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Abstract 

Very low permeability soils and rocks may act as actual semi-permeable membranes and also 

have the potential to swell if they contain clay minerals. This study extends Mixture Coupling 

Theory for unsaturated, very low permeability swelling rock, based on non-equilibrium 

dynamics and Biot’s elasticity, and develops new advanced coupled mathematical 

formulations, by including unsaturated chemical osmosis and hydration swelling. Helmholtz 

free energy has been used to derive the link between solid deformation and multiphase 

transport. Darcy’s law has been extended and the influence of swelling on stress and strain has 

been included. The mathematical formulation shows that swelling capacity may have a strong 

influence on the deformation of host rock in the chemical osmosis process, which is 

demonstrated by a numerical simulation of two representative cases. Important engineering 

applications of this model and analysis are highlighted. 

 

Keywords: Biot’s theory; Mixture Coupling theory; non-equilibrium thermodynamics; osmotic 

flow; unsaturated 
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1: Introduction 

 

Designs for the geological disposal of spent nuclear fuel and vitrified High Level Waste (HLW) 

in several European countries [e.g. [1, 2]]is based on a multi barrier concept to limit the 

migration of radionuclides to the biosphere.  These barriers include: (1) the radioactive waste, 

including the uranium oxide fuel matrix or in the case of HLW a borosilicate glass; (2) metal 

containers, including a copper over pack  [1];(3)  a swelling clay buffer material that provides 

a hydraulic seal around the canister ; and (4) a suitable host rock a depth of typically 500 to 

1,000 m which will isolate the waste from the biosphere. Where the host rock is comprised of 

low permeability clays [2] it will provide a further hydraulic barrier. 

 

Clay hostrocks and clay (bentonite) buffer materials plays a key function of preventing egress 

of radionuclides.  A key design criteria for the selection of potential materials for both the 

engineered and natural barriers for such waste disposal facilities is the achievement of a very 

low gas and hydraulic conductivity. A hydraulic conductivity < 1010 m/s, often proposed for 

this purpose, may lead to chemical osmosis, in which the host rock and buffer clay may act as 

semi-permeable membranes for solute transport [3]. During groundwater resaturation through 

the host rock or buffer clay containing minerals, complex chemical reactions may occur which 

change the groundwater chemistry [4]. Where a semi-permeable membrane is developed 

chemical osmosis may induce water flow including changes in flow direction. Chemical 

osmosis may then significantly change the flow direction. Another important factor is that clay 

minerals (e.g. smectites) may swell in contact with groundwater, such that the combination of 

chemical osmosis and swelling of minerals may exert an important influence on the effective 

fluid permeability and contaminant flux within a barrier.  
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Some work has been published related to chemical osmosis around nuclear waste containers 

[5-7], and Darcy’s Law has then been extended by including chemical osmosis for very low 

permeability rocks [8, 9]. Recently, Chen and Hicks (2013)[10] considered chemical osmosis 

in unsaturated conditions for I/LLW, due to H2 that may be generated from the chemical 

reactions with the waste containers. However, further research is needed for unsaturated 

chemical osmosis in rocks which exhibit potential swelling properties according to their 

mineralogy and groundwater chemistry in contact with them.  

 

There are two major approaches in modeling coupled fluids in deformable porous media: 

Mechanics approach and Mixture theory, as discussed by Chen[11]. The Mechanics approach 

is based on the classical consolidation theories of Terzaghi [12] and Biot [13, 14]. Work done 

in this approach in Geomechanics includes coupled hydro-mechanical models [15-19], and 

coupled thermo-hydro-mechanical-chemical models [20-22]. However, the Mechanics 

approach lacks systemic self development theory [23].   

 

The rigorous theoretical framework of Mixture theory, first developed by Truesdell in 1957 and 

used for modelling of biological tissues, was most recently extended by Rajagopal et al. [24-

28]. Rajagopal and Tao (1995, 2005) have also re-examined Biot’s equations and placed them 

within the context of the theory of mixtures, concluding that Biot's approach can be obtained 

as a special case of Mixture theory [24, 29]. However, as Mixture theory maintains the 

individuality of the phases, it is very difficult to obtain information on the interaction between 

the phases. This has restrained the application of Mixture theory, as discussed by Rajagopal et 

al. (1986) [24, 25].   

 

Mixture Coupling theory (formerly known as Modified Mixture Theory) is based on the 
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approach proposed by Heidug and Wong, which does not explicitly discriminate between solid 

and fluid phases, but views a fluid-infiltrated material as a single continuum. Chen et al. [10, 

30-32] have continued extended Mixture Coupling theory to unsaturated, non-isothermal 

conditions, and compared this with the traditional Mixture theory and Mechanical approaches. 

In this paper, a new coupled formulation, including combined chemical osmosis and hydration 

swelling in unsaturated conditions, is developed by using Mixture Coupling theory. Helmholtz 

free energy is used to bridge external couplings (between the porous medium and fluid) and 

internal coupling (between different multiphase flows). Reflection and swelling coefficients, 

which are a measure of the efficiency for the osmotic transport and swelling capacity, are added 

in the coupled formulation.   

 

2 Balance laws for the open system 

In a porous medium such as a rock or soil, an arbitrary sub-region V is studied, with boundary 

S assumed to be attached to the solid phases, ensuring no solid movement across the boundary,. 

Two fluxes, a water flux and a chemical flux, are allowed to pass the boundary. To simplify the 

analysis, (1) only one chemical in the water is considered and the chemical potential of the 

solute and water are c and w , respectively; (2) gas transport is ignored, but the unsaturated 

influence is still considered assuming that the gas phase is continuous in the unsaturated zone 

and remains at atmospheric pressure, 0atmp   [33, 34].   

 

2.1 Flux and density  

The flux (chemical/water) may be defined as  

 ( )s   I v v  (1) 

In which Iȕ is the flux of fluid ȕ (ȕ=w denotes water, and ȕ=c denotes chemical),   and v
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are density and velocity, respectively. sv represents the velocity of the solid phase.  

The total fluid mass density f can be defined as  

 f w c     (2) 

The fluid barycentric velocity may then be defined as the mass flux divided by the mass density, 

that is  

 ( / ) ( / )f w f w c f c    v v v  (3) 

Since the diffusive fluxes of the water and chemical, relative to the barycentric motion, can be 

written as  

 ( )f   J v v  (4) 

the relationship between I  and J  is 

 ( )f s    J I v v  (5) 

 

2.2 Balance equations for thermodynamically open system  

The balance equations for the open system have been discussed in detail in [35], but to complete 

the analysis, the details are repeated here. The balance equation for Helmholtz free energy may 

be obtained as [11, 35]   

   ( )s w w c c

V S S V

D
dV dS dS T dV

Dt
            ın v I I n  (6) 

where ȥ is the Helmholtz free energy density, ı  is the Cauchy stress tensor, n  is the outward 

unit normal vector, T  is the constant temperature and    is the entropy production per unit 

volume, and where the material time derivative is given by  

 s
t

D

Dt
   v  (7) 

Since there is no solid mass flux into the sub-region, the balance equation for the solid is  
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   0s

V

D
dV

Dt
    (8) 

where the solid density is denoted by s . 

Because V is open with respect to the exchange of fluid mass (water and chemical), the balance 

equation for the fluid can be expressed as  

  
V S

D
dV dS

Dt
      I n  (9) 

 

2.3 Localized version of balance equations  

The balance equation for the free energy can be obtained by using Reynold’s transport theorem,  

as 

 ( ) ( ) 0s s w w c c T           v ıv I I  (10) 

The balance equation for the solid mass is   

 0s s s   v  (11) 

and for fluid components is   

 0s      v I  (12) 

The fluid component mass density   can be expressed relative to the unit volume of the fluid-

solid mixture. Specifically, it is related to the true mass density t
  through  

 t
      (13) 

where   is the volume fraction of the relevant fluid component. If fS is the saturation of the 

fluid, the relationship between   and the porosity of the medium   is given by 

 fS   (14) 
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3 Entropy production and extension of Darcy's Law  

3.1 Entropy production  

Based on the assumption that only one dissipation mechanism is generated due to the friction 

at the solid/fluid boundary, by using standard arguments of non-equilibrium thermodynamics 

[36], the dissipation generated may be described as  

 0 w w c cT       I I  (15) 

As Darcy velocity can be expressed as 

 ( )f f sS  u v v  (16) 

then, by introducing equation (5),  the entropy production of the fluid can be written as  

 0 ( )w w c cT p         u J J  (17) 

There is a direct relationship between cJ  and wJ , as they have to satisfy  

 0w c J J  (18) 

The Gibbs-Duhem equation for the fluid can also give the relationship between porep  and  c  

as 

 w w c c
t t porep        (19) 

where porep denotes the pore pressure of the fluid mixture (that is, of the water, chemical and 

gas combined). Note that the gas chemical potential is assumed to be zero in equation (18) [37]. 

Based on above analysis, the entropy production leads to  

 0 ( )c c wT p        u J  (20) 

 

3.2 Phenomenological equations 

Phenomenological equations can be used to obtain the linear relationship between flows and 

corresponding driving forces [36]. The relationship of Darcy flow and the major driving force 
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p  , the diffusive flow cJ  and the major driving force ( )c w    may be described as  

 11 12( / ) ( )f f c w
t tL p L        u  (21) 

 21 22( / ) ( )c f c w
tL p LJ          (22) 

where ijL  denotes a set of phenomenological coefficients. In the above equations, the coupling 

influence of driving force on the flow can be included. Here, the mass transport is assumed to 

be through an isotropic medium. 

 

3.3 Chemical potential and chemical concentration  

The relationship of chemical potential and chemical concentration can be obtained by using the 

Gibbs-Duhem equation [36] for the fluid at constant pressure as 

 ( ) ( ) 0c c w w
p pC d C d    (23) 

where cC  and 
wC  are the solute and diluent mass fractions, respectively, which can be defined 

as  

 / /c c f c f
t tC      , / /w w f w f

t tC       (24) 

Also,  

 
1

( ) ( )
c

c w c w c
w c

p C
C C

    
      


 (25) 

where (1/ )c
c t

cC

 



  and (1/ )w

w t
wC

 



  denote the partial specific volumes of the solute and 

diluent, respectively. These quantities satisfy the thermodynamic identities,   

 
( )c

c

p

 



, ( )w

w

p

 



 (26) 

In addition, if ( ) 1f c w
t f f   , then equations (21) and (22) can be rewritten as  

 ( )
f c

crw t
w c

k
k p r C

C C

 



    


u   (27) 
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 c f f c
t t

p
L D C

p
 

  J  (28) 

where 

 
 

11

2
rw

f
t

k L
k
 

 , 
21

11

L
r

L
  , 

 
21

2f
t

L p
L


 , 

 
22

2

c

cw f
t

L
D

CC









 (29) 

and   is the fluid’s dynamic viscosity. 
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4 Equations of state 

4.1 Basic equation of state 

Based on the assumption that the rock maintains mechanical equilibrium, and also in the 

absence of volume forces, ı 0  , by using equations (10),   can be written as  

  : 0s s w w c c          v v I I    (30) 

By using continuum mechanics and equations (30), this leads to   

 ( ) w w c ctr m m    TE  (31) 

  J  , tm J J        (32) 

where  is the free energy in the reference configuration, and m  is the mass density of the 

fluid component in the reference configuration. The deformation state of the porous media, 

based on continuum mechanics, may be described as follows:  

If X   is an arbitrary reference configuration with a position x   at time t  , the relationships 

between the Green strain E, deformation gradient F, second Piola-Kirchhoff stress T  and J

(the Jacobian of F ) are      

 ( , )t





x
F X

X
, 1

( )
2

 TE F F I , 
0

dV
J

dV
 , sJ J v , 1J  -TT F ıF  (33) 

 

4.2 Helmholtz free energy density of fluids  

The pore fluids exist in both pore space and clay platelets. Thermodynamic relationships can 

only be used for the bulk fluids in the pore spaces, hence the Helmholtz free energy density of 

the pore fluid, pore , can be rearranged as  

 c c w w
pore pore t tp         (34) 

where porep  is the pore pressure.   
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According to the Gibbs-Duhem equation, this leads to   

 c c w w
pore t tp       (35) 

From equation (34) 

 c c w w c c w w
pore pore t t t tp                      (36) 

Hence, by introducing equation (35) this leads to   

 c c w w
pore t t       (37) 

 

4.3 Free energy density of the solid matrix  

The total free energy   Can be viewed as the combination of (1) the free energy of the 

combined solid/fluid matrix including water bounded between clay platelets, which may be 

named as “wet matrix”, and (2) the contribution of the pore fluid. Then the free energy of the 

“wetted matrix” can be obtained. Note the influence of gas has been ignored here to simplify 

the discussion, but the unsaturated influence has been included in the porep .  

 ( ) ( ) w w
pore pore boundJ tr p mTE       (38) 

where J    is pore volume per unit referential volume, w w w
bound w porem m JS     is the 

referential mass density of the bound water. Then dual potential can be written as  

 ( ) w w
pore pore boundW J p m       (39) 

By expressing W  as a function of E  and porep and w , the expressions for T ,   and w
boundm  

can be derived. Equation (39) implies that the time derivative of ( , )poreW E p   satisfies the 

relationship  

 ( , , ) ( ) w w
pore boundW p tr p mE TE      (40) 

so that  
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, w

pore

ij
ij p

W
T

E


 
    

, 
, w

ij
pore E

W

p



 

       

,
,ij

w
bound w

E p

W
m


 

   
 (41) 

and also  

 
,, ,

( , )
w w

ijpore ij

w
ij pore w

ij pore E pp E

W W W
W p E p

E p
E

 




       
                

 (42) 

 

The fundamental constitutive equations for the evolution of stress, pore volume fraction and 

mass of bounded water can be obtained by differentiating equations (41) with respect to time 

to give   

 w
ij ijkl kl ij pore ijT L E M p S     (43) 

 w
ij ij poreM E Qp B     (44) 

 
w k k w
bound ij ij porem S E B p Z       (45) 

where the parameters ijklL , ijM  , ijS , Q  , B  , Z are defined by the following equations:  

 

 
, ,

w w
pore pore

ij kl
ijkl

kl ijp p

T T
L

E E
 

   
          

 

 
ij pore

ij
ij

pore ijE p

T
M

p E

    
            

 

, , w
ij

l
ijk bound

ij k
ijE p p

T m
S

E



   

          
 

, ,, ,w w
ij ij

k l
kl bound bound

l k

E p E p

m m
Z

  
    

        
 

, ,
w

ij p ij

k
k bound

k
poreE E

m
B

p





   
          
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, w

ij
pore E

Q
p



 
    

 (46) 
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5 Chemical potential and transport  

The chemical potentials relationship may be obtained from equation (35) 

  1
( )w c c

pore tw
t

p  


   (47) 

The thermodynamic expression of solute chemical potential is given by the expression [36]  

 ( , ) ( )(ln )c c c
c

RT
g p T a

M
    (48) 

where R  is the gas constant, cM is the molar mass of the chemical, ca is the activity of the 

solute which is a measure of the ‘effective concentration’ of the solute in the mixture, and cg  

is a function that depends on pressure and temperature, which can be normally neglected 

because the dependence of c  on cg  is very weak. The relationship between ca and cx can be 

described as  

  c c
ca r x  (49) 

where cr  is the activity coefficient, which can be described as 1cr   if the solution is assumed 

to be ideal, so that the solute activity ca = cx . Note that the mole fraction cx  is related to the 

solute mass fraction cC  through  

 /( (1 ) )c c c c c c wC x M x M x M    (50) 

The chemical transport equation may be derived by using the partial mass equation (12), the 

mass density equation (13), equation (5) and the Euler identity:  

 ( ) ( ) 0f
tS J J       u J  (51) 

By introducing the mass fraction / f
t tC    and assuming the fluid to be incompressible, 

equation (51) can be rewritten as  

 ( ) ( ) 0f f f
t tS C C     u J  (52) 

Further consideration with 1C


   and 0


 J  , and summing over all the fluid 
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components leads to the relationship  

 ( ) ( ) 0f f f
t tS   u  (53) 

By invoking equation (53), equation (52) can be transformed to  

 ( ) 0f f f
t tS C C       u J  (54) 
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6 Final constitutive equations 

Equations (43) and (44), (45) show the general constitutive equations for multiphase flow in  

porous rock/soils. To simply the discussion, further assumptions are made based on physical 

and geometrical linearisation: (1) material non-linearity is not considered here the and non-

linearity is only of a geometrical nature and associated with large deformations, leading to the 

assumption that the parameters ijklL , ijM  and Q  are material-dependent constants. (2) small 

strain is adopted here so that Green Strain tensor ijE  and the Piola-Kirchhoff stress ijT  can be 

replaced by the strain tensor ij  and Cauchy stress ij , that is 

 ij ijE  , ij ijT   (55) 

(3) material isotropy is assumed here so that the tensor ijM  is diagonal and can be written in 

terms of scalar   

 ij ijM   (56) 

and the elastic stiffness ijklL  can be formed as a fourth-order isotropic tensor, 

 
2

( ) ( )
3ijkl ik jl il jk ij kl

G
L G K          (57) 

in which G is the rock shear modulus and K is the bulk modulus. 

 

6.1 Solid phase  

The defined changes in solid stress, volume fraction and bound water mass are described in 

equations (43) and (44) and (45) with independent variables, such as , ,

1
( )

2ij i j j id d     in 

which ,i jd (i,j=1,2,3) is the displacement component, the pore fluid pressure p  and the solute 

mole fraction sx . 
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If mechanical equilibrium is assumed, then  

 0ij

jx





 (58) 

This leads to rearrangement of the solid phase and pore volume fraction equations as  

 
2

( ) 2
3

w w
ij kk ij ij ij

G
K G p             (59) 

 w w
ii Qp B      (60) 

where the quantity   can be written related to the bulk moduli K  and sK  in a poro-elastic 

manner as 1 ( / )sK K    , and sK   is the bulk modulus of the solid matrix. The void 

compressibility Q  is related to the scalar  according to   

 (1/ )( )sQ K     (61) 

From equation (43), this leads to  

 2 1
( ) 0

1 2

D
D

D D
i i

G p p
G

x t x t
d d

 
  

                              
 (62) 

 

The average pore pressure p  in equation (62) is assumed to equal the pore pressure porep  in 

the mechanical equilibrium condition and, by assuming gas pressure can be ignored, this leads 

to   

 fp S p  (63) 

where p is the pore fluid pressure. 

 

Lewis and Scherefler (1987) [18] discussed the time derivative of p as  

 

 f sCp p
p S p

t t
 

 
 

 (64) 
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where sC is the specific moisture content, which is defined in terms of pressure. Hence, by 

using the definition of average pressure in equation (64),  

    (65) 

2 1
( ) ( ) ( ) 0

1 2

D
D f fs s

D D

G C C
G S p p S p pd d

 
    

                            
 

 

6.2 Fluid phase   

The equation for water transport with consideration of chemical osmosis may be obtained from 

equations (53) and (60) as 

1
( ) 0

ff
f f f f f f f f ct rw

t t t t t c c w

kS RT
S S Qp S k p r C

t t M C C

      


               
d  

  (66) 

By considering the rate of change of saturation and the water density function [18], 

 ( )
ff f f f

t
S Sf

t w w

S S p S p S p
C C

t t t K t K t

  


   
    

    
 (67) 

where wK is the bulk modulus of water, equation (66) can be rewritten as   

1
( ) ( ) ( ) 0

f
f f f f cs rw

S t c c w
w

C kp S p RT
S S Q S p C k p r C

t K t M C C
  

 
                 

d  

  (68) 

6.3 Chemical transport  

From equations (27), (28) and (54), the chemical transport equation can be obtained as    

 21 1
( ) 0f c f c c crw

t c c w

k RT
S C k p r C C L p D C

M C C p
 


                 

 (69) 
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7 Numerical simulation 

A simple one-dimensional model, which is similar to Heidug and Wong [6] and Chen and Hicks 

[31] was developed to demonstrate hydration swelling coupled with unsaturated chemical 

osmotic flow. The material parameter values in Table 1 were selected from the Tournemire site 

[38], with additional assumptions of osmotic reflection parameters and hydration swelling 

parameters.  

 

The geometry and boundary conditions of the numerical experiment are described in Fig 1. An 

increment of chemical mass fraction was applied to boundary A with initially unsaturated and 

free chemical in a plane rock specimen. The rock sample was assumed to be a non-swelling 

rock firstly, and then replaced with a swelling sample for comparison. Chemical transport will 

occur from boundary A, through which water will also flow out. During this process, coupled 

water and chemical transport will impose a different impact on the rock deformation, with 

different response for the non-swelling and swelling rock sample. The numerical simulation 

demonstrates the difference in due course.  

 

In the finite element analysis used for the numerical simulation, 60 equal-sized rectangular 

composite elements were used, with eight nodes for the displacement field and four nodes for 

pore fluid pressure and chemical mass fraction [31]. The initial and boundary conditions are 

set as the same in the example proposed by [31]: initially, the system is in mechanical 

equilibrium and the effective stress is zero, the pore fluid pressure is -4MPa with a 

corresponding saturation of 0.9951, following the van Genuchten [39] relationship. Boundary 

A is freely permeable, and the chemical mass fraction is increased from 0 to 0.35 at the 

beginning.    
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Time points of 40 hours and 400 hours, which represent short and long term periods, were 

selected to analyse the results. The chemical mass fraction increases with time in both the non-

swelling and swelling rock [Fig 2]. For this paper attention was focused on the effect of 

hydration swelling on the mechanical performance; the influence of swelling on the porosity 

change was ignored to simply the discussion. Thus, the chemical transport for both swelling 

and non-swelling rock scenarios is identical [Fig 2].  

 

The influence of swelling on the mechanical performance during chemical osmosis is shown 

in Fig [3]. The displacement keeps increasing over time from 40 to 400 hours. However, the 

swelling rock has a better resistance to consolidation, demonstrated by less displacement in the 

same time point. The effective stress difference in Fig [4] shows an insight overlook of the 

difference for displacement change. The effective stress for swelling rock is less than that for 

the non-swelling rock. This is because swelling potential caused by the molecular water in clay 

platelets resists  to consolidation (section 4.2 in this paper). 

 

The degree of saturation remains the same for swelling and non-swelling rock, as the molecular 

water absorbed into the clay platelets may be a very small amount in a nearly saturated 

condition, compared with the water volume in the pore space. In this analysis, the swelling 

coefficient is assumed to be 0.2, although in some highly swelling material the absorbed water 

may need to be taken into account for future research. As this study focused on the influence 

of swelling, the analysis related to chemical osmosis, which can found in Chen & Hicks [31], 

will not be duplicated here. 
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8 Conclusions 

In this study, Mixture Coupling theory has been further extended by including hydration 

swelling into chemical osmosis, resulting in a new constitutive unsaturated coupled hydro-

mechanical-chemical model. Modified Mixture theory has the potential to bridge geophysics 

and geochemistry under a single unified theory. By using non-equilibrium thermodynamics, 

the mechanical energy and fluid energy have been combined for the analysis.   

 

Hydration swelling and chemical osmosis in an unsaturated condition may have an important 

engineering application, such as nuclear waste disposal, in which the clay material used as a 

barrier to encapsulate the waste may swell, and function as a semi-permeable membrane. 

Another example is shale borehole drilling, in which both the swelling and osmosis may be 

important for instability problem of borehole wall. The new mathematical model presented in 

this paper may provide a more accurate modelling tool for such engineering problems. The 

simple numerical simulation in this paper clearly demonstrates the important influence of 

hydration swelling in unsaturated low permeability rock. However a more sophisticated 

engineering application model may be needed in due course. Further research is needed to 

study the porosity change in highly swelling materials, as pore water pressure may affect the 

porosity.   
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Fig 1  Unsaturated rock analysis (not to scale) 
 

 
 

Fig 2 Evolution of chemical mass fraction distribution with time  
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Fig 3 Evolution of horizontal displacement distribution with time  
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Fig 4 Evolution of horizontal effective stress distribution with time  
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Fig 5 Evolution of degree of saturation distribution with time  
 
Table 1 Material parameters of host rock for nuclear waste disposal [27] 
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Parameters  Physical meaning  Values and units 

Hydraulics   

w
t  Density of water 1000 3kg/m  

/k   Absolute Permeability/Dynamic viscosity 10−13 m/s [2] 

m Van Genuchten  parameter  0.43  

M Van Genuchten  parameter  51 MPa  

Mechanics   

E  Young’s modulus 9720 MPa  

v  Poisson’s ratio 0.2  

Chemical    

D Diffusion coefficient  3.2*10−12  2m / s  [2] 

r Reflection coefficient  0.1 [6] 

Coupling   

ȗ Biot coefficient  1.0 

Q  Void compressibility 0.000005 MPa-1 

 

  

 

 


