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A major challenge encountered in digital holography applications is the need to synthesize computer-generated
holograms (CGHs) that are realizable as phase-only elements while also delivering high quality reconstruction. This
trade-off is particularly acute in high-precision applications such as photolithographywhere contrast typicallymust
exceed 0.6. A seeded-phase point method is proposed to address this challenge, whereby patterns composed of fine
lines that intersect and form closed shapes are reconstructed with high contrast while maintaining a phase-only
CGH. The method achieves superior contrast to that obtained by uniform or random seeded-phase methods while
maintaining computational efficiency for large area exposures. It is also shown that binary phase modulation
achieves similar contrast performance with benefits for the fabrication of simpler diffractive optical elements.
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1. INTRODUCTION

Computer-generated holograms (CGHs) are finding use in
many applications where conventional imaging systems are
not able to provide the required performance. Examples include
optical data storage, beam shaping of high power laser beams,
three-dimensional optical tweezers for microscopy, displays,
and photolithography. Each of these exploits one or more capa-
bilities offered by CGH imaging. The ability to modulate the
phase of incident illumination enables efficient reconstruction
of both planar and nonplanar features.

A major challenge in the deployment of digital holography is
the need to quantize the CGH distribution into a discrete set of
amplitude and/or phase values, driven by the fact that complex
modulation is not practical using currently available photo-
masks and spatial light modulator (SLM) devices. This modi-
fication introduces noise into the reconstructed image and
hence results in poor image contrast.

For some applications the error incurred is tolerable and
thus further refinement of the CGH is unnecessary. An exam-
ple is the case of displays, where characteristics of the human
visual system may be exploited in order to reduce error require-
ments and hence increase computational efficiency [1].
However, precision imaging applications such as photolithog-
raphy demand that refinements be made. An example of this is
the introduction of time averaging of multiple exposures using

an SLM device in order to reduce noise in the reconstruction
[2]. Other methods based on the Fresnel cylindrical lens (FCL)
or Fresnel zone plate (FZP) achieve good performance under
certain conditions.

Iterative solutions have been used in instances where the
CGH must be restricted to a phase-only distribution. This is
often implemented as the Gerchberg–Saxton algorithm [3],
involving successive reduction of errors appearing within the
reconstruction when imposing the phase-only restriction in
the CGH. There are examples of high-quality reconstructions
being achieved by error reduction methods based on iterative
Fourier transform methods (IFTMs) [4] including generation
of nonplanar patterns [5].Whilemany refinementmethods exist
[6], limitations remain concerning the handling of “Manhattan”
geometry patterns composed of lines that intersect and abut one
another. With “thin” features comparable to the full width at
half-maximum (FWHM) of the point-spread function of the
optical system, a special case exists where iterative algorithms
can, when properly seeded and accurately sampled, begin to nor-
malize out features such as the severe spikes found at line termi-
nations and intersections [7]. These features are normally
present in analytical approximations to thin patterns and can
be devastating where consistent high-contrast patterns are re-
quired, such as in the application of photolithography, resulting
in complex mask requirements to minimize such variations.
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In this paper, a point method is proposed wherein the CGH
is composed of multiple superimposed FZP diffraction patterns
without iterative refinement. Instead, the CGH is calculated in
a single step and is immediately reduced to a phase-only format.
A novel phase-seeded method is defined with the aim of ren-
dering the CGH more amenable to the phase restriction step.
The approach also seeks to address the problem of reproducing
patterns composed of intersecting and multisegment lines,
which are commonly encountered in microlithography. This
is achieved by preseeding the phase of each point source within
the object according to a distribution function, followed by
direct generation of the CGH.

To devise a point-oriented method suitable for the purpose
of photolithography, two modifications are applied. First, a pre-
determined phase function is applied to the point-oriented ob-
ject (without further refinement) in order to improve contrast.
Second, continuity of line patterns is secured by ensuring that
the point-oriented object is sampled at an interpoint spacing
below that of the FWHM of the PSF of the CGH. By reducing
the side effects incurred by discarding amplitude information,
the resulting CGH reconstruction is shown to display signifi-
cant improvements in image contrast. It is also proposed that
the same analytical phase modification may be applied to a va-
riety of pattern geometries, therefore creating an efficient CGH
generation algorithm without the need for calculating multiple
seed-phase functions.

The structure of the remainder of the paper is as follows.
Section 2 considers existing methods and identifies their lim-
itations. Section 3 develops the point CGH and seeded-phase
methods. Section 4 goes on to develop a method for analyzing
the seeded-phase method according to a contrast metric, then
presents example results generated by the method including a
comparison with IFTM-generated reconstructions. Section 5
presents experimental confirmation of the approach. Finally,
conclusions are drawn in Section 6.

2. EXISTING METHODS

FCL methods have been used to reconstruct lines with high
positional accuracy for visual display [8] and high-contrast
photolithography [9]. A parameterized approach is taken
whereby each line segment is assigned a CGH derived from
the FCL function:

H �u; v� � exp

�
jkv2

2z

�
rect�Lu; Lv�; (1)

where z is the reconstruction distance and k is the wave number.
Each CGH is further truncated to a rectangle of dimensions Lu,
Lv by the rect function. Figure 1 illustrates an example of the
typical line pattern reconstructed by the FCLmethod. Although
singular line patterns can be successfully reconstructed, inter-
secting and abutted features, such as those illustrated in
Fig. 2, are severely degraded even when the full complex
CGH is retained. An example of this is illustrated in Fig. 3, where
the complex CGH reproduces poor line quality. Further degra-
dation occurs if the CGH amplitude is also discarded.

Modifications have been proposed to improve line quality
by including Fresnel diffraction function (FDF) terms into
the parameterized line FCL equation [10]:

H �u; v� � exp

�
jkv2

2z

�
F�u�rect�Lu; Lv�; (2)

where F �u� is the FDF:
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Fig. 1. Geometry of line and example reconstruction by FCL for a
target line length of 760 μm. (a) CGH phase. (b) Intensity of recon-
structed pattern. (c) Horizontal intensity profile.
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Fig. 2. Examples of troublesome pattern geometries.
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Fig. 3. Illustrative example of pattern degradation for intersecting
line pattern when using the FCL method. (a) CGH amplitude.
(b) CGH phase. (c) Intensity of reconstructed pattern (inset showing
magnified image of intersection region). (d) Profile of horizontal line
intensity.
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F �u� � 1ffiffiffi
2

p
Z

a1

a2
exp

�
j
π

2
a2
�
da; (3)

with the limits of integration given by

a1 � −

ffiffiffiffiffiffi
2

λZ

r �
L
2
� u

�
; a2 �

ffiffiffiffiffiffi
2

λZ

r �
L
2
− u

�
: (4)

The FCL–FDFmethod brings significant improvements in line
quality, but requires complex modulation for both single
and multiple line patterns. Furthermore, intersections are still
problematic in that strong peaks are present at the point of in-
tersection, as illustrated in Fig. 4. This is undesirable in photo-
lithography because significant energy is contained within the
peak, reducing the intensity in other regions of the line.
Contrast is therefore reduced, with the result that exposure con-
ditions become difficult to control. As with the FCP method,
further degradation occurs when discarding the CGH ampli-
tude. The parameterized FCL–FDF approach is therefore of
limited scope when phase-only CGHs are sought.

3. SEEDED-PHASE METHOD

Our approach is based on a modified point CGH method
incorporating a preseeded object phase [11]. The point method
has previously been demonstrated to generate patterns in two-
and three-dimensional space [12].

A. Point Model
The basic point model adopted assumes that the object is com-
posed of a distribution of point sources, each accounted for in
the CGH by their respective offset FZP diffraction pattern:

FZP�u; v:xn; ym�

� exp

�
jk
2z

��u − xn�2 � �v − ym�2�
�
circ�xn; ym; r�; (5)

where xn, ym are the offset locations of each point in the object
plane, typically stored in vector form as a collection of discrete

values. The circ function limits the extent of each FZP contri-
bution to a circle of radius r according to

circ�xn; ym; r� �
�
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u − xn�2 � �v − ym�2

p
≤ r

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u − xn�2 � �v − ym�2

p
> r

: (6)

The complete CGH results from the summation of all individ-
ual FZP contributions:

H �u; v� �
X
n;m

FZP�u; v:xn; ym�: (7)

For sparse line patterns spanning large exposure areas, this ap-
proach can become extremely efficient in comparison to
Fourier methods since n; m relate to the number of object
points rather than the field extent. Thus the computational
burden of FZP methods is dictated by the degree of sparsity
in the point representation of the object. Point methods also
allow direct modification of the relative phase of each point
source, a technique referred to here as phase seeding.

Referring to Fig. 5, the specified input pattern is described as
some real-valued function O�x; y� contained within the
reconstruction plane and in which lines are restricted to a single
point width. From this, a discrete collection of point locations
is generated and stored in matrix T :

T n;m �
XN
n�1

XM
m�1

O�x; y�δ�x − nΔx; y − mΔy�: (8)

Parameters n; m are the array indices of t, δ is the two-
dimensional Dirac function, N and M are the number of sam-
ples in the horizontal and vertical directions, respectively, and
Δx;Δy are the horizontal and vertical object point spacing,
respectively. Alternatively, T n;m may be specified directly from
an existing discrete point distribution. A complex object point
representation Qn;m is then generated by assigning phase values
stored in matrix ψn;m:

Qn;m � T n;m exp�jψn;m�: (9)

The complete CGH is finally built up from the summation of
all point contributions:

H �u; v� �
�
1

A

�X
n;m

�Qn;mFZP�u; v:xn; ym��rect
�
u
Lu

;
v
Lv

�
;

(10)

where A is a normalization factor given by A �
ΣN
n�1ΣM

m�1jT n;mj, and the CGH is once more limited in extent
by a rect function. Note that the FZP function is typically

Fig. 4. Pattern degradation when using the FCL–FDF method.
(a) CGH amplitude. (b) CGH phase. (c) Intensity of reconstructed
pattern (inset showing magnified image of intersection region).
(d) Profile of horizontal line intensity.

Fig. 5. Geometry used for point method. (a) Idealized line pattern
shape. (b) Point-oriented representation of pattern. (c) Coordinate
planes for the CGH and object.
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discretized according to the required sampling conditions in the
CGH, in which case Eq. (10) yields the discrete CGH.

B. Seeded-Phase Function
Direct manipulation of the quantized CGH (and therefore
its phase-quantized performance) is possible by careful assign-
ment of the object phase distribution ψn;m. One strategy is to
randomize the object phase distribution in order to average
the strongest interference peaks and troughs. However, this
approach still does not yield adequate imaging quality for the
purposes of precision applications such as photolithography.
Observations made in [13] showed that, under different
conditions, a class of analytical object phase functions could
be used to reduce noise present in the optical reconstruction.
More recently, strategies have included the use of interpolated
pseudo-randomphase distributions [14] andCGHcomposed of
multiple offset point-oriented patterns [15]. Self-transforming
functions, i.e., those functions whose Fourier transform
takes a similar form, were observed to alleviate interference
effects produced by quantized Fourier holograms [13]. An
alternative function is chosen here that takes the form of a
scaled FZP:

φ�x; y� � πα

λz
�x2 � y2�; (11)

where the constant α modifies the radial positions of the asso-
ciated phase fringes. The equivalent sampled phase distribution
ψn;m is generated by sampling in the same manner as is done for
Eq. (8). Examples of the effect of choosing different α are illus-
trated in Fig. 6, where a smoothing of the CGH amplitude is
observed for the object illustrated in Fig. 2(a).

In summary, the following seed-phase methods are
compared:

(1) when ψn;m is assigned the distribution of Eq. (11), vary-
ing α between the integer range 1…7;

(2) when ψn;m is assigned the uniform value of zero;
(3) when ψn;m is assigned a random phase distribution

φ�x; y� � randf0; 1g · 2π, where randf0; 1g generates uniform
random numbers over the interval 0…1; and

(4) when ψn;m is assigned an interpolated random phase dis-
tribution created by inserting p interpolated values between an
initial random sequence. The initial random sequence should
be p times smaller than the final pseudo-random sequence. For
p � 1 the original pseudo random sequence remains and for
p > 1 a progressively smoother phase distribution is generated.

Examples of each seeded-phase method are illustrated
in Fig. 7.

4. COMPARATIVE ANALYSIS

Since patterns composed of single isolated lines may be dealt
with by the FCLmethod, we concentrate here on patterns com-
posed of intersecting and abutted features of the types
illustrated in Fig. 2. For the pattern shown in Fig. 2(a),
reconstructed patterns are calculated by simulation for each
seeded-phase method. Key parameters used in simulations are
summarized in Table 1. For each point method, the CGH
was calculated using Eq. (10) evaluated over a grid of 850 ×
850 pixels and the subsequent reconstructed intensity field by
a fast Fourier transform (FFT)-based Rayleigh–Sommerfeld
propagation [16] sampled at 1 μm to ensure high accuracy.
Each complete line pattern is composed of 255 discrete points
and, in order to generate smooth reconstructed features, the ob-
ject point spacing is set to be less than the CGH sample spacing.

The influence of different seeded-phase methods is illus-
trated in Fig. 8, where various reconstructions are compared
for the same input pattern. The simulation results for each

Fig. 6. Examples of CGHs produced by the seeded-phase method.
The top row shows normalized CGH amplitude. The bottom row
shows CGH phase. Methods shown are: (a) uniform random phase,
(b) analytical phase with α � 3, and (c) analytical phase with α � 7.

Fig. 7. Illustration of seeded-phase distributions applied to point
object pattern. Clockwise from top left: uniform random, pseudo-
random (p � 4), analytical (α � 4), and analytical (α � 1).

Table 1. Summary of Design Parameters Used for
Evaluation

Parameter Value

Wavelength, λ 405 nm
CGH sampling 8 μm
Propagation sampling 1 μm
Object sampling, Δx;Δy 6 μm
Reconstruction distance, z 8 cm
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method are summarized in the form of 2D intensity patterns
and cross-sectional intensity plots. The uniform phase method
displays severe degradation similar to the FCL–FDF method in
that significant peaks exist within the line profile. The uniform
random phase result exhibits clearly defined boundaries demar-
cating the line pattern, but substantial noise remains within the
line profile. For the pseudo-random phase method various val-
ues for p were evaluated, and the best result was obtained for
p � 2. A small improvement in noise floor is seen; however, the
latitude for exposure adjustment is extremely narrow. For the
analytical case (α � 4), a smoothing of the CGH amplitude
occurs and hence the CGH yields to phase-only conversion.

The analytical approach was explored further by re-
evaluating the procedure for various α. The results are displayed
in Fig. 9, where, for variety, a different pattern has been defined.
It is seen that performance degrades for α < 4, and, hence, an
optimal value appears to exist for the optical parameters used.

The method is not restricted to single intersections; an ex-
ample of a square outline geometry is illustrated in Fig. 10,
where significant improvements are again brought by applying
the seeded-phase method.

A. Contrast Analysis
To further assess the usefulness of the seeded-phase method, a
contrast metric is proposed for strict evaluation [17]:

Fig. 8. Simulated pattern reconstructions for different object seeded-phase methods. The left column shows the real part of point object dis-
tribution after addition of seeded phase; the middle column shows a 2D image of the reconstructed pattern intensity; the right column shows a cross-
sectional plot of the reconstructed intensity taken along a horizontal line. (a) Uniform phase. (b) Uniform random phase. (c) Pseudo-random phase
method (p � 2). (d) Analytical method (α � 4). All intensity graphs are normalized relative to a uniform phase result.
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C � Imin − Imax

Imax � Imin

; (12)

where Imax is the maximum intensity occurring with the back-
ground region (i.e., lying outside of the region of the pattern)
and Imin is the minimum intensity occurring within the region
of the pattern. With reference to Fig. 11, evaluation is further
refined by dividing the cross-sectional intensity profile into
three regions comprising background, transition, and midsec-
tion zones. Contrast is not evaluated within the transition zones
since they contain the sharply rising sidewall peaks that demar-
cate the end points of each line—a feature that is considered
desirable in photolithography. These typically reach a peak
overshoot intensity greater than the midsection zone and hence
could bias the contrast measurement.

To determine the design sensitivity of the seeded-phase
parameters, contrast is evaluated for various patterns, each pro-
duced using various values of α. The results are summarized in
Fig. 12, where sets of contrast results are displayed for each
pattern. In all cases the excluded transition zones each comprise
5% of the total line profile, and, hence, Imin is evaluated over
90% of the complete line profile. It can be seen that, using the
phase function of Eq. (11), the highest contrast figure is at-
tained for α � 4. For these cases contrast far exceeds the typical
criteria of C > 0.6 for photolithography [17]. In general, useful
contrast is seen for 2 ≤ α ≤ 6.

Comparative results were also evaluated for the casewhere the
CGH is restricted to binary phase values and included in Fig. 12.
A remarkably similar behavior is observed, most likely attributed
to the use of patterns composed of thin lines. An additional
comparison is made by including the pseudo-random phase
method where p is varied between the same range as that for
α. In this case, limited improvements are observed; however,
contrast is in general below that required for photolithography
purposes. The results suggest that binary phase CGHs compare
favorably with their multiphase level counterparts, and that,
although diffraction efficiency is reduced for binary phase
modulation, the fabrication of CGH in the form of diffractive
optical elements is simplified considerably.

B. Comparison with Iterative Method
Comparison IFTM results were generated by sampling each tar-
get pattern at 1 μm in order to produce the same reconstruction
resolution as with the point method (see Table 1). An efficient
angular spectrum (AS) propagation algorithm was used as

Fig. 9. Comparison of cross-sectional reconstructions using the ana-
lytical method. (a) Real part of the point object distribution (shown for
α � 4). (b)–(d) Cross-sectional plots of the reconstructed intensity for
various α.

Fig. 10. Example of square pattern reconstruction. (a) Seeded-phase
object (real part). (b) CGH. (c) Reconstruction resulting from the uni-
form phase method. (d) Reconstruction resulting from the analytical
phase method (α � 4). (e) Cross-sectional intensity profiles along the
inner/outer squares.

Fig. 11. Measurement zones for determining contrast of the line
intensity profile.
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described in [5] but applied here to the two-dimensional case
under consideration. The use of FFTs requires that sampling
of the CGH be equivalent to that of the object (i.e., 1 μm in
this case) and additional paddingof the CGH in order to avoid

aliasing of the transfer function. This represents a significant
computational memory increase in comparison to the point
method, which generates the CGH at sample pitch of 8 μm
by direct evaluation of Eq. (10).

Fig. 12. Distribution of contrast for two lines intersecting at various locations. Column (a): object patterns. Column (b): contrast results for the
analytical seeded-phase and pseudo-random phase methods. Column (c): cross-sectional plots of the reconstructed intensity profile for α � 4 and
continuous phase CGH. Column (d): cross-sectional plots of the reconstructed intensity profile for α � 4 and binary phase CGH. All intensity
results are individually normalized.
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The resulting IFTM profiles and contrast results are pre-
sented in Fig. 13, for which contrast was evaluated on an iden-
tical basis as for the point method (Fig. 12). The IFTM was
terminated after 10 iterations, beyond which any further in-
crease of contrast was observed to be minimal. Due to the
fine-pitch sampling of the target pattern, high contrast is ob-
served for continuous phase CGHs, exceeding 0.94 in all cases.
However, an appreciable reduction in contrast is seen when

further restricting the CGH to binary phase form, and trouble-
some peaks manifest at the points of line intersection. Although
further optimization of the IFTM may be possible, the point
method is comparatively robust to binarization of CGH phase.
Regarding practical computation considerations, three observa-
tions may be made: first, the point method operates on a sparse
object pattern representation rather than a regularly sampled
field. Second, the object and CGH field parameters (sample
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Fig. 13. Comparative results generated using the IFTM method, where contrast C for each case is indicated within the respective plot. Column
(a): object patterns (as per Fig. 12). Column (b): cross-sectional plots of the reconstructed intensity profile using a continuous phase CGH. Column
(c): cross-sectional plots of the reconstructed intensity profile using binary phase CGH. IFTM results were generated using 10 iterations.
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pitch and size) become decoupled. Finally, the CGH is gener-
ated directly, and no iteration is required.

C. Sensitivity Analysis
Returning to the point method, the results presented in Fig. 12
demonstrate that contrast remains well behaved for a range of
pattern geometries. In particular, the optimal condition α � 4
holds for generalized intersections involving two lines. To fur-
ther determine the stability of this result, a detailed study of
contrast versus pattern geometry was conducted. Referring
to Fig. 14, a series pattern was generated, each composed of
two orthogonal lines intersecting at all locations coinciding

with a 128 × 128 grid. Setting α � 4 in each case (other param-
eters set per Table 1), a high degree of uniformity is observed, as
summarized in Table 2, with the condition C > 0.6 holding in
all cases. The contrast values attained are also plotted in Fig. 14.

5. EXPERIMENTAL RESULTS

We demonstrate the resulting image quality achieved by
experimental photolithography exposure. Photolithography is
extremely sensitive to pattern defects and demands high con-
trast. It is, therefore, a good means of evaluating the success of
the method. Reconstructed patterns were generated using a re-
flective phase-only SLM (Holoeye Pluto, 850 × 850 active ar-
ray of pitch 8 μm) and a diode laser operating at 405 nm.
Further details of the holographic photolithography apparatus
can be found in [18]. Figure 15 shows four examples of patterns
generated using the various seeded-phase methods considered
in Section 3 captured by digital camera sensor. Each example
exhibits similar features, as previously observed in Fig. 8.

The seeded-phase method was then tested within an exper-
imental holographic photolithography system. A phase CGH
was again generated as a 256-level phase-only CGH seeded
with an analytical phase function (α � 4) and displayed via
SLM. Figures 16(a) and 16(b) illustrate the intensity observed
at the imaging plane. Positive-acting photoresist was then ex-
posed and developed, followed by a metal lift-off process used
to convert the resulting pattern into gold tracks, as shown in
Figs. 16(c) and 16(d). Reduction in overall line width near the
intersection point can be seen; however, the tracks are continu-
ous and there are no spurious features, thus confirming the
high-contrast reproduction.

6. CONCLUSIONS

The point-oriented approach offers the attractive proposition of
realizing “Manhattan” line patterns with intersections over
large-area substrates. The computational burden is primarily

Fig. 14. Procedure for analysis of contrast performance for different
line intersection locations and a continuous phase CGH calculated by
the point method. For each result, the location of the line intersection
is altered within a 128 × 128 grid spaced by 6 μm.

Fig. 15. Experimental LCOS reconstruction of patterns.
(a) Uniform-phase method. (b) Uniform random phase method.
(c) Pseudo-random phase method (p � 3). (d) Seeded-phase method
(α � 4).

Table 2. Contrast Analysis for Detailed Study

Contrast Metric Value

Maximum 0.98
Minimum 0.84
Mean 0.95
Standard deviation 0.01

Fig. 16. Experimental results. (a) SLM reconstruction with (b) en-
larged view. (c) Metal tracks generated following photoresist exposure
and (d) close-up view of the track intersection.
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dependent upon the pattern complexity rather than field size.
However, the resulting CGH does not yield easily to continu-
ous or binary phase conversion and further modification is re-
quired to recover acceptable image quality that is traditionally
tackled using iterative techniques.

Direct modifications of the phase of the point-oriented
object distribution provide an alternative means of realizing a
robust CGH via the phase-seeded method. A modified quad-
ratic object phase function is proposed that exceeds the neces-
sary contrast (C > 0.6). Within the confines of the pattern
geometries considered, this phase function may be precom-
puted in advance. The method has been shown to be applicable
for a wide range of linear line patterns that traverse the annular
rings of the seeded-phase function, though nonlinear shapes,
such as annular rings, benefit to a lesser extent. The resulting
reconstructions exhibit very high contrast, including the case of
CGHs restricted to binary phase, and therefore offer practical
exposure latitude for photolithography via a SLM or diffractive
optical element. Comparisons to the IFTM-generated results
indicated that comparable contrast performance is attainable
for the case of a continuous phase CGH, while lower contrast
was seen for the case of a binary phase CGH.

Efforts are now directed toward applying the point method
to nonplanar patterns, where the object point ensemble is no
longer confined to a single plane, and where the computational
burden remains comparable to the planar case.

Funding. Engineering and Physical Sciences Research
Council (EPSRC) (EP/G051887/1, EP/G051925/1).
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