equation (6). The maximum likelihood estimate of Pi is the
proportion of comparison stimulus responses P′

i = ni/Ni.
When considered over all Nx values of x, the probability of

observing the set of all binary responses is defined by the log
likelihood function

LP = log
Nx∏

i = 1

Cni
Ni

Pni
i (1 − Pi)

Ni−ni (12)

=
Nx∑

i = 1

ni log Pi +
Nx∑

i = 1

(Ni − ni) log(1 − Pi) +
Nx∑

i = 1

log Cni
Ni

,(13)

where the final term does not depend on parameter values,
and can be discarded unless the exact value of the likelihood is
required. Recall that each Pi is determined by Equation (6), which
is a function of the EPRD parameter values θP = (A, K, γ, PSE).
The maximum likelihood estimate (MLE) of θP is obtained by
finding EPRD parameter values θP that maximize LP.

If the number of trials at each stimulus strength is large then
Equation (13) can be approximated by a Gaussian function. At
a given stimulus strength xi, the observed proportion of binary
responses is P′

i , which is assumed to be the probability Pi plus a
noise term ηP, so that P ′

i = Pi + ηP. If the noise ηP has a Gaussian
distribution with variance vP,i then

p(P′
i|A, k, x′

i) = 1√
2πvP,i

exp
− (P′

i − Pi
)2

2vP,i
, (14)

where Pi is defined as a function of A, k, x′ in Equation (6),
and the variances vP,i can be estimated from the data as

vP,i = NiP′
i(1 − P′

i). Results for the Gaussian approximation in
Equation (14) were found to be very similar to those for Equation
(13). Results reported here are based on Equation (13).

5. USING REACTION TIMES
RTs tend to be short if the comparison stimulus value is very dif-
ferent from the reference stimulus, but as the comparison and
reference stimuli become more similar, so the RT increases, as
shown in Figure 4B. Here, we use RTs in a two stage process. First,
a mean RT value is estimated at each stimulus strength. These
mean RT values are then used as data for the RTτ̄ model, which is
used to estimate EPRD model parameters.

5.1. INVERSE GAUSSIAN MODEL OF INDIVIDUAL RTs
It is commonly assumed that the RT is the time required for the
cumulative amount of perceptual evidence to reach some crite-
rion value (Ratcliff, 1978; Smith, 1990). Specifically, this evidence
accumulation is assumed to consist of a Brownian diffusion pro-
cess with positive drift, which can be likened to a the total distance
traveled in a one-dimensional biased random walk. If a Brownian
process is allowed to run for a fixed time then it is well known
that the final distribution of values (e.g., evidence) has a Gaussian
distribution. However, it is less well known that if a Brownian
diffusion process is allowed to run until it reaches a fixed crite-
rion value then the time taken to reach that value has an inverse
Gaussian or Wald distribution (see Figure 3). Therefore, if the
amount of evidence required to make a response is stable for
a given observer then RTs are appropriately modeled using an
inverse Gaussian distribution2.

If RTs have an inverse Gaussian distribution with mean τ̄′
i then

the probability of a single observed RT τij associated with the jth
presentation of the stimulus value xi is

p(τij|τ̄′
i,λi) =

(
λi

2 π τ3
ij

)1/2

× exp

[
−λi(τij − τ̄′

i)
2

2 τ̄
′2
i τij

]
, (15)

where the variance of this distribution is

vτi = τ̄
′3
i /λi. (16)

Each of the Nx stimulus strengths is presented Ni times. For one
model RT mean, the probability of the observed Ni RTs (one RT
per trial) defines the log likelihood function

Lτ,i = log
Ni∏

j = 1

p(τij|τ̄′
i,λi). (17)

Maximizing Equation (17) with respect to the parameters τ̄′
i and

λi yields a maximum likelihood estimate (MLE) of both parame-
ters at one stimulus strength xi. Even though the algebraic mean
and the MLE mean are identical (Tweedie, 1957) for the inverse

2For reference, the Wald distribution is the distribution of first passage times
of a biased Brownian process, and is qualitatively similar to the log-normal
distribution, which is often used to model RT.
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Gaussian, the fitting process provides the parameter estimate λi,
which is vital for subsequent calculations.

5.2. MODEL RTτ̄: USING MEAN REACTION TIMES
For a given stimulus strength xi, the predicted mean RT τ̄i varies
as a tanh function of xi, as defined in Equation (8). The central
limit theorem allows us to assume that the distribution of mean
RTs of the inverse Gaussian pdf at a given stimulus strength xi is
Gaussian with mean τ̄′

i and variance vτ̄,i. Therefore, the likelihood
of the EPRD mean τ̄i from Equation (8) is

p(τ̄′
i|τ̄i(θτ)) = 1√

2πvτ̄,i
e−(τ̄′

i−τ̄i)
2/(2vτ̄,i). (18)

The variance of an inverse Gaussian distribution of RT values with
mean τ̄′

i is vτi (Equation 16), so the variance vτ̄i of a distribution
of means (where each mean is based on Ni samples) is

vτ̄i = τ̄′ 3
i

λi Ni
. (19)

Thus, we can assess the fit of the inverse Gaussian mean RTs τ̄′
i to

the EPRD mean RTs τ̄i of Equation (8) as follows. The probabil-
ity of the Nx mean RTs τ̄′

i (one mean RT per stimulus strength)
defines the log likelihood function

Lτ̄ = log
Nx∏

i = 1

p(τ̄′
i|τ̄i) (20)

= −1/2
Nx∑

i = 1

(τ̄′
i − τ̄i)

2

vτ̄,i
− 1/2

Nx∑
i=1

log 2πvτ̄,i, (21)

where τ̄i is defined in Equation (8), so that the parameters to
be estimated for model RTτ̄ are θτ = (A, k, γ, PSE, τ̄res) to fit the
overall variation in mean RT with stimulus strength x.

In summary, we have three estimates of the mean RT at each
stimulus strength: the algebraic mean τ̄′

obsi, the MLE mean of the
inverse Gaussian or Wald pdf τ̄′

i (from Equation 17), which collec-
tively are used as data to estimate the means τ̄i (one per stimulus
strength) obtained from the fitted EPRD model (from Equation
21). The MLE means τ̄′

i are shown as crosses in Figure 4B,
and the means τ̄i are corresponding points on the fitted curve,
respectively.

We also have two estimates of the probability of a comparison
stimulus response at each stimulus strength: the observed propor-
tion of comparison stimulus responses (which is the MLE P′

i =
ni/Ni), and the mean Pi (one per stimulus strength) obtained
from fitting the EPRD model (Equation 13) to the MLE means
P′

i . These are shown as dots in Figure 4A, and as corresponding
points on the fitted curve, respectively.

6. USING BINARY RESPONSES AND RTs
In the absence of knowledge regarding the covariance between the
noise in mean RT and binary response probability, we are forced
to assume this covariance is zero. In other words, we assume that
LP and Lτ̄ provide independent estimates of the EPRD model

parameters. In this case, estimates based on combined RT and
binary response probability are obtained by maximizing the sum
of likelihoods

LC = LP + Lτ̄. (22)

However, the implausibility of this independence assumption
means that we will not take seriously any results based on
Equation (22).

7. INFORMATION THEORY
The amount of Shannon information (Shannon and Weaver,
1949; MacKay, 2003; Stone, 2014) that the observer gains about
the stimulus is reflected in both the binary responses and RTs.
Specifically, the average Shannon information that each mean
RT provides about the stimulus strength x is the mutual infor-
mation I(x, τ̄) between x and the mean RT. Similarly, the
average Shannon information that binary responses provide
about the stimulus strength x is the mutual information I(x, P)

between x and the probability of a comparison stimulus binary
response.

More importantly, the total amount of Shannon information
that the observer has about the stimulus cannot be less than
the amount of Shannon information implicit in the observer’s
combined binary and RT responses. In other words, the total
mutual information, as measured by an experimenter, between
observer responses and stimulus strength provides a lower bound
for the amount of Shannon information that the observer has
about the stimulus strength. Thus, each the mutual information
value provided in this paper constitutes a conservative estimate
of the amount of information that the observer gains about the
stimulus.

7.1. EVALUATING I(x, P)

The mutual information I(x, P) between stimulus strength s
and the probability P that the observer chooses the comparison
stimulus (i.e., r = 1) is

I(x, P) =
∫

x

∫
P

p(x, P) log
p(x, P)

p(x)p(P)
dP dx (23)

= H(x) + H(P) − H(x, P) bits, (24)

where H(x) and H(P) are the differential entropies of p(x) and
p(P), respectively, and H(x, P) is the differential entropy of the
joint distribution p(x, P). All logarithms in this paper use base
2, so information is measured in bits. Substituting p(x, P) =
p(P|x)p(x), yields

I(x, P) =
∫

x
p(x)

∫
P

p(P|x) log
p(P|x)
p(P)

dP dx (25)

= H(P) − H(P|x) bits, (26)

where H(P|x) is the differential entropy of the noise in the mea-
surements P. Given Bayes’ rule, p(P|x) = p(x|P)p(P)/p(x), we
can recognize the mutual information as the differential entropy
H(P) of the prior distribution minus the differential entropy
H(P|x) of the posterior distribution.
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We can evaluate Equation (25) by summing over discrete ver-
sions of the variables x and P. Recall that the observed proportion
of responses r = 1 at a given stimulus strength xi is P′

i = ni/Ni, so
that

I(x, P) =
Nx∑

k = 1

p(xk)

[
Nx∑

i = 1

p(P′
i|xk) log

p(P′
i|xk)

p(P′
i)

]
bits. (27)

We assume that the probability of stimulus values is locally uni-
form, so that p(xk) = 1/Nk. In order to evaluate Equation (27),
we require expressions for p(P′

i|xk) and p(P′
i).

7.1.1. Evaluating the posterior p(P ′
i |xk )

Using Equation (5) across a range of x values, the fitted value of
P at xk is Pk. Assuming a binomial distribution, the probability of
the observed proportion P′

i given a fitted value Pk at xk is

p(P′
i|xk) = Cni

Ni
Pni

k (1 − Pk)
Ni−ni , (28)

where p(P′
i|xk) = p(P′

i|Pk), and p(P′
i|xk) values are normalized to

ensure that
∑

i p(P′
i|xk) = 1.

7.1.2. Evaluating the prior p(P ′
i )

The distribution of binary responses is binomial with a mean
equal to the grand mean PG of all NG binary responses of an
observer

PG = 1

NG

NG∑
i = 1

ri, (29)

where ri = 1 if and only if a response corresponds to the observer
choosing the comparison stimulus. The observer’s prior prob-
ability of the binary responses for the ith stimulus strength is
therefore

p(P′
i) = Cni

Ni
Pni

G (1 − PG)Ni−ni , (30)

where p(P′
i) values are normalized to ensure that

∑
i p(P′

i) = 1.

7.2. EVALUATING I(x, τ̄)

Following the same line of reasoning as above, the mutual infor-
mation I(x, τ̄) between stimulus strength and mean RT is

I(x, τ̄) =
∫

x
p(x)

∫
τ̄

p(τ̄|x) log
p(τ̄|x)
p(τ̄)

dτ̄ dx (31)

= H(τ̄) − H(τ̄|x) bits, (32)

where H(τ̄|x) is the differential entropy of the noise in the
measurements τ̄.

We can evaluate Equation (31) by summing over discrete
versions of the variables x and τ̄

I(x, τ̄) =
Nx∑

k = 1

p(xk)

⎡
⎣ Ni∑

i = 1

p(τ̄′
i|xk) log

p(τ̄′
i|xk)

p(τ̄′
i)

⎤
⎦ bits, (33)

where p(τ̄′
i|xk) is defined by the EPRD model (Equation 8) with a

fitted value τ̄k, so that

p(τ̄′
i|xk) = p(τ̄′

i|τ̄k(θτ)), (34)

as in Equation (18). As before, we assume that the probability of
stimulus values is uniform, so that p(xk) = 1/Ni.

7.2.1. Evaluating the posterior p(τ̄′
i |xk )

The posterior is defined in Equation (18), but is repeated here
with changed subscripts for clarity

p(τ̄′
i|xk) = 1√

2πvτ̄k
exp

[
−(τ̄′

i − τ̄k)
2

2vτ̄k

]
, (35)

where vτ̄k is defined in Equation (19), and p(τ̄′
i|xk) values are

normalized to ensure that
∑

i p(τ̄′
i|xk) = 1.

7.2.2. Evaluating the prior p(τ̄′
i)

A parametric form for the observer’s prior probability distribu-
tion p(τ) of individual RTs was estimated from the entire set of
that observer’s grand total of NG RTs. These were fitted to an
inverse Gaussian distribution to obtain a grand mean τ̄G and a
parameter λG. This pdf has a variance

vG = τ̄3
G/λG. (36)

At each stimulus strength xi, the RT mean is based on a sam-
ple of Ni RTs, and the central limit theorem suggests that the
distribution of means is approximately Gaussian with a variance

vg = vG/Ni. (37)

Therefore, the prior probability density of each inverse Gaussian
mean τ̄′

i is

p(τ̄′
i) = 1√

2πvg
exp

[
−(τ̄′

i − τ̄G)2

2vg

]
, (38)

where p(τ̄′
i) values are normalized to ensure that

∑
i p(τ̄′

i) = 1.

7.3. THE SHANNON INFORMATION OF A SINGLE RESPONSE
So far we have derived expressions for the Shannon informa-
tion implicit in the average RT τ̄i and also in the average binary
response, which is summarized as the proportion Pi of compar-
ison responses, for a stimulus strength xi. Here, we derive an
expression for the Shannon information associated with a single
trial; first for RTs, and then for binary responses.

As the number of trials at each stimulus strength is increased,
so the variance in each mean RT decreases, and the central limit
theorem ensures that the distribution of means becomes increas-
ingly Gaussian. The mutual information between two variables
(e.g., mean RT and stimulus strength) depends on the signal to
noise ratio SNR

I ≤ 1/2 log2(1 + SNR), (39)

where SNR is the signal variance expressed as a fraction of the
noise variance in the measurement (Shannon and Weaver, 1949).
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If the distribution of mean RTs is Gaussian then the distribu-
tion of differences �τ̄ between mean RT τ̄ and the grand mean
RT (at one stimulus strength) must also be Gaussian. Because
the mutual information is defined in Equation (32) to be the
differential entropy of τ̄ minus the differential entropy of the
noise �τ̄ in τ̄, we can assume equality in Equation (39) (Rieke
et al., 1997). In fact, we do not need to rely on the central limit
theorem here, because even if the perturbing noise �τ̄ is not
Gaussian, Shannon’s Theorem 18 (Shannon and Weaver, 1949)
implies equality in Equation (39), so that

I = 1/2 log2(1 + SNR) bits. (40)

We already have a value for the mutual information I(x, τ̄) from
Equation (27), so we can re-arrange Equation (40) to find the
SNR associated with τ̄

SNRτ̄ = 22I(x,τ̄) − 1 bits. (41)

However, the mutual information I(x, τ̄) obtained from Equation
(27) tells us how much average Shannon information each mean
RT provides about stimulus strength, whereas we want to know
how much average information each individual RT provides
about stimulus strength. Because the value of SNR in Equation
(41) is based on mean RTs, each of which involves Ni trials, the
variance of the measurement noise has been reduced by a factor
of Ni relative to the noise in the RT of a single trial (provided this
noise is iid). This implies that the value of SNR for a single trial is

SNRτ = SNRτ̄/Ni (42)

= (22I(x,τ̄) − 1)/Ni bits. (43)

If we substitute SNRτ into Equation (40) then we obtain an esti-
mate of the average Shannon information I(x, τ) implicit in the
observer’s RT in a single trial

I(x, τ) = 1

2
log2

[
1 + (22I(x,τ̄) − 1)

Ni

]
bits. (44)

A similar line of reasoning implies that the average Shannon
information I(x, r) implicit in the observer’s binary response r in
a single trial is

I(x, r) = 1

2
log2

[
1 + (22I(x,P) − 1)

Ni

]
bits. (45)

In order to compare mutual information estimates for the differ-
ent variables τ and r, the calculations for I(x, τ) and I(x, r) should
be based on the same range of stimulus strengths x.

7.4. DEFINING THE SHANNON INCREMENT
The mutual information between stimulus strength and (binary
or RT) responses can be used to define the smallest average
detectable difference in stimulus strength, which we call the
Shannon increment (SI). We first define the effective stimulus
range xrange as the range of stimulus strengths x associated with

response probabilities between P = ε and P = 1 − ε, for some
small value ε. Then the SI is related to the mutual information
I by

SI = xrange

2I
, (46)

where the value 2 is based on the assumption that information
is measured in bits (i.e., using log to the base 2), and SI has the
same units as stimulus strength. Because SI decreases monoton-
ically with mutual information, it should become asymptotically
closer to the true value of SI as the number of trials or stimulus
strengths is increased.

A brief explanation for this definition is as follows. Consider
a range of stimulus strengths xrange which give rise to “noisy”
observer responses y = f (x), where these responses are samples
from a probability density function p(y(x)), and where the mutual
information between x and y is I bits. One way to interpret SI
involves assuming that p(y(x)) is uniform. In this case, on aver-
age, knowing the value of y reduces the possible range of x values
to an interval �x = xrange/2I , which we can recognize as being
equal to the SI.

8. FAT-FACE THIN: A DEMONSTRATION EXPERIMENT
We used the EPRD models described above to estimate the PSE
and other key parameters for a simple demonstration experiment
using a human observer. On each trial, the observer was presented
with a colored picture of an upright face and an inverted face
(see Figure 2) on a computer screen, and was required to indicate
which one appeared to be wider by pressing a left/right computer
key. For half of the trials, the reference stimulus was an upright
face, and the comparison stimulus was an inverted version of the
same face, and these were swapped for the other half of the tri-
als. The width of the comparison image was determined by 1 of
21 stretch factors s = 0.90, 0.91, . . . , 1.10, but the height of both
stimuli was kept constant. The stimulus strength was defined to
be x = s − 1, so that x varied between −0.1 and 0.1. For a given
value of si, the observer was presented with the same stimulus pair
for a total of Ni = 20 trials. Stimuli were shown in random order,
and the left/right position of reference/comparison stimuli was
counterbalanced across trials.

8.1. RESULTS
Each of three models defined by LP, Lτ̄, and LC was used to
fit a psychometric and/or a chronometric function to the data
from one subject, as shown in Figure 4. Maximum likelihood
parameter estimation was implemented in MatLab using the
Nelder–Mead simplex method. The parameter estimates for each
model are summarized in Table 1.

8.2. USING BINARY RESPONSES: MODEL LP

Based on 420 binary responses, maximizing LP (Equation 12)
yields a psychometric function similar to that in Figure 4A,
and a PSE of sPSE = 1.031. This maximum likelihood esti-
mate implies that an inverted face must be 3.1% wider than
an upright face in order for the two faces to be perceived as
the same width. Numerical estimation of the Hessian matrix
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FIGURE 1 | How the entropy H(x) in stimulus strength x is accounted

for by the entropy H(τ) in RT (τ) and entropy H(P) in the probability P
of a particular binary response r. The entropies of x, P, and τ are
represented by the discs X , Y , and Z , respectively. The mutual information
between x and P is I(x, P) = (a + b), and the mutual information between
x and τ is I(x, τ) = (a + c).

FIGURE 2 | Schematic illustration of typical stimulus shown to

observer on a single trial. The observer has to choose the face that looks
wider. The stimulus in the experiment used was a picture of the actor
James Corden’s face, with all background details removed (see
http://illusionoftheyear.com/2010/the-fat-face-thin-fft-illusion).

of second derivatives of Equation (12) at sPSE yields a stan-
dard error (se) of 0.003, which implies that sPSE is significantly
different from s = 1 (p < 0.001). The values of three param-
eters were estimated for this model, the PSE, Ak, and γ, and
the product Ak is quoted in Table 1 for comparison with other
works.

8.3. USING MEAN REACTION TIMES: MODEL Lτ̄

Each of 21 mean RTs (one per stimulus strength) was first esti-
mated by maximizing Equation (17), based on 20 RTs per stim-
ulus strength. Using these 21 mean RTs, Lτ̄ (Equation 21), was
maximized with respect to four parameters (PSE, A, k, and τ̄res)
to yield a chronometric function similar to that in Figure 4B. The
estimated PSE is sPSE = 1.034 (se = 0.004, p < 0.001).

8.4. USING MEAN RTs AND OBSERVER RESPONSES: MODEL LC

Based on 42 data points (the 21 estimated mean RTs used for Lτ̄

plus 21 corresponding binary response probabilities used for LP),

FIGURE 3 | Reaction times fitted with an inverse Gaussian

(Equation 15). Each dot represents 1 of 20 RTs for a stimulus value (width
scaling) of s = 1.05.

maximizing LC (Equation 22) yields the psychometric function
and the chronometric function in Figures 4A,B, respectively, and
a PSE of 1.032 (se = 0.003, p < 0.001). There are five parameters
to be estimated for this model, the PSE, A, k, τ̄res, and γ.

8.5. SHANNON INFORMATION
The mutual information I(x, τ̄) between x and τ̄ is the entropy
in p(τ̄) and p(x) shared by the joint distribution p(x, τ̄).
Using Equation (33), this evaluates to I(x, τ̄) = 2.79 bits. Using
Equation (44) with Ni = 20, this implies that the mutual infor-
mation I(x, τ) for a single RT is I(x, τ) = 0.87 bits, and is repre-
sented by the intersection of regions X and Z.

Similarly, Equation (27) can be used to estimate the mutual
information between x and P, which comes to I(x, P) = 4.82 bits.
Using Equation (45) with Ni = 20, this implies that the mutual
information I(x, r) for a single binary response r is I(x, r) =
2.68 bits, and is represented by the intersection of regions
X and Y .

We can use I(x, τ) and I(x, r) to provide lower and upper
bounds on the total amount of mutual information Itot between x
and the combined variables (r, τ), which can be considered to be a
vector variable. If τ and r provide independent information about
x (i.e., if a = 0 in Figure 1) then the maximum value of Itot is

max(Itot) = I(x, τ) + I(x, r) (47)

= 0.87 + 2.68 (48)

= 3.55 bits. (49)

However, if all of the information I(x, τ) provided by τ about x
is the same as part of the information provided by r about x (i.e.,
if c = 0 in Figure 1) then Itot cannot be less than I(x, r). To take
account of the possibility that all of the information I(x, r) pro-
vided by r about x is the same as part of the information provided
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FIGURE 4 | The psychometric function (A) and chronometric function

(B), from the face inversion experiment for one observer. The width
scaling factor s applied to the comparison image is indicated on the
abscissa. The vertical dashed line marks the point-of-subjective-equality
(PSE) at s = 1.032. (A) Each dot represents the observed proportion of
trials for which the observer chose the comparison stimulus, and the
fitted psychometric function is defined in Equation 6. (B) Each dot
represents the RT of a single trial for the same responses as in

Figure 4A (RTs greater than 2 s are not shown). The fitted chronometric
function is defined in Equation 8. The dashed curve joins the fitted
(inverse Gaussian) mean RTs, each of which was obtained by maximizing
Equation 17. The solid curves in (A, B) (Equations 6, 8, respectively)
were fitted using combined binary and mean RT data by maximizing
Equation 22. A graph similar to (A) was obtained for model LP (i.e.,
using only binary responses), and a graph similar to (B) was obtained for
model Lτ̄ (i.e., using only mean RTs).

Table 1 | Results for three models.

Model PSE A k A × K τ̄res (s) γ LLik MI (bits)

Binary LP 1.031 ± 0.003 NA NA 22.32 NA 0.005 −31.13 2.68

RT Lτ̄ 1.034 ± 0.004 0.998 28.37 28.32 0.437 NA 18.7 0.87

Comb LC 1.032 ± 0.003 1.016 23.12 23.50 0.354 0.011 −13.10 3.18

Binary model: based only on binary response probability (Equation 12).

RT model: based only on mean RT (Equation 17).

Comb (combined model): based on binary response probability and mean RT (Equation 22).

PSE, point of subjective equality (± indicates standard error); A and k are EPRD parameters, τ̄res is the fixed part of RT; γ, lapse rate; LLik, log likelihood; and

MI, mutual information between stimulus strength and RT or binary responses or both (see text). The final number (3.18 bits) represents I(x, r) = 2.68 plus

I(x, τ) = 0.497, computed using parameter values obtained from Equation 22.

by τ about x, we can write

min(Itot) = max(I(x, τ), I(x, r)) (50)

= max(0.87, 2.68) (51)

= 2.68 bits. (52)

Thus, on average, each trial provides the observer with between
2.68 and 3.55 bits.

8.6. SHANNON INCREMENT
Using a conservative estimate of mutual information of I =2.68
bits suggests that the observer can discriminate differences
between the reference and comparison stimulus with an aver-
age resolution of about one part in 6.39 (= 22.68) of the effective
range xrange of stimulus strengths. Note that the range of scaling
values used srange = 0.2 (i.e., 0.9 . . . 1.1) equals the range of stim-
ulus strengths xrange = 0.2 (i.e., −0.1 . . . 0.1). Therefore, the SI
for the width scaling factor is

SI = xrange/2I (53)

= 0.2/6.39 (54)

= 0.031, (55)

where we have assumed ε = 0 here. Thus, on average, the smallest
change in scaling factor (between reference and comparison
stimulus) detectable by the observer is SI = 0.031.

9. DISCUSSION
We have shown how the PRD model from Palmer et al. (2005)
can be extended to make use of individual RTs, which can be
combined with binary observer responses to estimate key psy-
chophysical parameters in a 2AFC design.

A key feature of diffusion-based models is that they treat
each RT as the end-point of an accumulation of evidence. If
we take this type of evidence-accumulation process seriously
then it makes sense to model the distribution of RT values
as an inverse Gaussian distribution (for reasons described in
section 5).
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A striking result is the difference between the log likelihoods
associated with the binary response model and the RT model,
despite the fact that the binary response model has fewer free
parameters than the RT model, and that both models provide
similar PSE estimates which (based on their sems, not shown) are
not significantly different. These log likelihood values suggest that
the EPRD model provides a better fit to the RT data than it does
to the binary response data. This difference in likelihoods suggests
that the parameter estimates obtained using the combined RT and
response data is dominated by the binary data likelihood term.

Self-evidently, both the RT and binary responses of an observer
depend on the stimulus strength x. However, in general, it is
not known if RT or binary response data provide more Shannon
information about the value of x. More importantly, and more
subtley, it is not known if they provide the same information
about x, or if they merely provide the same amount of information
about x (see Figure 1).

We can gain some insight into the nature of this problem by
considering the proportion of the differential entropy in stimu-
lus values accounted for by the corresponding differential entropy
in observer responses. At one extreme, if an observer is told
to respond as quickly as possible then the RTs should pro-
vide relatively large amounts of mutual information regarding
stimulus strength, whereas the binary responses carry relatively
little mutual information (because speeded responses tend to
be inaccurate Hanks et al., 2011). In this case, the RT entropy
at a given stimulus strength will be relatively small, because
RTs will be tightly coupled to the stimulus strength, whereas
the binary response entropy at a given stimulus strength will
be relatively large (because these responses are inaccurate, and
therefore not tightly coupled to the stimulus strength). However,
when considered across different stimulus strengths, the tight
coupling between RT and stimulus strength will give rise to a
relatively large RT entropy, and most of this entropy will be
shared with stimulus strength entropy (which defines a large
mutual information between RT and stimulus strength). In con-
trast, these fast, inaccurate responses across stimulus strengths
will be associated with a relatively small range of response prob-
ability values (e.g., P ≈ 0.5), which will therefore have a rel-
atively small entropy, most of which is not shared with the
stimulus strength entropy (which defines a small mutual infor-
mation between binary responses and stimulus strength). In
summary, fast responses should yield high entropy RT values,
which share a large proportion of their entropy with the stim-
ulus strength, combined with low entropy P values which share
a small proportion of their entropy with the stimulus strength.
At the other extreme, if an observer is told to be as accu-
rate as possible then this should yield high entropy P values
which share a large proportion of their entropy with the stimu-
lus strength, combined with low entropy RT values which share
a small proportion of their entropy with the stimulus strength.
In summary, the entropy in stimulus strength can be shared
with entropy in both accuracy (P) and speed (RT). However, as
there is probably only a finite amount of such shared entropy
(mutual information) available, we predict that it can be real-
ized experimentally as maximum speed or maximum accuracy,
but not both.

The scenario considered above can be represented geomet-
rically, as in Figure 1. If we compare the mutual information
between τ and x with the mutual information between r and
x then it is possible that they have the same magnitude [e.g.,
(a + c) = (a + b), as in Figure 1]. However, the fact that both
τ and x have the same amount of mutual information (i.e., they
account for the same amount of entropy in x) does not imply that
they account for the same entropy in x. Formally, the fact that
(a + c) = (a + b) does not imply that (a + c) ≡ (a + b). This
matters because, even if I(x, τ) = I(x, r), we could not conclude
that I(x, τ) ≡ I(x, r), and so we could not conclude that τ and r
provide mutually redundant information. Thus, we cannot dis-
miss τ simply because r accounts for more entropy in x than τ

does (or vice versa). Indeed, this is precisely the situation that we
have in the results reported here, and provides reasonable grounds
for making use of both RT and binary response data in general.

Unfortunately, we have been unable to derive an expression
for the total mutual information between the joint variables (RT
and binary responses) and stimulus strength I(τ̄, P; x′) (i.e., the
area [a + b + c] in Figure 1), although it may be possible to do so
using Equation (10) [where the entropy of the difference between
P and τ̄ is H(τ̄, P|x′)]. The precise effect of the instructions given
to observers on mutual information, and the proposed invari-
ance of the total mutual information with respect to instructions,
clearly require further research (Soukoreff and MacKenzie, 2009).

The Shannon increment (SI) is similar in spirit to the more
conventional just noticeable difference (JND). However, the JND
has an arbitrary value, and (despite its name) there is no reason to
suppose that a JND is indeed just noticeable. The SI is monoton-
ically related to the average amount of Shannon information an
observer gains regarding a single presentation of a stimulus, and
is a measure of the perceptual resolution with which a parameter
is represented by the observer.

10. CONCLUSION
We have presented an extended proportional-rate diffusion
model, which takes account of both individual RTs and binary
responses for maximum likelihood estimation of key psychophys-
ical parameters (e.g., PSE, slope) of the psychometric and chrono-
metric functions. The fact that these psychophysical parameters
have similar estimated values when computed independently for
two models based on RTs alone or on binary responses alone pro-
vides support for the underlying physical basis of this class of
diffusion models.

An information-theoretic analysis was used to estimate the
average amount of Shannon information that each RT pro-
vided about the stimulus value, and also the average amount of
Shannon information that each binary response provided about
the stimulus value. This analysis provides bounds for the average
amount of Shannon information that the observer gains about
the stimulus value from one presentation, which was found to be
between 2.68 and 3.55 bits/trial for the experiment used here.
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APPENDIX
MATHEMATICAL SYMBOLS AND ABBREVIATIONS

A an EPRD model parameter which is the amount of evidence
required to trigger a response.
comparison stimulus response: a response indicating the compar-
ison stimulus was chosen.
EPRD: extended proportional-rate diffusion model.
SI: Shannon increment, the smallest detectable change in a
stimulus.
γ EPRD lapse rate parameter.
i index over stimulus strength x, with range i = 1, . . . , Nx.
j index over trials at one stimulus strength xi, with range
j = 1, . . . , Ni.
k index over stimulus strength, with range k = 1, . . . , Nx.
K is a measure of sensitivity to changes in x in the EPRD model.
Ni number of trials at stimulus strength xi.
Nx number of different stimulus strengths.
PSE: point of subjective equality.
Pi proportion of comparison stimulus responses at stimulus
strength xi, predicted by EPRD model.
P′

i MLE mean, equal to observed proportion of comparison
responses at stimulus strength xi.

r binary observer response (e.g., observer chooses comparison
or reference stimulus).
sC variable stimulus value of the comparison stimulus.
sR fixed stimulus value of the reference stimulus.
sPSE value of the comparison stimulus which the observer per-
ceives as being the same as the reference stimulus.
τ̄′

i MLE mean of inverse Gaussian RT at stimulus
strength xi.
τ̄i mean RT at stimulus strength xi, as predicted by EPRD
model.
τ̄dec,i mean decision RT at stimulus strength xi, as predicted by
EPRD model.
τ̄res mean residual RT (assumed the same at all stim-
ulus strengths), as predicted by EPRD model, where
τ̄res = τ̄dec,i − τ̄i.
θτ = (sPSE, A, K, γ, τ̄res), five parameters for the RT component
of the EPRD model.
θP = (sPSE, AK, γ), three parameters for the binary response
component of the EPRD model.
vτ̄,i variance in mean RT.
xi stimulus strength.
x′

i perceived strength of stimulus with strength xi.
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