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Random Decentralized Market Processes for Stable

Job Matchings with Competitive Salaries∗

Bo Chen†, Satoru Fujishige‡, and Zaifu Yang§

This revision: March 22, 2016

Abstract

We analyze a decentralized process in a basic labor market where finitely
many heterogeneous firms and workers meet directly and randomly in pursuit of
higher payoffs over time and agents may behave myopically. We find a general
random decentralized market process that almost surely converges in finite time
to a competitive equilibrium of the market. A key proposition en route to this
result exhibits a finite sequence of successive bilateral trades from an arbitrary
initial market state to a stable matching between firms and workers with a
scheme of competitive salary offers.

Keywords: Decentralized market, job matching, random path, competitive
salary, stability. JEL classification: C62, D72.

1 Introduction

Adam Smith’s Invisible Hand captures the self-regulating nature of a decentral-
ized market where self-interested market participants, making independent decisions
freely, can settle the market on a competitive equilibrium outcome. Traditionally a
fictitious Walrasian auctioneer has been used to match the supply and demand of
each commodity (service) at its competitive price (wage). However, many competi-
tive markets, labor markets being a leading example, involve mainly uncoordinated
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bilateral trades and are typically decentralized. The purpose of this paper is to ana-
lyze the long-run behavior of a general random market process in a basic labor market
where transactions take the form of bilateral trades so as to mimic the decentralized
behavior of the labor market.

We consider a labor market where finite heterogeneous firms and workers meet
directly and randomly to search for higher payoffs over time. In the market, all agents
make their own decisions independently and can behave myopically, perhaps because
information is dispersed and agents may not have a complete picture of the entire
market. When a worker and a firm match as partners, they generate a joint surplus
which is then split within the matched pair. Each agent can dissolve her current
partnership unilaterally if standing alone becomes a better option. A worker and a
firm, currently not matched, can form a new partnership as long as doing so makes
none of the two worse off and at least one strictly better off — in this case the firm
fires its previous worker and the worker abandons her previous firm, if any, and the
deserted parties can be worse off. We call such transactions bilateral trades or pair
improvements. In such a market process, quits and layoffs routinely arise as a result of
agents seeking better matches and it is also possible that workers eventually return to
their previous employers but with different contracts. The random process proceeds
spontaneously and is decentralized, in that every agent acts only according to her
own interests without any centralized coordination, and unforeseen and unexpected
market outcomes can emerge from the agents’ actions under imperfect information
about the market.

The basic question we consider is whether the above random, chaotic, and dynamic
decentralized process eventually leads the market to efficient assignments of workers
to firms and in particular to a competitive equilibrium.1 We establish that this market
process converges with probability one to a competitive equilibrium of the market in
finite time, so long as each possible bilateral trade conditional on the current market
state arises with an arbitrary but positive probability in the process (Theorem 1). An
interpretation of this positive probability is that although information is imperfect
and dispersed among all market participants, it flows sufficiently freely so that the
agents are informed about and can therefore respond to newly arrived opportunities.
A crucial step for establishing Theorem 1 is to show that the random process is
not trapped in trading cycles indefinitely. To this end, we demonstrate via a novel
algorithm the existence of a finite sequence of successive bilateral trades from an
arbitrary initial market state to a competitive equilibrium (Proposition 1).

1There are many different types of market processes. See, for example, Gale and Shapley (1962)
for marriage matching problems, Shapley and Scarf (1974) for housing markets, Crawford and
Knoer (1981) and Kelso and Crawford (1982) for job matching problems, Demange et al. (1986)
for auction markets, and Abdulkadiroğlu and Sönmez (2003) for school choice problems. By a
centralized process, we mean that individuals make decisions independently but a “clearing house”
or a central planner coordinates all activities. For instance, in auctions, an auctioneer collects the
demands of all bidders and then adjusts prices. In a decentralized process, individuals make decisions
independently and locally without any coordination from a central planner or organization.
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Our study is closely related to the seminal work by Crawford and Knoer (1981),
who consider a similar labor market and propose a deterministic salary adjustment
process for the market in which firms make offers and workers then accept or reject
the offers. The salary adjustment process, a generalization of the deferred acceptance
algorithm of Gale and Shapley (1962), converges to a competitive equilibrium of
the market.2 Our market process is random and uncoordinated, beginning with
any market state and having no central planner to guide transactions. Crawford
and Knoer’s process is however deterministic and does not involve any uncertainty.
In addition, their process starts with a specific market state and requires firms to
use retention to maintain payoff monotonicity of every worker.3 Such monotonicity
cannot hold in our processes, where a bilateral trade, while improving the welfare
of the involved pair, typically makes the abandoned firm and worker worse off. The
overall market welfare is hence not necessarily monotone after a sequence of bilateral
trades, making a design relying on monotonicity arguments difficult if not impossible.

Our study is also related to the seminal work by Roth and Vande Vate (1990), who
reexamine the Gale-Shapley marriage matching model and develop a decentralized
process that finds almost surely a stable matching between men and women.4 A key
difference here is that our model admits monetary transfers and has a competitive
equilibrium supported by competitive prices, while it is known that the marriage
matching model generally does not have competitive prices to support any stable
matching. Another major difference is that the stability solution in the marriage
matching literature is strictly weaker than ours which coincides with competitive
equilibrium. Furthermore, a key step of the algorithm in Roth and Vande Vate
(1990) maintains strict payoff monotonicity of one side of the market, which fails
in our setting because we work with a more general notion of blocking involving
both a pair of agents and surplus division.5 Hence, while Roth and Vande Vate
(1990) provide a decentralized foundation for stability in the marriage matching, our
study offers a decentralized framework for competitive equilibrium in the assignment
market.

Finally, it is worth mentioning another strand of literature concerning Feldman
(1974) and Green (1974). While their processes are deterministic for certain classes of
NTU games, the current process is random and also involves significant indivisibility.

2Koopmans and Beckmann (1957) prove the existence of a competitive equilibrium in such a
market. Shapley and Shubik (1971) demonstrate that the core of this market is a lattice and
coincides with the set of competitive equilibrium price vectors.

3While we also construct an algorithm leading any initial market state to a competitive equilib-
rium, the role of our algorithm is to ensure that the random market process eventually converges. We
discuss the detailed difference between our algorithm and the salary adjustment process in Section
3.1.

4Gale and Shapley (1962) show the existence of a stable marriage matching via a deferred accep-
tance process. For models closely related to Roth and Vande Vate (1990), see Diamantoudi et al.
(2006), Kojima and Ünver (2006), and Klaus and Klijn (2007).

5We thank a referee for pointing this out.
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2 The Model

Consider a labor market with heterogeneous firms and workers. Denote the (finite)
set of firms as F and the (finite) set of workers as W such that F ∩W = ∅. Each firm
hires at most one worker and each worker accepts at most one job.6 A matching or
assignment µ is a one-to-one mapping from F∪W to itself such that for all x ∈ F∪W ,
x is either self-matched (µ (x) = x), or is matched to a member of the other side of
the market. Agent µ (x) is called x’s partner under µ.

A worker w’s productivity at firm f is denoted by V (f, w), which is also inter-
preted as the surplus generated by the pair (f, w). For all x ∈ F ∪W , value V (x, x)
is agent x’s stand-alone value, interpreted as x’s outside option and we allow for het-
erogeneous outside options. We assume that all values V (f, w), V (f, f) and V (w,w)
are measured in terms of an indivisible commodity (money), i.e., V (f, w), V (f, f),
V (w,w) ∈ Z, where Z is the set of integers. Such a discrete modeling assumption
is fairly natural and standard, as for instance one cannot specify a monetary payoff
more closely than to its nearest penny.7 We denote the labor market by (F,W, V ).

A state or outcome of the market (F,W, V ) consists of a matching µ and a payoff
vector u ∈ R

F∪W such that u (x) = V (x, x) for any x ∈ I(µ) and u (x) + u (µ(x)) =
V (x, µ(x)) for x /∈ I(µ), where R is the set of real numbers and I(µ) = {h ∈ F ∪W |
µ(h) = h} is the set of self-matched agents at µ. A market state (µ, u) is individually
rational if u (x) ≥ V (x, x) for all x ∈ F ∪ W . Define the market value associated
with µ as

∑

f∈F\I(µ) V (f, µ(f))+
∑

i∈I(µ) V (i, i). A matching µ is efficient if no other
matching generates a higher market value than µ does.

A blocking pair of a state (µ, u) is a pair (f, w) of firm f and worker w that are not
matched under µ but both can improve their well-being by abandoning their partners
at µ and matching with each other, i.e., there are rf , rw ∈ R with rf + rw = V (f, w)
such that rw ≥ u (w) and rf ≥ u (f) with at least one strict inequality. A state (µ, u)
can also be blocked by a single agent x if x is not self-matched at µ, but prefers
to be single, or rx = V (x, x) > u (x), i.e., (x, x) is also called a blocking pair of
(µ, u). A market state (µ, u) is stable or equivalently a competitive equilibrium if
u (f) + u (w) ≥ V (f, w) and u (x) ≥ V (x, x) for all f ∈ F , w ∈ W , x ∈ F ∪ W .
Namely, a state is stable if it is not blocked by any single agent or any pair of firm
and worker. It is known that if (µ, u) is stable, then µ is efficient. Observe that the
domain we use to define a market outcome, equilibrium, blocking pair and others is
the reals R.

As a blocking pair may result in multiple states, arising from different specifica-
tions of surplus division, we define a concept of pair improvement to fully describe

6This is the unit-demand assumption in the literature. See, e.g., Shapley and Shubik (1971),
Crawford and Knoer (1981), Demange et al. (1986).

7See, e.g., Ausubel (2006), Demange et al. (1986), and Roth and Sotomayor (1990). Technically
speaking, the values of V (f, w), V (f, f) and V (w,w) being integral guarantees the existence of a
stable market state with integral payoffs. This also allows us to work exclusively on blocking payoffs
with integral payoffs which reflect real life transactions. See Lemma 1 below.
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the process from a blocking pair.

Definition 1 Given a blocking pair (f, w) of a state (µ, u), a new state (µ′, u′) is
said to be a pair improvement of (µ, u) through (f, w) if (1) µ′(x) = µ(x) and
u′ (x) = u (x) for any x ∈ (F ∪ W ) \ {f, w, µ(f), µ(w)}, (2) under µ′, f and w are
matched, while µ(f) and µ(w) are self-matched, and (3) u′ (f) = rf and u′ (w) = rw
such that rf + rw = V (f, w), while u′ (µ (f)) = V (µ (f) , µ (f)) and u′ (µ (w)) =
V (µ (w) , µ (w)).

A pair improvement mimics a real life transaction between a firm and a worker
and is intuitively interpreted as a specific form of bilateral trade. We hence use
pair improvement and bilateral trade interchangeably. Notice that when a firm hires
a new employee or a worker joins a new firm, both parties are better off but the
abandoned parties are usually worse off than before. A pair improvement hence has
opposing effects on the involved agents. Consequently, the market value along a path
of successive pair improvements need not be monotone.

Our labor market can be regarded as a general assignment market. It is well
known that an assignment market admits at least one competitive equilibrium and
that the set of stable outcomes (i.e., strict core) coincides with that of competitive
equilibria (Shapley and Shubik 1971). In addition, as all valuations are integers and
the market structure is totally unimodular,8 our labor market must have at least one
stable outcome with an integral payoff vector u ∈ Z

F∪W . See Ausubel (2006) and Sun
and Yang (2009) for more general results. Finally, while a blocking pair is defined
through real payoffs rf , rw ∈ R, our next lemma shows that it is sufficient to focus
only on blocking pairs with integer payoffs when searching for a stable outcome in
the market.

Lemma 1 Let V (f, w), V (f, f) and V (w,w) be integral for all f ∈ F and w ∈ W .
If a state (µ, u) with integral u ∈ Z

F∪W is not blocked by any pair (f, w) with integral
(rf , rw) ∈ Z × Z, then it cannot be blocked by any pair (f ′, w′) with real (rf ′ , rw′) ∈
R× R. Consequently, (µ, u) must be a competitive equilibrium.

Proof. Suppose to the contrary that the statement is not true. Then there would
exist a state (µ, u) such that u ∈ Z

F∪W is not blocked by any pair (f, w) with
(rf , rw) ∈ Z × Z, but is blocked by a pair (f ′, w′) with (r′f , r

′
w) ∈ R × R. Because

(f ′, w′) blocks (µ, u), rf ′ + rw′ = V (f ′, w′), rf ′ ≥ u(f ′) and rw′ ≥ u(w′) with at least
one strict inequality. Since V (f ′, w′) and u ∈ Z

F∪W are integral, we must have that
either both rf ′ and rw′ are integral or neither rf ′ nor rw′ is integral. The former
case cannot happen by hypothesis. In the latter case, we must have rf ′ > u(f ′) and
rw′ > u(w′). Now let f = f ′ and w = w′. We can round up rf to its next higher
integer sf and round down rw to its next lower integer sw. Because u and V (f, w) are

8The market structure can be expressed as a matrix with all its entries being 1 or 0. The matrix
is totally unimodular because all its subdeterminants equal 1, −1, or 0.
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integral, clearly we have sf + sw = V (f, w), sf > u(f) and sw ≥ u(w). By definition,
(µ, u) is blocked by (f, w) with (sf , sw) ∈ Z× Z, contradicting the hypothesis.

Lemma 1 indicates that although competitive equilibrium is defined on the real
domain R, we can actually ignore all fractional numbers and focus only on integer
payoffs or salaries which correspond exactly to real life transactions. It provides a
rationale behind the market process and the algorithm to be presented below which
make use of only the integer domain Z instead of the real domain R.

3 Main Results

In this section we present our central result Theorem 1, which demonstrates that
starting with an arbitrary initial market state, any random and decentralized process
in which every bilateral trade conditional on the current market state occurs with a
positive probability will converge with probability one to a competitive equilibrium
in finite time. To achieve this goal, we first present a crucial mathematical result
Proposition 1 establishing the existence of a finite sequence of successive bilateral
trades from any initial market state to a competitive equilibrium. For this purpose
we will prove Proposition 1 in Section 3.1 and then Theorem 1 in Section 3.2.

3.1 A Key Proposition

To prove our key Proposition 1 we will construct a desired path from an arbitrary
initial market state to a stable state. The crucial feature of the desired path is that it
only employs successive “local adjustments” or pair improvements to reach a stable
state. This constraint gives rise to two complications in our setting: First, both
matchings and payoffs along the path have to be chosen carefully so as to satisfy
the pair improvement requirement. Second, because an agent’s payoff can remain
the same after each pair improvement, trading cycles naturally arise in the process.9

This leads to a challenging complication of designing a systematic procedure to lead
the path out of trading cycles and also to prevent the same cycles from recurring.

We proceed in two main steps: We first design a path of successive pair improve-
ments toward stability for an “almost stable” outcome. Using this as a building block,
we then construct a required path for an arbitrary initial market outcome.10

An outcome (µ, u) is almost stable if there exists a self-matched worker w0 and
(µ, u) is stable if w0 is excluded from the economy, i.e., (µ, u) restricted to F ∪ (W \

9A trading cycle occurs when starting from a state (µ, u), a successive path of pair improvements
results in the same market state (µ, u).

10Following an older version of the current study (Chen, Fujishige and Yang 2010), Biró et al.
(2012) recently obtain similar results in a more general setting of stable roommates problems with
transfers. While our algorithm is implementable in practice, they have to assume the existence of
an explicitly given competitive equilibrium and hence their algorithm shall be regarded as a thought
experiment and cannot be used in reality.

6



{w0}) is stable. For each w ∈ W , the set of w’s best firms under (µ, u) is Fw (u) =
{f ∈ F | V (f, w)− u(f) = max{V (f ′, w)− u(f ′) | f ′ ∈ F}}. A list Lw of w’s all best
firms in Fw(u) is a permutation (i.e., linear ordering) of all elements of Fw (u), which is
fixed whenever Fw (u) remains the same. An alternating path for (µ, u) starting from
w0 is an alternating sequence of unmatched and matched firm-worker pairs “(f 1, w0),
(f 1, w1 = µ(w1)), (f 2, w1), (f 2, w2 = µ(f 2)), . . ., (f l−1, wl−1 = µ(f l−1)), (f l, wl−1)”
such that (i) all firms and workers are distinct in the path, (ii) no firm in the path
is self-matched, and (iii) for i = 1, . . . , l, firm f i is a best firm for worker wi−1 when
wi−1 becomes self-matched, i.e., f i ∈ Fwi−1 (u) \ {µ(wi−1)}.11

These definitions will mainly serve as key tools to systematically tackle trading
cycles. Roughly speaking, the set Fw (u) is a “depository” of firms with which worker
w wants to form a blocking pair. The list Lw is an index, specifying the order w should
follow in applying to the firms in Fw (u). Each list Lw is used cyclically so that the
first element of Lw becomes the next firm when w reaches the end of Lw. Since Lw is
merely a book-keeping device, the permutation can be arbitrary. However, Lw should
be fixed for fixed Fw (u) so that when a trading cycle arises, every worker w involved
in the cycle has been matched to all firms in Fw (u) during the cycle. An alternating
path is a device to lead the path out of a cycle so that each adjustment is a legitimate
pair improvement. For an unmatched pair

(

fk, wk−1
)

in an alternating path (k ≥ 1),
after breaking up with her current firm (if any), worker wk−1 then applies to firm fk,
the next most-preferred firm she would like to be matched with.

Denote the initial almost stable outcome as (µ0, u0) which is not stable but be-
comes stable without a self-matched worker w0. For reasons of bookkeeping, we reset
the list Lw cyclically for each w ∈ W so that the first firm in Lw is matched with
w in µ0. The following algorithm constructs a path of successive pair improvements
leading (µ0, u0) to stability.

The Algorithm

Step 1. Let w0 apply to f 0, the first firm of list Lw0 , and (w0, f 0) is a blocking pair
of (µ0, u0) as (µ0, u0) without worker w0 is stable. Match f 0 and w0 together and
let w0 receive the entire blocking surplus to obtain (µ1, u1) so that µ1 (f 0) = w0 and
µ1 (x) = µ0 (x) for every other agent x ∈ F ∪W except possibly f 0’s partner µ0 (f 0)
under µ0, and u1 (w0) = V (f 0, w0) − u0 (f 0), u1 (x) = u0 (x) for every other agent
x ∈ F ∪W except possibly µ0 (f 0). If firm f 0 is self-matched under µ0, then we are
done as f 0 is currently a best firm for w0. If not, let w1 be µ0 (f 0) and go to Step 2.

Step 2. By construction, there is no blocking pair for (µ1, u1) restricted to F ∪ (W \
{w1}). If (µ1, u1) is stable, then we are done. If not, proceed similarly as in Step

1 to obtain (µ2, u2) so that w1 is matched with f 1 according to Lw1 , receiving the
entire blocking surplus and w2 = µ1 (f 1) if f 1 is not self-matched in µ1.12 Continue

11For l ≥ 2, we also call such a sequence without the last pair (f l, wl−1) an alternating path.
12Here f1 will be the second element of Lw1 as the first element is f0, w1’s previous partner.
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in this fashion until we reach an outcome
(

µk, uk
)

, which is either a stable outcome

or (µk, uk) = (µk′ , uk′) for some integer k′ with 0 ≤ k′ < k, that is, we have found a
trading cycle, in which case go to Step 3.

Step 3. Collect the firms involved in the cycle in FQ which is the set of firms whose
matched workers change at least once during the cycle. As the firms in FQ are over-
demanded by the workers in the cycle, we adjust the firms’ payoffs upwards so as
to lead the process out of the cycle and such adjustments can only be done via pair
improvements. We use the following Augment procedure to accomplish this.

Augment: Rename wk and µk in the outcome
(

µk, uk
)

as w∗ and µ respectively. Let
F ∗ be a bookkeeping set that we temporarily store firms in FQ that have already been
treated with payoff increase (hence initially F ∗ := ∅). TheAugment procedure ends
when FQ = F ∗. This is done by repeatedly carrying out the following steps:

A1. Construct an alternating path for
(

µ, uk
)

from w∗ to a firm f ∗ whose payoff
has not been increased, i.e., f ∗ ∈ FQ \ F ∗ so that all the firms in the alternating
path except the last firm f ∗ are in F ∗:13 (f1, w0 = w∗), (f1, w1 =µ(f1)), (f2, w1),
(f2, w2 =µ(f2)), . . ., (fl−1, wl−1 =µ(fl−1)), (fl = f ∗, wl−1)) where f1, . . . , fl−1 ∈ F ∗

and pairs with underscores are currently not matched together under µ.
A2. Starting from the end of the alternating path and proceeding in the reverse

order, for each unmatched pair (f, w), we match f with w (so that µ (f) and µ (w) for
w ̸= w∗ become self-matched) and let u(w) = V (f, w)−uk(f)−1 and u(f) = uk(f)+1
with any newly self-matched agent receiving her outside option. Proceed like this
starting from pair (fl = f ∗, wl−1)) until we match (and specify the payoffs for) the
first pair (f1, w0 = w∗).

A3. As f1, . . . , fl−1 ∈ F ∗, only the last firm f ∗’s payoff has increased by exactly
1 after A2. Call the new matching after A2 as µ′ and update F ∗ so that F ∗ :=
F ∗ ∪ {f ∗}. If the updated set F ∗ ̸= FQ, then rename f ∗’s previous partner µ(f ∗) to
be the next w∗, and µ′ to be the next µ and go to step A1.

Step 4. Denote the outcome after step Step 3 as (µ, u). If (µ, u) is stable, then we
are done. If not, then let w0 be the self-matched worker that appeared at the most
recent updating of µ and rename (µ, u) as (µ0, u0). Update the list Lw according to
Fw (u0) for all w ∈ W so that the first firm in Lw is matched with w in µ0. Go to
Step 1.

We have considered blocking pairs with integer payoffs in the algorithm, which
is sufficient for our purpose due to Lemma 1. Notice that trading cycles can arise
in Step 1 and Step 2, as a result of a set of workers competing for their best firms
(collected in FQ) and these workers receiving the entire blocking surpluses in the
process. Step 3 is the key step of the algorithm, where we search for a sequence
of pair improvements so as to lead the path out of a trading cycle, and to ensure
that the same cycle will not be encountered again. Getting out of the cycle requires

13By construction, the first alternating path hence has to have length 1.
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that the over-demanded firms in FQ receive higher payoffs. The Augment procedure
increases the payoff of each over-demanded firm in FQ by the smallest increment of
1 with the constraint that each such adjustment has to be a pair improvement. We
adjust the payoffs of the over-demanded firms one at a time using an alternating path.
Since such payoff adjustment for an over-demanded firm can potentially affect various
firms, we construct the alternating path so that (1) only the firms whose payoffs have
already been adjusted are involved when we treat a newly added over-demanded firm
and (2) these firms (whose payoffs have been adjusted) are contained in the path
so that their payoffs do not decrease when we adjust upwards the payoff of the new
over-demanded firm.

Lemma 2 The Algorithm finds a stable outcome after a finite sequence of successive
pair improvements for any almost stable market state.

The path of successive pair improvements toward stability from an arbitrary initial
market state can then be constructed by applying Lemma 2.14 The main idea is to
inductively construct an increasing “internally stable” set, i.e., for a given market
state, if we restrict our attention to the agents in the “internally stable” set, there
are no blocking pairs or feasible pair improvements. In each inductive step of adding
an agent to enlarge the “internally stable” set, we can apply Lemma 2 as the process is
isomorphic to the procedure of finding a path of pair improvements toward stability for
an almost stable outcome.15 Such an inductive construction, together with Lemma 2,
enables us to establish the following:

Proposition 1 Consider a labor market (F,W, V ) with an arbitrary initial market
state (µ0, u0). There exists a finite sequence of successive pair improvements which
leads (µ0, u0) to a competitive equilibrium.

As a by-product, Proposition 1 provides an alternative deterministic adjustment
process toward competitive equilibrium, as well as a constructive proof of the exis-
tence of stable outcomes for the assignment market. Importantly, it differs from the
salary adjustment process in Crawford and Knoer (1981) on two accounts: First, our
deterministic process can start with an arbitrary market state, while the salary ad-
justment process has to start with a specific market state. Second, the transactions in
our process only take the form of bilateral trades. The salary adjustment process, like
the deferred acceptance algorithm, employs adjustments that violate the property of
pair improvements. In particular, the salary adjustment process uses retention where
workers temporarily hold job offers from the firms without accepting any offer until
toward the end of the process, and as a result, the payoffs of every agent on one side

14The proof of Lemma 2 is relegated to an Appendix.
15The detail of the construction is omitted and can be found in our working paper Chen, Fujishige

and Yang (2010).
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of the market are non-decreasing in the process. Convergence is hence monotonic in
the salary adjustment process, rather than cyclical as in our process.16

3.2 A Random Decentralized Market Process

We now address our central result on probabilistic convergence of a general random
decentralized market process. Consider an arbitrary initial market state of the la-
bor market. Each agent, though knowing some information about the market (e.g.,
her current payoff, her stand-alone payoff, and perhaps some other existing better
firms/workers), may not have a complete picture of the entire market and hence may
act myopically in future transactions. To be specific, suppose that agents at each
point of time randomly receive opportunities, a real-world analogy being that firms
and workers constantly obtain various job-related information from advertisements,
labor market intermediaries, or friends. Suppose further that once an agent or a pair
of worker and firm finds an opportunity to improve the status quo, they will do so
by abandoning their current partners and forming new partnerships. This process
continues until a stable state (a competitive equilibrium) is reached.

Our question is whether such a general random and decentralized market process
converges to a competitive equilibrium eventually. The following theorem answers this
question in the affirmative. Formally, we prove that starting from an arbitrary market
state, this market process converges probabilistically to a competitive equilibrium,
provided that at any point in time, each pair improvement of the current market state
arises with a positive probability. Notice that the salient feature of finite successive
pair improvements in Proposition 1 is essential to capture the decentralized nature
of the random market process. Other convergent paths where this feature is absent
are unable to achieve our goal in Theorem 1.

Theorem 1 Start with an arbitrary initial market state of a labor market (F,W, V ).
If every pair improvement occurs with a positive probability bounded away from zero
in a random decentralized rematching process, then almost surely, convergence to a
competitive equilibrium obtains in finite time.

We now discuss how to establish the Theorem via Proposition 1. Observe that it
suffices to consider all individually rational market states (µ, u) with integral payoff
vector u ∈ Z

F∪W , because any individual who gets less than her stand-alone value
can immediately abandon her partner to achieve at least her stand-alone value. Let
A(F,W, V ) denote the set of all such market states. Notice that A(F,W, V ) is finite,
as the number of workers and firms is finite, the number of matchings is finite, any
value of V (x) or V (f, w) is finite, u is integral, and every (µ, u) is individually rational.

16Demange et al. (1986) also provide a similar process (an ascending price mechanism) as
the salary adjustment process that finds a stable market state in finite time. A Supplementary
Material of this article provides examples, extra comparison of our algorithm with the construction
in Demange et al. (1986) and Crawford and Knoer (1980), and other auxiliary results.
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Suppose now that the market opens with an arbitrary state (µ0, u0) ∈ A(F,W, V ).
Consider a random process with the finite set of market states A (F,W, V ). The
transition probabilities of the states in A (F,W, V ) are defined in a way such that for
every unstable state (µ, u) ∈ A (F,W, V ), each pair improvement of (µ, u) is chosen
with a positive probability bounded away from zero.17 Proposition 1 implies that the
constructed random process does not oscillate among unstable states indefinitely and
hence the associated random sequence converges to a stable state in A (F,W, V ) with
probability one.

From an economic point of view, however, it is more natural for a decentralized
random process to feature time-dependent transition probabilities associated with ev-
ery market state in the process. Consider now a similar but more general decentralized
random process with discrete time, finite set A (F,W, V ) of states, and possibly time-
dependent transition probabilities among all states. The market again opens with
an arbitrary initial market state (µ0, u0) ∈ A(F,W, V ) at time t = 0. Assume that
every transition probability from an unstable state to another state is no less than a
fixed number ε ∈ (0, 1) at any time, namely, every possible pair improvement occurs
with a positive probability. With only two classes of states (stable and unstable), it
follows that starting from any state (µ, u) in A (F,W, V ), the process either finds a
stable state in A (F,W, V ) and remains stable afterwards, or continues to move from
one unstable state to another unstable state in A (F,W, V ), as the random process
by construction always arrives at a state in A (F,W, V ). Suppose that the random
process does not converge to a stable state with probability one in the limit. This nec-
essarily implies that at some point, after reaching an unstable (µ, u) in A (F,W, V ),
the random process oscillates among a (finite) set of unstable states in A (F,W, V )
indefinitely. Since each possible pair improvement is chosen with a probability no less
than ε at each point of time, there is then some (µ′, u′) in A (F,W, V ) such that no
finite path of pair improvements toward stability exists, no matter how one chooses
the associated pair improvements, which contradicts Proposition 1, completing the
proof of the Theorem.
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Appendix

Proof of Lemma 2. The key issue is to verify the validity of (trading cycle)
Step 3. We hence divide the proof into two parts: We first show the existence of an
alternating path in A1 of Step 3, followed by a proof showing that every adjustment
in Step 3 is a pair improvement.

Let FQ (resp., WQ) be the set of firms (resp., workers) whose matched partners
change at least once during the cycle. We claim that whenever F ∗ ̸= FQ, there exists
an alternating path from w∗ to a firm f l ∈ FQ\F

∗ and that all other firms involved
in the alternating path are in F ∗. Suppose there does not exist any such alternating
path for (µ, uk) from w∗ to FQ \ F ∗. Let F̂ and Ŵ , respectively, be the set of all
firms and that of all workers in FQ ∪WQ reachable from w∗ by alternating paths for
(µ, uk), where an agent is reachable from w∗ if the agent belongs to an alternating path
originating from w∗ ∈ Ŵ . Notice that all agents reachable from w∗ by alternating
paths for (µ, uk) have to be in FQ ∪WQ.

Given F̂ , Ŵ , and the non-existence of alternating paths, we have

|F̂ |+ 1 = |Ŵ |, |FQ \ F̂ | = |WQ \ Ŵ | > 0 and (1)

/∃ matched (f, w) s.t w ∈ Ŵ , f ∈ (FQ \ F̂ ) ∩ Fw

(

uk
)

, (2)

where observe that Fw is defined using uk. Condition (1) is derived from the definition
of F̂ and Ŵ and the fact that in a restricted situation, every matching arising in the
cycle has only one self-matched worker. According to (2), no worker in Ŵ can be
matched with firms in (FQ \ F̂ ). In particular, (1) and (2) jointly imply that no agent

in F̂ ∪ Ŵ is matched with an agent in (FQ\F̂ ) ∪ (WQ\Ŵ ).
Since we have a matching that matches all f ∈ FQ to workers in the cycle, (2) then

implies the existence of a matched pair (f ′, w′) such that f ′ ∈ F̂ and w′ ∈ WQ \ Ŵ .

However, f ′ cannot be matched to w′ since FQ \ F̂ must be matched to WQ \ Ŵ due
to (1) and (2).18 This contradiction establishes the existence of a desired alternating
path in the execution of A1.

We next show that every adjustment executed inAugment is a pair improvement.
Let the alternating path found in A1 in Step 3 be “(f 1, w0= w∗), (f 1, w1=µ(f 1)),
(f 2, w1), (f 2, w2=µ(f 2)), . . ., (f l−1, wl−1=µ(f l−1)), (f l, wl−1))” for some l ∈ N. (No-
tice that µ(f l) becomes the unique self-matched worker after A2, which is the w∗ for
the next round of A1.)

18Alternatively, if f ′ ∈ F̂ is matched with w′ ∈ WQ \ Ŵ , we then cannot have that |FQ \ F̂ | =

|WQ \ Ŵ | > 0 and that firms in FQ \ F̂ are exactly matched with workers in WQ \ Ŵ .
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If l = 1, then (f 1, w0 = w∗) is a blocking pair (recall that since f 1 ∈ Fw0

(

uk
)

, f 1

and w0 were matched during the cycle).
If l = 2, we have u(f l) = uk(f l), u(wl−1) = uk(wl−1)−1 , and uk(f l)+uk(wl−1) =

V (f l, wl−1). Hence V (f l, wl−1)−u(f l)−u(wl−1) = 1 (recall that by construction, for
any f ∈ FQ the value of ui(f) remains the same for i = k′, . . . , k, and that for each
w ∈ WQ all the values of V (f, w)− ui(f) for f ∈ Fw and i = k′, . . . , k are the same.
Here k′ and k are the parameters in Step 2). Hence, (f l, wl−1) is a blocking pair and
this validates the operations in A2. We make f l matched to wl−1 and update u as
in A2 of Augment. (In effect, u(f l) is increased by one and u(wl−1) remains the
same.) Then f l−1 becomes self-matched. If l = 2, then (f 1, w0 = w∗) is a blocking
pair (recall again that f 1 and w0 were matched during the cycle, so that they prefer
being matched to being self-matched.)

If l ≥ 3, we have u(f l−1) = V (f l−1, f l−1) < uk(f l−1)+1 = V (f l−1, wl−2)−u(wl−2),
so that pair (f l−1, wl−2) becomes a blocking pair. We then perform A2. Repeat this
process until we match f 1 with w0= w∗, which completes an execution of A2.

Upon finishing the Augment procedure, u(f) of each f ∈ FQ is increased by one.
When proceeding from Step 3 to Step 4, wk being the current self-matched

worker, no blocking pair exists in (F ∪W ) \ {wk}. Recall that FQ = ∪w∈WQ
Fw

(

uk
)

,
implying that for any (f, w) such that f ∈ F \ FQ and w ∈ WQ, we have V (f, w) −
u(f) ≤ V (µ(w), w)−u(µ(w)), where (µ, u) is the final state after Step 3 is completed.

Each time we execute Step 3, at least one value of u(f) increases and u(f) for each
f ∈ F is non-decreasing throughout the algorithm (where we neglect the temporary
steps in which u(f) becomes V (f, f) during the execution of Augment). Moreover,
the set of possible integer values of u(f) (f ∈ F ) is finite. Since the number of
all matchings for fixed Fw

(

uk
)

(w ∈ W ) is bounded by |W |!, after at most |W |!
updatings of µ, we either get into a cycle, where some u(f) is increased after Step
3, or the algorithm terminates. We therefore conclude that the algorithm terminates
after a finite number of steps.
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