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ABSTRACT 

Cardiac fibroblasts (CF) are well-established as key regulators of extracellular matrix (ECM) 

turnover in the context of myocardial remodelling and fibrosis. Recently, this cell type has 

also been shown to act as a sensor of myocardial damage by detecting and responding to 

damage-associated molecular patterns (DAMPs) upregulated with cardiac injury. CF express 

a range of innate immunity pattern recognition receptors (TLRs, NLRs, IL-1R1, RAGE) that 

are stimulated by a host of different DAMPs that are evident in the injured or remodelling 

myocardium. These include intracellular molecules released by necrotic cells (heat shock 

proteins, high mobility group box 1 protein, S100 proteins), proinflammatory cytokines 

(interleukin-1), specific ECM molecules up-regulated in response to tissue injury 

(fibronectin-EDA, tenascin-C) or molecules modified by a pathological environment 

(advanced glycation end product-modified proteins observed with diabetes). DAMP receptor 

activation on fibroblasts is coupled to altered cellular function including changes in 

proliferation, migration, myofibroblast transdifferentiation, ECM turnover and production of 

fibrotic and inflammatory paracrine factors, which directly impact on the heart’s ability to 

respond to injury. This review gives an overview of the important role played by CF in 

responding to myocardial DAMPs and how the DAMP/CF axis could be exploited 

experimentally and therapeutically.        
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1. Introduction to the Cardiac Fibroblast 

Cardiac fibroblasts (CF) have wide-reaching functions that are fundamental to the 

development, physiology and pathophysiology of the heart (extensively reviewed in [1-6]). In 

response to specific biochemical and biophysical stimuli, fibroblasts can undergo 

proliferation, migration and transdifferentiation into myofibroblasts; an ‘activated’ secretory 

phenotype that is able to contract the extracellular matrix (ECM) to aid healing after injury. 

CF are the major producers of ECM proteins in the heart, particularly collagens I and III and 

fibronectin, thereby contributing to both reparative/replacement fibrosis (e.g. in the infarct 

region after myocardial infarction [MI]) and diffuse reactive fibrosis (e.g. in the non-infarcted 

myocardium after MI, or with hypertension, pressure/volume overload, diabetes and ageing). 

In addition, CF secrete a variety of ECM-degrading proteases (e.g. matrix 

metalloproteinases [MMPs]), as well as tissue inhibitors of metalloproteinases (TIMPs) [7], 

thus being able to fine-tune ECM turnover at multiple levels. An important form of 

communication between CF and other cardiac cell types is a paracrine system involving 

local production of soluble mediators (e.g. growth factors, cytokines) that can influence 

multiple aspects of function in adjacent cells [8,9]. The composition of the local biochemical 

micro-environment surrounding cardiac cell types is therefore a major determinant of acute 

and chronic cellular responses and hence cardiac function.  

 MI confers a rapid and catastrophic change on the structural and cellular composition 

of the heart. The healing response post-MI can be divided into three main phases; the 

inflammatory phase, the granulation phase and the maturation phase, all of which involve CF 

[10]. The inflammatory phase occurs rapidly after cardiac injury and is characterised by local 

up-regulation of proinflammatory cytokines (e.g. interleukin [IL]-1, IL-6, tumour necrosis 

factor  [TNF]) by cardiac and inflammatory cells together with widespread neutrophil 

infiltration. The granulation phase takes place approximately 3 days post-MI and involves 

infiltration of the infarct area with macrophages and myofibroblasts, MMP-mediated ECM 

degradation and stimulation of angiogenesis. Once the infarct area has been cleared of 

necrotic cells and tissue, the maturation (healing) phase ensues, and this is characterised by 

upregulation of profibrotic and anti-inflammatory factors (e.g. transforming growth factor ȕ 

[TGFȕ]), IL-10), myofibroblast proliferation, collagen synthesis and scar contraction by 

myofibroblasts.  

CF play important roles in all three phases of post-MI remodelling. Fibroblasts are 

more resistant to oxygen deprivation than cardiomyocytes [11,12] and can therefore act as 

important sensors of myocardial damage early after MI, resulting both in direct modification 

of CF function (e.g. proliferation, migration, myofibroblast transdifferentiation, ECM turnover) 

and indirect effects mediated through paracrine signalling, including production of 
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chemokines and cytokines that facilitate recruitment and activation of inflammatory cells in 

the damaged area of the heart [1-6,9].  

 The remarkable versatility of CF in normal physiology, together with their emerging 

role in the acute and chronic responses of the heart to stress, injury and fibrosis make them 

an attractive target for therapeutic manipulation.    

  

2. Cardiac Fibroblasts as Sensors of Cell and Tissue Damage 

2.1. DAMPs and the heart 

The innate immune system plays a critical role in the initiation and progression of cardiac 

repair following MI [13-16]. The post-MI inflammatory response is a well-orchestrated 

process that is triggered by the injured myocardium and mediated by inflammatory cells 

including neutrophils and monocytes/macrophages. [17,18]. Molecular signals from the 

damaged myocardium modulate inflammatory cell function by activating cell surface or 

intracellular receptors of the innate immune system. These danger signals are collectively 

known as ‘damage-associated molecular patterns’ (DAMPs) or ‘alarmins’ and comprise a 

diverse range of molecules [13,14,19,20]. Known DAMPs that are relevant to the heart and 

wider cardiovascular system include intracellular molecules that are not normally accessible 

to the immune system (e.g. heat shock proteins [HSPs], high mobility group box 1 protein 

[HMGB1], histones, S100 proteins, RNA, mitochondrial DNA), cytokines released actively or 

passively from injured cells (e.g. IL-1), ECM degradation products (e.g. hyaluronate 

fragments), specific ECM molecules that are up-regulated in response to tissue injury (e.g. 

EDA splice variant of fibronectin [FN-EDA], tenascin-C [TN-C]) or molecules modified by a 

pathological environment (e.g. advanced glycation end product [AGE]-modified proteins 

observed with diabetes) [13,14,19,20]; see Figure 1. Elevated levels of DAMPs are 

associated with several inflammatory and autoimmune diseases (e.g. rheumatoid arthritis, 

multiple sclerosis, type 1 diabetes), as well as with atherosclerosis, obesity, type 2 diabetes 

and cancer [19,21].  

 Leukocytes are the main cellular effectors of the innate immune response; however 

the nature of DAMPs and the widespread expression of DAMP receptors suggests that 

inflammatory cells are not necessarily essential for DAMP responses. Indeed, it is becoming 

increasingly apparent that DAMPs can also act to modulate the function of non-myeloid 

resident cardiac cells (e.g. cardiomyocytes, fibroblasts and endothelial cells) to directly 

regulate aspects of cardiac inflammation and remodelling. The prevalence of fibroblasts, 

their relative tolerance of ischaemic conditions, and their widespread localisation throughout 

the heart enables them to respond to myocyte injury as well as to ECM degradation and/or 

modification. Until recently, research on DAMP signalling in cardiac ischaemia had focused 

almost exclusively on leukocytes and cardiomyocytes, with little known about the direct 
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responses of fibroblasts to DAMPs [13,22]. 

 

2.2. DAMP receptors and cardiac remodelling 

Individual DAMPs elicit their effects through activation of specific pattern recognition 

receptors (Figure 1), including Toll-like receptor (TLR) and NOD-like receptor (NLR) family 

members, the IL-1 receptor (IL-1R1) and the receptor for advanced glycation end products 

(RAGE); all of which are expressed at differing levels in various cardiac cell types. Activation 

of these receptors is often coupled to inflammatory responses driven by NFțB signalling 

[13,16], although proliferative, migratory and fibrotic outcomes have also been observed in 

response to different ligands [23-26].  

 TLRs comprise a family of at least 10 pattern-recognition receptors located on the 

cell surface (TLR1, 2, 4, 5, 6, 10) or intracellularly on lysosomal and endosomal membranes 

(TLR3, 7, 8, 9) that recognise a wide variety of microbial ligands and danger signals in the 

form of peptides, proteins and nucleotide fragments [14,27,28]. TLRs can form homodimeric 

and heterodimeric signalling complexes amongst themselves and with RAGE, and also 

interact with co-receptors (e.g. CD14, MD2); a complexity that contributes to the diversity of 

cellular responses to different DAMPs [29]. The IL-1R1 receptor is specifically activated by 

the two IL-1 isoforms, IL-1 and IL-1ȕ. Ligand binding to IL-1R1 stimulates recruitment of the 

IL-1 receptor accessory protein, IL-1RAcP, which is necessary for IL-1 signalling. There is 

significant commonality between TLR and IL-1R1 signalling [30]. Upon activation, both TLR 

and IL-1R1 receptor complexes recruit specific adaptor proteins (e.g. MyD88) that facilitate 

activation of IL-1 receptor activated kinases (IRAKs), resulting in stimulation of stress-

induced signalling pathways (e.g. NFB, JNK, p38 MAPK) and transcription of pro-

inflammatory cytokines (e.g. IL-1ȕ, IL-6, IL-8, monocyte chemoattractant protein-1). An 

alternative MyD88-independent (TRIF-dependent) pathway couples TLR3 and 4 activation to 

interferon regulatory factor-3 and expression of interferon-inducible genes (e.g. interferon-ȕ, 

CCL5, CXCL10). 

 NLRs are a large family of cytoplasmic receptors that recognise both microbial 

ligands and DAMPs and are coupled to inflammasome activation and inflammatory signalling 

pathways [31]. NOD1 and NOD2 are members of the NLRC subfamily that induce 

inflammatory signalling via kinase and caspase activation. Another major subfamily of NLRs 

comprises the NLRPs which are important activators of the inflammasome, a multi-protein 

complex comprising a NLRP, the ASC adaptor protein and caspase-1 that is important for 

proteolytic activation of specific proteins including IL-1ȕ and IL-18. Endogenous NLRP3 

ligands include ATP, S100A8/9, mitochondrial DNA, cholesterol crystals, serum amyloid A 

and hyaluronan [32]. 
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 RAGE is a transmembrane receptor that recognises not only AGE-modified proteins 

and lipids, but also a range of other non-AGE ligands including HMGB1 and S100 proteins. 

RAGE can form heterodimers with the ȕ2-integrin Mac-1 and with some TLRs and signals 

via multiple pathways including NFB, MAPKs and JAK/STAT [33]. 

 A full description of the role of the innate immune system in cardiac remodelling lies 

beyond the scope of the present article, but the reader is directed towards several excellent 

reviews that explore this in more detail [13-16]. Knockout mouse studies have proven useful 

for identifying specific roles for DAMP receptors in modulating cardiac remodelling after 

injury or stress (summarised in Table 1). Global knockout or deficiency of TLR2 [34-39], 

TLR3 [40,41] and TLR4 [42-56] generally confers improvement of cardiac function and less 

adverse remodelling after injury, although detrimental effects have also been reported in 

TLR2 knockout mice [57]. In contrast to the perceived detrimental roles of TLRs 2, 3 and 4 in 

post-MI remodelling, a recent study suggested that TLR5 may play a beneficial role in 

protecting the heart from ischaemia/reperfusion injury [58]. However, it is not clear what the 

endogenous ligand for TLR5 is in the damaged heart as its only known ligand is bacterial 

flagellin. Studies on IL-1R1 knockout mice have consistently shown beneficial effects on 

post-MI remodelling [59-61]. Only a few studies have investigated the role of NLRs in cardiac 

remodelling and different effects were observed depending on the cardiac injury model used. 

In a permanent left anterior descending coronary artery ligation model of MI, NOD2 knockout 

mice had improved cardiac function and reduced inflammation [62]. However in an aortic 

banding model of pressure overload, NOD2 deletion exacerbated adverse myocardial 

remodelling [63]. Although results from NOD1 knockout mice have not been reported for the 

heart, NOD1 activation induced cardiac dysfunction with increased cardiac fibrosis and 

cardiomyocyte apoptosis [26], suggesting a detrimental role for this receptor in this context. 

RAGE knockout has beneficial effects following myocardial ischaemia/reperfusion injury 

[64,65], in keeping with other studies focused on RAGE activity in cardiac remodelling [66]. It 

is of course worth noting that knockout mouse studies have their limitations, however they 

can be very informative for determining the role of proteins particularly where other tools are 

lacking. It should also be noted that global knockout mice have genes ablated in all cell 

types, so ascribing distinct roles for DAMP signalling specifically to CF in these studies is 

difficult.  

     

2.3. DAMP receptor expression in cardiac fibroblasts 

The exact ligand/receptor systems that couple DAMPs to changes in fibroblast function in 

the injured heart are only just beginning to emerge, and recent evidence suggests the 

DAMPs/fibroblast axis is important in both inflammatory and fibrotic responses of the heart to 

damage [25,67,68]. Identification and characterisation of these systems is important for 
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designing novel therapies for reducing post-MI damage [14,69]. The remainder of this review 

will focus on our current knowledge about the interaction between DAMPs and CF.  

 CF express multiple DAMP receptors including TLRs, NLRs, IL-R1 and RAGE. All 10 

TLRs are expressed at the mRNA level in human heart, with TLR4 being most abundant, 

followed by TLR2 and 3 [70]. At the cellular level, isolated rat and mouse cardiomyocytes 

express TLR2, 3, 4 and 6 [71,72], but TLR expression in fibroblasts is less well 

characterised. However, there is evidence for functional expression of TLR2 [57,73], TLR3 

[73], TLR4 [68,73,74] and TLR9 [73,75] in CF. Of the known members of the NLR family, CF 

express NOD1 and NOD2 [26,62], as well as the inflammasome-associated NLRP3 [73,76] 

RAGE is expressed in several cell types within the heart [64] and in cultured human and 

rodent CF [23,77-79]. 

 The range of different DAMP receptors expressed by CF, coupled with the wide 

variety of DAMP ligands that activate these receptors (Figure 1 and 2), suggests that 

fibroblasts are a particularly important cell type within the cardiac innate immune system.  

 

2.4. Effects of DAMPs on cardiac fibroblast function 

Several recent studies [25,67,68] have added significant credence to the hypothesis that CF 

can act as sensors of cell and tissue damage in the heart, triggering both inflammatory and 

fibrotic responses as a consequence of passively released DAMPs from damaged cells. 

Moreover, CF are also able to react to changes in ECM composition, for example in 

response to AGE-modified collagen [23] or FN-EDA [74]. Table 2 provides a summary of 

specific studies relating to soluble DAMPs and CF activation. Figure 2 summarises the 

known molecular mechanisms by which extracellular DAMPs can modulate CF function. 

 

2.4.1. S100 proteins 

The S100 proteins are a large family of dimeric calcium-binding proteins that are important 

for calcium buffering and intracellular signalling, but can also act as extracellular signalling 

molecules when released from cells actively or passively [80]. Indeed, several S100 proteins 

act as important DAMPs that are released from leukocytes and act on target cells primarily 

via TLR4 and RAGE activation [81]. 

 S100A1 is the most abundantly expressed S100 isoform in cardiomyocytes and can 

be released from damaged cardiomyocytes after ischaemia/reperfusion injury, resulting in 

increased serum levels [68,82]. It was shown recently that cardiomyocyte-derived S100A1 is 

taken up by surrounding CF through endocytosis and activates MAPK/SAPK and NFB 

signalling pathways in CF in a TLR4/MyD88-dependent (RAGE-independent) manner [68]. 

S100A1 stimulated an anti-fibrotic phenotype in CF (increased expression of MMP-9 and 

reduced expression of collagen I, -smooth muscle actin and connective tissue growth 
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factor) and conferred a complex immunomodulatory phenotype involving changes in both 

pro- and anti-inflammatory factors [68]. In a mouse MI model, anti-S100A1 neutralising 

antibody increased infarct size, increased fibrotic markers and increased cardiac dysfunction 

[68] suggesting that S100A1 plays a beneficial role in the heart’s response to injury. 

 S100 proteins released from other cell types present in the injured heart may also 

elicit some of their effects through CF stimulation. For example the S100A8/A9 heterodimer 

is abundantly expressed in neutrophils and monocytes and can induce neutrophil 

chemotaxis through TLR4 and RAGE activation, thereby amplifying the inflammatory 

response [83]. In a mouse model of cardiac damage and inflammation in response to 

angiotensin II infusion, S100A8/A9 was shown to be actively released from CD11b+Gr1+ 

neutrophils [79]. S100A8/A9 modulated expression of >200 genes in CF, including many 

related to chemokine and cytokine activity and chemokine receptor binding [79]. As well as 

inducing neutrophil migration, S100A8/A9 was also chemotactic for CF, an effect mediated 

via RAGE [79]. Administration of an anti-S100A9 neutralising antibody to Ang II-infused mice 

reduced cardiac myofibroblast accumulation and fibrosis without affecting hypertension, and 

suppressed cardiac inflammation, indicating that S100A9 contributes to myocardial injury 

and inflammation at least partly through effects on fibroblasts [79]. In another recent study, 

S100A8 and S100A9 were identified in supernatants released passively from necrotic 

cardiac tissue and were shown to stimulate fibroblast proliferation [25]. 

 Together these studies reveal that S100 proteins, released either directly from injured 

cardiomyocytes or from infiltrating inflammatory cells, can induce CF to adopt an 

inflammatory anti-fibrotic phenotype as a result of TLR4 or RAGE activation.   

 

2.4.2. Interleukin-1 

IL-1 comprises two distinct gene products (IL-1 and IL-1ȕ) with seemingly indistinguishable 

biological activities that play a significant role in the pathogenesis of inflammatory heart 

disease [84-86]. IL-1 is an intracellular cytokine that is released when cells undergo 

necrosis and was originally shown to be a key trigger for sterile inflammation in the liver [87]. 

In contrast to IL-1, IL-1ȕ requires proteolytic processing by the inflammasome for activation 

and is secreted from cells in response to specific stimuli. Increased myocardial IL-1/ȕ levels 

are observed with several cardiovascular pathologies including MI, cardiomyopathy, 

hypertension and myocarditis [84-86]. In studies using knockout mice, IL-1R1 deletion led to 

smaller infarcts, less inflammation and reduced cardiac dysfunction following MI [59-61].  

 We have previously demonstrated that human CF are very responsive to IL-1 [88], 

which is expressed by cardiomyocytes [89] and CF [90] and can act as a DAMP when 

released from damaged or dying cells [67,87]. In response to IL-1 stimulation, human CF 
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secrete a host of proinflammatory cytokines (e.g. IL-1ȕ, IL-6, TNF-) and neutrophil-

attracting chemokines (e.g. CXCL-1, 2, 5 and 8), and express specific neutrophil-binding 

adhesion molecules including ICAM-1 and E-selectin [88,90-93], as well as the matricellular 

protein TN-C [94]. Thus, CF may contribute to the inflammatory milieu that occurs in the 

myocardium early after MI [10,95]. In addition to this inflammatory response, we 

[7,88,93,94,96-98] and others [61,99,100] have demonstrated that CF alter the balance of 

cardiac ECM turnover in favour of degradation in response to IL-1; for example by increasing 

secretion of MMPs, decreasing collagen synthesis and decreasing expression of profibrotic 

factors (e.g. connective tissue growth factor).  

It was reported recently that IL-1 was released from necrotic cardiac tissue [25] and 

necrotic cardiomyocytes [67] and could act as a danger signal to modulate CF function. 

Conditioned medium from necrotic neonatal mouse ventricular myocytes induced 

inflammatory signalling pathways (ERK, p38, JNK, NFțB) and IL-6 and monocyte 

chemoattractant protein-1 expression and secretion in mouse ventricular fibroblasts [67]. 

The inflammatory effect on CF was mediated in a Myd88-dependent but TLR-independent 

manner, suggesting a possible role for the IL-1 family of cytokines acting via IL-1R1/Myd88 

[67]. Necrotic cardiomyocytes were found to release IL-1 (but not IL-1ȕ) and the effect of 

conditioned medium was eliminated upon addition of an IL-1 receptor antagonist or an IL-1 

neutralising antibody. Finally, it was shown that after experimental MI, plasma inflammatory 

markers and neutrophil infiltration were markedly reduced in IL-1-/- knockout mice 

compared with wild type mice, suggesting that IL-1 contributed to the post-MI inflammatory 

response [67]. IL-1 knockout did not influence infarct size or plasma markers of myocardial 

damage [67]. 

 Thus, IL-1 is emerging as a potentially important therapeutic target for controlling 

both inflammatory and fibrotic responses after MI through effects on CF [88]. A similar role 

for IL-1 in atherosclerosis has also been proposed [101], making IL-1-selective inhibitory 

strategies an attractive proposition for treating a range of cardiovascular diseases. A number 

of previous studies have focused exclusively on inhibiting IL-1ȕ or the IL-1R1 receptor and 

clinical trials are currently underway to assess blanket IL-1 inhibition as a therapeutic 

strategy for inflammatory heart disease [102]. However, it remains to be established whether 

IL-1-selective targeting can offer increased specificity and improved outcome after MI.   

 

2.4.3. High mobility group box 1 protein 

HMGB1 is a highly conserved nuclear DNA binding protein that acts as a transcriptional 

regulator as well as playing roles in maintaining genome stability and DNA repair. In 

addition, HMGB1 can act as a potent DAMP when released passively from necrotic 
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nucleated cells, or actively by stressed monocytes/macrophages. HMGB1 stimulates several 

DAMP receptors including TLR2, TLR4, TLR9 and RAGE [103]. Several studies have 

investigated the role of HMGB1 in cardiac remodelling after myocardial injury, and conclude 

that HMGB1 plays either favourable or unfavourable roles depending on the nature of the 

initiating injury [13]. In models of MI with no reperfusion (less inflammation), HMGB1 

appears to play a beneficial role, whereas in ischaemia/reperfusion models (more 

inflammation), HMGB1 is generally detrimental [13]. This may relate to valuable profibrotic 

healing effects in non-reperfusion models, compared with amplification of the inflammatory 

response in reperfusion models; scenarios in which fibroblasts may be important effectors.    

 There are several studies that have investigated the effects of HMGB1 on in vitro CF 

function (summarised in Table 2). The consensus is that HMGB1 stimulates CF to adopt a 

migratory, proliferative, pro-fibrotic phenotype via activation of TLR2 and TLR4 receptors 

and ERK/AKT pathways [25,77,104-107]. However, opposing results have also been 

reported with HMGB1 inducing anti-fibrotic effects through inhibition of TGFȕ/Smad 

pathways [108]. Some of the beneficial effects of HMGB1 injection on cardiac function after 

MI appear to be due to increased differentiation of cardiac progenitor cells to 

cardiomyocytes; a paracrine effect driven by HMGB1 acting on CF to upregulate growth 

factors, cytokines and chemokines [106]. 

 In a recent study, supernatants from freeze/thawed myocardial tissue (a model for 

myocardial cell necrosis/lysis) were found to contain HMGB1, as well as several other 

DAMPs including galectin-3, S100A8/A9 and IL-1 [25]. This mixture of myocardial DAMPs 

induced functional changes in CF, including increased cell proliferation, -smooth muscle 

actin expression (a marker of myofibroblast transdifferentiation) and collagen I and III 

expression. Similar responses were observed in the NIH/3T3 fibroblast cell line, in which 

subsequent mechanistic studies were explored. These identified HMGB1 (and galectin-3) as 

being the main components of the DAMPs extract that could directly induce fibroblast 

proliferation and collagen expression [25]. These profibrotic effects were mediated via TLR4 

and RAGE receptors acting through ERK and Akt pathways. Importantly, injection of 

myocardial DAMPs into the LV apex of mouse hearts produced an inflammatory and fibrotic 

response that was not evident in TLR4-/- knockout mice, implicating TLR4 as being key for 

the response to myocardial DAMPs in vivo. Finally, it was shown that these effects of 

myocardial DAMPs, and the role of TLR4, could be mimicked by ventricular injection of 

HMGB1 in mice [25]. 

 HMGB1 is one of the most extensively studied DAMPs in many systems and has 

been shown to induce a plethora of downstream effects through its ability to activate a 

number of innate immune receptors. In CF, HMGB1 is coupled mostly to profibrotic effects 
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(e.g. migration, proliferation, collagen synthesis) and appears to play both beneficial and 

detrimental roles in cardiac repair and remodelling. Hence, if HMGB1 is to be considered as 

a realistic therapeutic target then great care will be needed to ensure its targeting is 

appropriate to both the type of pathology (ischaemic vs. reperfusion vs. non-ischaemic) and 

the stage of pathology being studied.  

 

2.4.4. Heat shock proteins 

HSPs comprise a highly conserved family of proteins that have diverse actions involved in 

protecting cells against various types of cellular stress. A number of HSPs are also known to 

act as DAMPs when released from necrotic cells including HSP60, HSP70 and HSP27. The 

inflammatory response to myocardial ischaemia/reperfusion is mediated in part via cellular 

release of cardiac HSP60 acting via TLR4 to induce cardiomyocyte apoptosis and cytokine 

release [51,109], although it is not clear whether CF play a role in this. HSP70 is also 

released into the circulation early after MI, and extracellular HSP70 stimulated inflammatory 

cytokine release from monocytes via TLR4 [110]. Extracellular HSP70 activated rat CF 

proliferation and proinflammatory cytokine expression via TLR2 activation and was important 

for the response to pressure overload in this model [57]. Finally, human myocardium has 

been shown to exude HSP27 after global ischaemia which can trigger a proinflammatory 

effect through TLR2 and TLR4 [111]. Thus, HSPs represent an important class of myocardial 

DAMPs that can elicit inflammatory effects in the myocardium. Specific roles for CF in these 

responses are beginning to emerge [57], but have yet to be fully defined.  

 

2.4.5. Modified ECM components 

Fibronectin-EDA 

FN is an adhesive glycoprotein that is a major constituent of the ECM. The alternatively 

spliced FN-EDA isoform is upregulated in the infarct area after MI [112] and is important for 

myofibroblast transdifferentiation [6,113]. FN-EDA is a ligand for TLR2 [114] and TLR4 [115], 

stimulating proinflammatory signalling, myocardial inflammation and ECM turnover [112]. 

FN-EDA acting via TLR4 stimulates dermal fibroblasts to adopt a migratory myofibroblast 

phenotype with increased collagen synthesis as well as upregulated inflammatory responses 

such as IL-6 production [116]. FN-EDA has also been shown to upregulate cyclooxygenase-

2 expression and down-regulate connective tissue growth factor expression in adult rat CF 

[74]. Despite having similar infarct sizes, FN-EDA knockout mice exhibit less LV dilatation 

and enhanced systolic performance compared with wild-type mice after experimental MI 

[112]. FN-EDA knockout mice also exhibited less post-MI inflammation, MMP2/9 activity, 

myofibroblast differentiation and remote fibrosis than wild type mice [112]. 
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Tenascin-C 

TN-C is a large hexameric matricellular glycoprotein that is normally expressed at low levels 

in the adult heart but is markedly upregulated in response to myocardial damage [117,118]. 

TN-C is a ligand for several integrin receptors [119], as well as for TLR4 [120]. In synovial 

fibroblasts, TN-C has been shown to couple to proinflammatory cytokine expression via 

TLR4 activation [120]. 

 TN-C is produced by a wide variety of cardiovascular cell types [118], including CF 

[94,117]. TN-C expression is an independent predictor of mortality in patients with dilated 

cardiomyopathy [121] and serum TN-C levels are a potentially useful predictor of LV 

remodelling and prognosis after MI [122]. A number of preclinical murine studies have shown 

that TN-C knockout improves cardiac remodelling and fibrosis after MI [123] or Ang II 

infusion [124]. TN-C knockout mice also exhibit delayed recruitment of myofibroblasts after 

MI [125]. Indeed, TN-C can directly stimulate CF migration and myofibroblast 

transdifferentiation [125]. In addition to direct effects, TN-C may have indirect effects on CF 

for example by inducing IL-6 production from macrophages with resultant increased collagen 

production by CF [124].  

 

AGE-modified collagen 

Type 2 diabetes mellitus is a rapidly escalating health problem that has reached epidemic 

proportions. The main cause of death in individuals with type 2 diabetes is cardiovascular 

disease, and diabetes is a well-established independent risk factor for cardiovascular 

disease. One of the characteristics of a particular cardiomyopathy observed in diabetic 

patients is diastolic dysfunction in which increased ECM stiffness impairs the ability of the 

heart to relax [126,127]. Hyperglycaemia that occurs with both type 1 and type 2 diabetes 

leads to formation of AGEs; proteins and lipids that become non-enzymatically glycated and 

oxidized after prolonged exposure to glucose [128]. This is particularly problematic for long-

lasting proteins with low turnover rates, such as collagens. AGEs mediate intermolecular and 

intramolecular collagen cross-links, leading to increased collagen stiffness and resistance to 

proteolytic digestion which manifests as increased ECM stiffness and diastolic dysfunction.  

In addition to direct effects on collagen structure, AGEs can modulate cardiac 

function through RAGE activation [24,128]. For example, AGE-modified proteins can induce 

CF proliferation and collagen production in an angiotensin II-dependent manner [23]. Several 

recent studies on CF derived from type 2 diabetic patients or diabetic animal models have 

reported that fibroblasts from diabetic hearts possess an inherent pro-fibrotic phenotype, 

including elevated collagen synthesis, myofibroblast transdifferentiation and, in some cases, 

upregulation of RAGE expression [24,78,129,130]. 
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It is clear that a number of components of the ECM that are modified under pathological 

conditions can act as DAMPs. Much of the evidence for this has come from knockout mouse 

models and in vitro cell culture studies, so it remains to be seen whether these modified 

ECM components can be targeted therapeutically. The commonality of DAMP receptor 

signalling by these ligands (predominantly via TLR4 and RAGE; see Figure 2) indicates that 

receptor inhibition may be one such approach. Strategies targeting RAGE activation may be 

particularly attractive for reducing myocardial fibrosis observed in diabetic patients.  

 

2.4.6. NOD-like receptors and the inflammasome 

Both NOD1 and NOD2 are expressed by CF and appear to play important roles in regulating 

cardiac remodelling [26,62]. A NOD1-specific ligand (C12-iE-DAP) induced NFțB and TGFȕ 

pathway activation in CF, and promoted inflammatory signalling, apoptosis, fibrosis and 

cardiac dysfunction in mice [26]. NOD2 expression was elevated in the infarcted area in a 

mouse MI model, and NOD2 knockout mice had improved cardiac function, less 

inflammation and less remodelling after MI compared with wild-type animals [62]. An 

important role for fibroblasts was suggested in this model as NOD2 activation induced MAPK 

signalling, proinflammatory cytokine production and MMP-9 activation in CF; outcomes that 

were inhibited by NOD2 RNA interference [62]. Most known NOD1/2 ligands are pathogen-

associated molecular patterns, rather than DAMPs, so the precise DAMP ligands that 

activate NOD1 and NOD2 receptors in the heart requires further analysis. 

 NLRPs are an essential component of the inflammasome and, in combination with 

the ASC adapter protein, are able to activate caspase-1 and stimulate IL-1ȕ activation. CF 

express NLRP3 [73,76] and studies on ASC and caspase-1 knockout mice have revealed an 

essential role for the inflammasome in fibroblasts, but not cardiomyocytes, in the initial 

inflammatory response to myocardial ischaemia/reperfusion injury [131]. Furthermore, 

NLRP3 in CF has been shown to be important for producing IL-1ȕ in response to 

extracellular ATP from damaged cardiomyocytes [73]. A pivotal role for the NLRP3 

inflammasome in CF for induction of myocardial dysfunction in sepsis has also recently been 

reported [132]. Additionally, a novel inflammasome-independent role for NLRP3 in CF was 

recently described in which mitochondrial NLRP3 was found to be important for driving 

fibrotic responses after Ang II administration including myofibroblast transdifferentiation and 

fibrosis [76].  

As well as fibroblasts, some studies have also highlighted the importance of the 

inflammasome in cardiomyocytes [133] and macrophages [134] in the response of the heart 

to ischaemic injury. Other reports concluded that NLRP3 is not important for the immediate 

inflammatory events post-MI but may play roles at later stages [135]. It is therefore likely that 
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inflammasome activation occurs in several different cardiac cell types at different times and 

in different locations following MI. 

Interestingly, a novel small molecule inhibitor of NLRP3 inflammasome formation has 

been developed (16673-34-0) that can reduce caspase-1 activity in the heart by >90% in 

mice subjected to experimental MI with reperfusion [136]. This resulted in a marked 

decrease in cell damage (troponin I levels) and infarct size after 24 h [136] and reduced LV 

dysfunction after 7 days [137]. Additionally, the NLRP3 inhibitor reduced LV dysfunction and 

remodelling in mice 1 week after permanent LAD ligation without affecting infarct scar size 

[137]. 16673-34-0 was also found to be effective against non-ischaemic cardiac injury 

(doxorubicin-induced cardiomyopathy), with a resultant decrease in fibrosis and preservation 

of systolic function [137]. Hence, irrespective of the precise cellular context, it may be that 

NLRP3 represents a useful therapeutic target for reducing post-MI injury and remodelling. 

  

3. Future Perspectives 

3.1. Cardiac fibroblast-specific genetic models 

Although global knockout models have been important for understanding the role of DAMPs 

and their receptors in cardiac inflammation and remodelling, their interpretation in the 

context of individual cell types is complicated and often difficult to resolve. To address this, 

cardiac cell-type specific genetic models have been developed that allow gene knockout, 

mutation or overexpression in individual cardiac cell types including cardiomyocytes, 

endothelial cells, inflammatory cells and smooth muscle cells. However, attempts to 

specifically manipulate CF function in vivo have been hampered by a lack of a fibroblast-

specific targeting promoter; a complication likely related to the heterogeneous nature and 

origin of fibroblasts for which no truly specific marker has been identified. The three main 

genetic strategies that have been employed for targeting CF to date are based on enhancer 

elements from the rather misleadingly termed “fibroblast-specific protein” gene (FSP1, also 

known as S100A4), the periostin gene (Postn) and the pro2(I) collagen gene (Col1a2). 

 Despite the use of FSP1-driven approaches for fibroblast-specific targeting, a recent 

study with an FSP1-GFP reporter mouse raised serious questions about the validity of this 

approach for targeting fibroblasts in the heart [138]. Relatively few cells were found to 

express FSP1 in the normal heart and these were mostly endothelial cells and smooth 

muscle cells. The number of FSP1-positive cells increased markedly after MI, but more than 

half of FSP1-positive cells were of haematopoietic origin (mostly inflammatory leukocytes), 

with less than 2% of FSP-positive cells being myofibroblasts [138]. Hence, FSP1 promoter-

driven approaches for fibroblast-selective gene deletion in the heart are inappropriate.  

 The matricellular protein periostin is not expressed in the normal heart but it is 

upregulated exclusively in activated fibroblasts after cardiac injury [139]. A 3.9 kb promoter 
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region of the mouse periostin gene (Postn) has been used to drive Cre expression in CF and 

facilitate targeted gene knockout [140], and offers much greater fibroblast-specificity than 

FSP1 mice when compared in a side-by-side manner [138]. A major value of Postn-Cre mice 

is for studying the role of myofibroblasts in cardiac remodelling after injury / stress as the 

promoter becomes active in this context. However, these mice are less useful for 

investigating normal CF function or immediate responses of fibroblasts to injury, conditions 

in which the Postn promoter is inactive. 

 Finally, a fibroblast-specific transcriptional enhancer located in the far upstream 

region of the pro-2(I) collagen gene (Col1a2) has been identified that can direct expression 

in fibroblasts but not in other type I collagen-producing cells [141,142] and has been used to 

induce gene expression [143] or selective gene knockout [144] specifically within fibroblasts 

of various tissues. More recent studies in the heart have shown that the Col1a2 promoter 

drives expression specifically in fibroblasts, so these mice may represent a useful model for 

selective genetic manipulation of fibroblasts and myofibroblasts in the heart [145-147]. A 

drawback of the Col1a2 approach however is that it is not selective for fibroblasts in the 

heart over other sources of fibroblasts (e.g. skin, lungs) and therefore other organs are also 

likely to be affected.  

 

3.2. MicroRNAs 

Understanding the responses of individual myocardial cell types to different stimuli is an 

important consideration for designing effective therapies for cardiac pathologies. With the 

continued development and refinement of fibroblast-specific genetically modified mouse 

models, the roles of CF in physiological and pathological processes will become better 

defined. Future cell type-selective therapies may be possible, for example through methods 

targeting microRNAs, small non-coding RNA molecules that regulate multiple genes in a cell 

type-specific manner [148]. For example, several microRNAs have been identified that play 

key roles in a variety of fibroblast functions (myofibroblast transdifferentiation, survival, 

migration, fibrosis) but not in cardiomyocytes; including microRNA-21, -24, -29 and -30 

[6,149]. 

A complex two-way interplay between microRNAs and DAMP signalling is evident in 

a variety of tissues. For example, TLR activation is coupled to altered expression of several 

different microRNAs, including some that play key roles in regulating CF function such as 

microRNA-21 [150]. On the other hand, a number of microRNAs are able to regulate 

expression of components of the TLR and IL-1R1 signalling pathways, with microRNA-146a 

being the best studied example [150,151]. Overexpression of microRNA-146a in the heart 

was shown to reduce post-MI myocardial injury and inflammation; effects caused by reduced 

expression of the IRAK1 and TRAF6 proteins, key components of the TLR and IL-1R1 
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signalling pathways [152]. It is therefore an exciting prospect that cardiac cell-specific 

therapies may be possible in the future through methods targeting individual microRNAs or 

microRNA subsets in the heart.  

 

3.3. Therapeutic approaches to target DAMP pathways 

Several preclinical studies have described successful attempts to inhibit DAMPs or DAMP 

receptors to improve cardiac function after MI, mostly in mouse models. For example OPN-

301, a novel anti-TLR2 monoclonal antibody, was shown to reduce infarct size and preserve 

cardiac function and geometry when administered before reperfusion in a mouse MI model 

[34]. Importantly, the same group recently reported development of a clinical-grade 

humanised anti-TLR2 antibody (OPN-305) and showed similar benefit in pigs after 

myocardial ischemia/reperfusion injury [153]. These data suggest that OPN-305 may have 

potential as an adjunctive for reperfusion therapy in MI patients. Other attractive DAMP 

receptor targets include the inflammasome receptor NLRP3. A novel pharmacological 

NLRP3 inhibitor improved cardiac function in mouse models of ischaemic and non-ischaemic 

myocardial injury [136,137]. 

There is a relative wealth of pre-clinical data to suggest that inhibition of IL-1 signalling 

may be an effective therapeutic strategy for improving cardiac function and outcome following 

MI (reviewed in [85,102,154]). Small-scale clinical trials have also sought to evaluate the effect 

of IL-1 inhibition on inflammation and cardiac remodelling in stable-STEMI and non-STEMI 

patients [155,156], reporting that IL-1 inhibition reduced post-MI inflammation but had little 

effect on cardiac function in the longer term. This may relate to the relatively mild inflammatory 

phenotype in these patient cohorts compared with less stable STEMI patients, in which IL-1 

blockade was more effective [157]. Further studies in patients with more severe MI are likely 

to be required to evaluate the true potential of IL-1 inhibition as an effective therapy for post-

MI morbidity and mortality. 

All of the above studies have been designed to target global DAMP production or 

DAMP receptors. However, it is clear that DAMPs can elicit markedly different effects on 

individual cell types depending on DAMP receptor expression, receptor crosstalk, expression 

of signalling pathway components and the functional nature of the particular cell type. 

Developing strategies to specifically target DAMP responses in individual cell types is a major 

challenge, but cell-specific approaches (e.g. CF-specific genetic mouse models and 

microRNA-targeted therapies) may allow us to understand more clearly the role that CF play 

in responding to DAMPs in the injured myocardium.  

 

4. Conclusion 
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A complex array of DAMPs are produced and/or released from cells and their surroundings 

when the myocardium is damaged or stressed. In addition to effects on immune cells and 

cardiomyocytes, these danger signals can directly modulate CF function at multiple levels, 

including cell proliferation, migration, transdifferentiation and production of inflammatory and 

fibrotic mediators. The precise effect of DAMPs on CF function, and the relative influence 

that this may have, is dictated by the nature, location and extent of the initiating injury. 

Cardiac DAMPs and DAMP receptors on fibroblasts (as well as other cardiac cell types) 

represent attractive therapeutic targets for potentially controlling inflammatory and fibrotic 

aspects of the myocardial response to injury. Future studies in transgenic mice with 

fibroblast-targeted genetic manipulation will also be important for delineating the role of CF 

in these responses to cardiac injury.  
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DAMP 
Receptor Injury Model Knockout / 

Deficiency Responses Reference 

IL-1R1 

ISC/REP KO 

ў infarct size 
љ  inflammatory cells 
љ  inflammatory cytokines 
љ  fibrosis 

60,61 

ISC KO 
љ  infarct size 
ј  cardiac function 
љ  apoptosis 

59 

NOD2 
ISC KO 

ј  cardiac function 
љ  inflammatory cells 
љ  inflammatory cytokines 
љ  MMP9 

62 

Pressure 
overload 

KO 
ј  hypertrophy 
ј  fibrosis 

63 

RAGE ISC/REP KO 

љ  infarct size 
љ  ischaemic damage 
ј  contractile function 
љ  JNK STAT5 

64,65 

TLR2 

ISC/REP KO 

љ  infarct size 
љ  necrosis 
љ  inflammation 

љ  inflammatory cells 
ј  LV dilatation 
љ  scar collagen 

љ  ROS 

34-37 

ISC KO 

ў infarct size 
ј  survival 
љ  reactive fibrosis 
љ  LV diastolic dimensions 
ј  fractional shortening 

38 

Pressure 
overload 

KO 

љ  hypertrophy 
љ  fibrosis 
ј  LV dilatation 
љ  systolic function 

57 

Ang II-induced 
fibrosis 

KO 
љ  fibrosis 
љ  inflammatory cells 
љ  inflammatory cytokines 

39 

TLR3 
ISC/REP KO 

љ  infarct size 
ј  cardiac function 
љ  inflammatory cells 
ў љ inflammatory 
cytokines 
ј  apoptosis 

40,41 

ISC KO ј  cardiac function 41 

 
TLR4 ISC/REP 

deficient 
strain 

љ  infarct size 
ў cardiac function 

љ  inflammatory cells 
љ  inflammatory cytokines 
љ  apoptosis 
љ  JNK 
љ  HMGB1 

43,45,50,53 
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KO 

љ  infarct size 
љ  ischaemic damage 
љ  inflammatory cells 
љ  inflammatory cytokines 

љ  apoptosis 

44,49,51,55 

ISC 

deficient 
strain 

ў infarct size 
ј  cardiac function 
љ  LV remodelling 
љ  fibrosis 
љ  hypertrophy 
ј  scar collagen 
љ  inflammatory cells 
љ  inflammatory cytokines 
љ  MMP2 MMP9 

56 

KO 

љ  infarct size 
ј  cardiac function 
љ  hypertrophy 
љ  fibrosis 
ј  survival 

42,47,54 

Pressure 
overload 

deficient 
strain 

љ  hypertrophy 48 

Ang II-induced 
fibrosis 

deficient 
strain 

љ  hypertrophy 
љ  fibrosis 
љ  inflammatory cells 
ј  cardiac function 
ј  ROS, cytokines 

52 

ISO-induced 
fibrosis 

KO ј  cardiac function 46 

TLR5 ISC/REP KO 

ј  infarct size 
љ  cardiac function 
ј  oxidative stress 
ј  p38 AKT 
ј  inflammatory cytokines 

58 

 
 
 
Table 1. Mouse models of DAMP receptor deficiency and their influence on cardiac 
remodelling after injury. Abbreviations: ISC, ischaemia; REP, reperfusion; KO, knockout; 
MMP, matrix metalloproteinase; JNK, c-Jun N-terminal kinase; STAT, signal transducer and 
activator of transcription; LV, left ventricle; ROS, reactive oxygen species; Ang II, 
angiotensin II; HMGB1, high mobility group box 1 protein; ISO, isoproterenol. 
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DAMP Species Age 
Receptor & 

Signalling 
Pathway 

Response Reference 

S100A1 Rat Adult 

TLR4 
MyD88 
ERK 
p38 
JNK 
NF-ʃB 

љ  collagen I 
љ  CTGF 
љ  SMA 
ј  MMP9 
ј  ICAM, IL-10 
ј  SDF1,TSP2 

68 

S100A8/9 Mouse 
Adult 

RAGE 
NF-ʃB 

ј  cell migration 
ў cell proliferation 
ў myofibroblast 
      differentiation 
ј  cytokines 
ј  chemokines 

79 

NIH/3T3*  
ј  cell proliferation 
ў collagen I, III 

25 

IL-1 

Human Adult 

p38 
JNK 
NF-țB 
PI3K/AKT 

ј  cell migration 
љ  myofibroblast 
     differentiation 
љ  SMA 
ј  IL-1ȕ, IL-6, TNF 
ј  CXCL1, 2, 5, 8 

ј  MMP1, 3, 9, 10 
ј  ICAM, VCAM 
ј  E-Selectin 
љ  ADAMTS1 

ј  TNC 
љ  CTGF 

љ  collagen I 
ј  collagen III 

91-94,96-98,130 

Mouse 
Neonatal IL-1R1 ј  IL-6, MCP-1 67 

NIH/3T3*  
ў cell proliferation 
ў collagen I, III 

25 

HMGB1 

Human Adult 

   ј  cell migration 
ў cell proliferation 
ў myofibroblast 
      differentiation 
ј  cytokines 
ј  chemokines 
ј  growth factors 

77 

 

 

 

 

Rat 

Adult   
љ  collagen I 
ј  Smad7 

108 

Neonatal 
ERK 
JNK 
PI3K/AKT 

ј cell proliferation 
ј cell migration 
ј collagen I, III 
ј TGFȕ 
ј MMP2, 9 

104 

Mouse Adult TLR4 
ј collagen I 
љ TIMP3 
ј miR-206 

106,107 
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Neonatal 

TLR2 
TLR4 
PKC-
ERK 

ј cell proliferation 
ј cell migration 
ј collagen I, III 
ј OPN 
ј MMP1, 2 
ј TIMP1 

105 

NIH/3T3*  
ј cell proliferation 
ј collagen I, III 

25 

HSP70 Rat Neonatal TLR2 
ј cell proliferation 
ј  cytokines 

57 

 
 
 
Table 2. Effects of secreted DAMPs on cardiac fibroblast function. DAMP and receptor 
(if determined) are shown in bold. Abbreviations for signalling pathways: MyD88, myeloid 
differentiation primary response gene 88; ERK, extracellular signal-regulated kinase; p38, 
p38 MAP kinase; JNK, c-Jun N-terminal kinase; NF-țB, nuclear factor kappa B; PI3K/AKT, 
phosphatidylinositol 3-kinase / AKT; PKC, protein kinase C. Abbreviations for genes/proteins 
regulated as part of response: CTGF, connective tissue growth factor (CCN2); SMA, -
smooth muscle actin; MMP, matrix metalloproteinase; ICAM, intercellular cell adhesion 
molecule; IL, interleukin; TSP, thrombospondin; TNF, tumour necrosis factor; ADAMTS, a 
disintegrin and metalloproteinase domain with thrombospondin motifs; VCAM, vascular cell 
adhesion molecule; CXCL, C-X-C motif ligand; TNC, tenascin C; MCP, monocyte 
chemoattractant protein; TGF, transforming growth factor; TIMP, tissue inhibitor of 
metalloproteinases; OPN, osteopontin; HSP, heat shock protein. 
 
*Note that although NIH/3T3 cells are a murine embryonic fibroblast cell line, they are 
included as the DAMP responses were reportedly similar to those of adult mouse CF [25].  
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FIGURE LEGENDS 

 

Figure 1. Summary of cardiovascular DAMPs and their receptors. The interleukin-1 

receptor (IL-1R1), the receptor for advanced glycation end products (RAGE) and the Toll-like 

receptors (TLRs) 2, 4 and 6 are all located on the plasma membrane and respond to 

extracellular damage-associated molecular patterns (DAMPs). In contrast, TLRs 3, 7, 8 and 

9 are localised on endosomal and lysosomal membranes and recognise DAMP ligands 

taken into the cell by endocytosis. The identity of DAMPs that can activate TLRs 1, 5 and 10, 

and the cytosolic NOD-like receptors (NOD1 and NOD2) are not known, so these receptors 

are not included in the diagram. The list of DAMPs represents those of particular relevance 

to the heart and wider cardiovascular system. Abbreviations: IL-1, interleukin-1; AGE, 

advanced glycation end product; HMGB1, high mobility group box 1 protein; FN-EDA, 

fibronectin with extra type III domain A repeat; HSP, heat shock protein; oxLDL, oxidised low 

density lipoprotein; mitoDNA, mitochondrial DNA. 

 

Figure 2. Summary of main DAMP signalling pathways identified in cardiac 

fibroblasts. Myocardial damage (e.g. following myocardial infarction) results in passive 

release of damage-associated molecular patterns (DAMPs) from necrotic cardiac cells (e.g. 

cardiomyocytes, fibroblasts) and infiltrating leukocytes (e.g. neutrophils). Pathological 

modification of the extracellular matrix (ECM) can also produce DAMPs, such as fibronectin-

EDA (FN-EDA), tenascin-C (TN-C) and advanced glycation end product (AGE)-modified 

collagen. These various DAMPs can activate pattern recognition receptors on cardiac 

fibroblasts (CF) to induce functional changes in CF activity that contribute to myocardial 

remodelling. Recent studies have identified a number of DAMPs and DAMP receptors that 

are particularly important for fibroblast responses. Interleukin (IL)-1 stimulates the IL-

1R1/Myd88 pathway resulting in proinflammatory and ECM-degrading responses. Similar 

responses have been noted for S100A8/9 released from neutrophils which acts via the AGE 

receptor (RAGE). In contrast, RAGE activation can also be coupled to profibrotic responses 

(e.g. myofibroblast differentiation and collagen expression in response to AGE-modified 

collagen). S100A1 and high mobility group box 1 protein (HMGB1) both act via the Toll-like 

receptor 4 (TLR4)/Myd88 pathway but appear to have opposing effects, with S100A1 

stimulating anti-fibrotic effects (reduced ECM synthesis, increased ECM degradation, 

reduced myofibroblast differentiation) and HMGB1 being pro-fibrotic (increased CF 

proliferation, increased ECM synthesis). See main text for further description.    
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