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ABSTRACT

The morphological evolution of submarine channel systems can
be documented using high-resolution three-dimensional seismic
data sets. However, these studies provide limited information on
the distribution of sedimentary facies within channel fills, channel-
scale stacking patterns, or the detailed stratigraphic relationship
with adjacent levee-overbank deposits. Seismic-scale outcrops of
unit C2 in the Permian Fort Brown Formation, Karoo Basin, South
Africa, on two subparallel fold limbs comprise thin-bedded suc-
cessions, interpreted as external levee deposits, which are adjacent
to channel complexes, with constituent channels filled with
thick-bedded structureless sandstones, thinner-bedded chan-
nel margin facies, and internal levee deposits. Research bore-
holes intersect all these deposits, to link sedimentary facies and
channel stacking patterns identified in core and on image logs and
detailed outcrop correlation panels. Key characteristics, including
depth of erosion, stacking patterns, and cross-cutting relationships,
have been constrained, allowing paleogeographic reconstruction
of six channel complexes in a 36-km2 (14-mi2) area. The system
evolved from an early, deeply incised channel complex, through a
series of external levee-confined and laterally stepping channel
complexes culminating in an aggradational channel complex con-
fined by both internal and external levees. Down-dip divergence
of six channel complexes from the same location suggests the
presence of a unique example of an exhumed deep-water avul-
sion node. Down-dip, external levees are supplied by flows that
escaped from channel complexes of different ages and spatial posi-
tions and are partly confined and share affinitieswith internal levee
successions. The absence of frontal lobes suggests that the channels
remained in sand bypass mode immediately after avulsion.
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INTRODUCTION

Submarine channel–levee systems are a primary conduit for
clastic sediment supplied from the continents to the deep ocean
(Shepard and Emery, 1941; Shepard, 1948, 1981; Menard, 1955;
Normark, 1970; Normark and Carson, 2003; Kolla, 2007;
Normark et al., 2009; Peakall and Sumner, 2015). The archi-
tecture and evolution of deep-water channel systems has been of
particular interest in both the hydrocarbon industry and academic
study in recent years with detailed investigations using high-
resolution reflection seismic data sets (e.g., McHargue and
Webb, 1986; Badalini et al., 2000; Babonneau et al., 2002, 2004;
Abreu et al., 2003; Deptuck et al., 2003, 2007; Posamentier,
2003; Posamentier and Kolla, 2003; Schwenk et al., 2005;
Mayall et al., 2006; Kolla, 2007; Cross et al., 2009; Catterall
et al., 2010; Armitage et al., 2012; Jobe et al., 2015; Ortiz-Karpf
et al., 2015) and seabed imaging techniques (e.g., Torres et al.,
1997; Maier et al., 2011, 2013; Covault et al., 2014), although
these provide limited detailed information on subseismic-scale
elements and the range and distribution of sedimentary facies.
This gap has been addressed through the use of analogous
systems at outcrops (Badescu et al., 2000; Blikeng and Fugelli,
2000; Campion et al., 2000; Clark andGardiner, 2000; Gardner
et al., 2003; Beaubouef, 2004; Pickering and Corregidor, 2005;
Hodgson et al., 2011; Brunt et al., 2013b; Hubbard et al., 2014;
Masalimova et al., 2016). Although these studies help to con-
strain the distribution and lateral variation of sedimentary facies
of channel fills, channel-scale stacking patterns, and detailed
stratigraphic relationship with adjacent levee-overbank deposits,
they typically have limited three-dimensional (3-D) control or
calibration with subsurface data sets. Rare examples of outcrop-
based studies with subsurface constraint of channelized systems
include the Eocene of the Ainsa Basin, northeast Spain (e.g.,
Pickering and Corregidor, 2005); the Miocene Mount Messenger
Formation, New Zealand (Browne and Slatt, 2002); and the
Permian Brushy Canyon Formation, United States (Beaubouef
et al., 1999). Outcrop studies where slope channel systems can be
traced in multiple outcrop exposures providing 3-D constraint are
also rare (Hubbard et al., 2008; Pyles et al., 2010; Macauley and
Hubbard, 2013).

Many studies have documented the highly organized nature
of deep-water deposits, suggesting a regular, ordered set of con-
trols on the development of stratal architecture (e.g., Beaubouef
et al., 1999; Gardner et al., 2003; Hodgson et al., 2006, 2011,
2016; Pyles, 2008; Flint et al., 2011; Terlaky et al., 2016). This
stratigraphic organization has enabled the development of a hier-
archical approach to both confined and unconfined parts of deep-
water systems. For channelized sections, Sprague et al. (2002)
developed a hierarchy of stories and story sets that build channels.
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Channels stack into channel complexes and channel complex
sets (McHargue et al., 2011). These hierarchical schemes bridge
the scale between well data and the vertical resolution of in-
dustry seismic reflection surveys, in which the smallest resolvable
element is typically the complex or complex set.

In this paper, we present a combined outcrop and subsurface
study of a channel–levee complex set and the sedimentary facies
distribution and depositional architecture of six constituent
channel complexes. The succession is part of unit C of the Fort
Brown Formation, LaingsburgKarooBasin, SouthAfrica (Figure 1).
Six research boreholes (named Bav 1a–Bav 6) drilled behind the
outcrop intersect channel axis, channel margin, internal levee,
and external levee deposits. These provide detailed information
on sedimentary facies and channel-stacking patterns identi-
fied in one-dimensional (1-D) core, gamma-ray, andborehole im-
age logs that are integrated with two detailed across-depositional
strike two-dimensional (2-D) correlation panels from adjacent
outcrop (Hodgson et al., 2011; Kane and Hodgson, 2011). These
data are integrated to produce highly detailed paleogeographic
reconstructions at subseismic resolution to argue for the pres-
ence of unique examples of an exhumed deep-water avulsion
node and confined external levee deposits.

GEOLOGIC SETTING AND STRATIGRAPHY

The study area forms part of the Permian deep-water Laingsburg
depocenter of the southwestern Karoo Basin (Figure 1). A long-
standing interpretation for the formation of the Karoo Basin is
that it represents a retroarc foreland basin formed through
flexural loading from the adjacent fold-thrust belt (Cape fold
belt) lying along the southern margin of the basin (De Wit and
Ransome, 1992; Veevers et al., 1994; Visser and Praekelt, 1996;
Catuneanu et al., 1998). In a more recent synthesis of published
data with a recent seismic refraction survey, Tankard et al. (2009)
proposed that the Cape fold belt is Triassic in age and interpreted
Karoo Basin subsidence as caused by mantle flow associated with
subduction-related by negative dynamic topography but com-
plicated by variable degrees of foundering of basement blocks.

A 1-km-thick (4600-ft-thick) exhumed progradational
basin floor to upper slope succession (Flint et al., 2011; van der
Merwe et al., 2014) crops out along a series of east–west-trending,
eastward plunging, postdepositional anticlines and synclines, near
the town of Laingsburg (Figures 1, 2). Deep-water deposition
began with distal basin floor deposits of the Vischkuil Formation
(van der Merwe et al., 2009, 2010), which is overlain by basin
floor and base-of-slope fan systems of the Laingsburg Formation
(units A and B; Grecula et al., 2003; Sixsmith et al., 2004). The
muddy slope succession of the 0.5-km-thick (1640-ft-thick)
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overlying Fort Brown Formation (Figure 2) is punc-
tuated by five sandstone-rich units (units C–G; Flint
et al., 2011) that comprise slope channel–levee sys-
tems separated vertically by extensive mudstone
units (Grecula et al., 2003; Figueiredo et al., 2010;
Di Celma et al., 2011; Hodgson et al., 2011; Morris
et al., 2014a). These mudstone units constrain the
stratigraphy and have been mapped for up to 90 km
(56 mi) downdip (van der Merwe et al., 2014). In
this study, the focus is on unit C, primarily exposed
in the Baviaans syncline (Figure 1). Regional paleo-
flow is toward the northeast (Di Celma et al., 2011).

Unit C overlies the B–C mudstone, an approx-
imately 50-m-thick (164-ft-thick) partly hemipelagic
drape that separates the Laingsburg and Fort Brown

Formations (Figure 2). This mudstone contains a
less than 5-m-thick (<16-ft-thick), sharp-topped and
sharp-based sandstone-dominated unit referred to as
the B–C interfan (Figure 2B) (Di Celma et al., 2011),
interpreted by Flint et al. (2011) as an intraslope lobe.
It lies approximately 32 m (108 ft) below the base
of unit C, and it is used as a lower datum when mea-
suring and correlating units C and D.

Unit C has been interpreted as the lowstand
sequence set (LSS) to a composite sequence, the
combined transgressive and highstand sequence set
of which is represented by the approximately 26-m-
thick (85-ft-thick) regional C–D mudstone (Flint
et al., 2011). The unit C LSS comprises three se-
quences; their lowstand systems tracts are sandy

Figure 1. Location map highlighting the study area near the town of Laingsburg, Western Cape, South Africa. The pale gray area marks
the outcrops of the Laingsburg Formation (Fm.), and dark gray shows the outcrop pattern of the Fort Brown Formation. SLOPE 2 refers
to a previous research consortium project.
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subunits C1, C2, and C3 (Di Celma et al., 2011; Flint
et al., 2011). These are separated by two intraunit
mudstones; a 2-m-thick (6.5-ft-thick) lower C
mudstone and an approximately 8-m-thick (26-ft-
thick) upper C mudstone (Figure 2). Both have been
mapped regionally and have been interpreted as the
combined transgressive systems tracts–highstand sys-
tems tracts (TST–HST) of the C1 and C2 sequences.
The TST–HST of the C3 sequence is the lower part
of the C–D mudstone (Flint et al., 2011). In the Ba-
viaans area, subunit C1 is generally 10- to 15-m-thick
(33- to 49-ft-thick) and composed of sandstone-prone

thin beds becoming more siltstone-prone upward; it
has been interpreted as a frontal lobe complex (Di
Celma et al., 2011). Subunit C2 is 5- to 80-m-thick
(16- to 260-ft-thick) and largely comprises thin-
bedded sandstones and siltstones interpreted as ex-
ternal levee deposits that are adjacent to channels
filled with thick-bedded structureless channel axial
sandstone (Morris et al., 2014a), thin-bedded chan-
nel margin material (Hodgson et al., 2011), and thin-
bedded internal levee deposits (Kane and Hodgson,
2011) (Figure 3). The thickest accumulations are a
result of erosive channelization in proximal areas,

Figure 2. (A) Stratigraphic
column showing the lithostratig-
raphy of the study area. (B)
Expanded stratigraphic column
highlighting unit C, the focus
of this study. Col. = Collingham
Formation; Dep. Env.= depositional
environment; Wh. = Whitehill
Formation.
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where C2 comprises a levee-confined channelized
system that incises through C1 and 30 m (98 ft) of
the underlying mudstone (Hodgson et al., 2011).

Subunit C3 is commonly 1–10m (3–33 ft) thick,
attains a maximum thickness of greater than 50 m
(164 ft) in the proximal Baviaans area, and is

interpreted as a frontal lobe complex (Morris et al.,
2014b). Di Celma et al. (2011) described a pro-
gradational trend from subunit C1 to C2, with a
landward stepping (retrogradational) component dur-
ing the deposition of C3, suggesting a waxing then
waning of overall sediment supply during the unit C

Figure 4. (A) Gamma-ray log through subunit C2 in borehole Bav 1a. (B) Core log through C2 in borehole Bav 1a. Boxed areas C–F give
positions of core photographs in (C)–(F): (C) Photo Ci is a core photo showing different clast compositions at the base of a channel complex, and
photo Cii shows soft sediment deformation. (D) Photo Di shows structureless fine-grained sandstone, and photo Dii shows soft sediment
deformation within siltstone and sandstone clasts. (E) Photo Ei shows fine-grained sandstone with a well-developed loaded basal surface with
mudstone clasts, and photo Eii shows planar laminated sandstone with normal grading. (F) Structureless fine-grained sandstone with a well-
developed flame structure. CC1 = channel complex 1; CC2 = channel complex 2; CC3 = channel complex 3; CC4 = channel complex 4; CC5 =
channel complex 5; CC6 = channel complex 6; Csi = coarse-grained siltstone; Fsi = fine-grained siltstone; fs = fine-grained sandstone; ms =
medium-grained sandstone; Msi = medium-grained siltstone; Mud = mud grade sediment; vfs = very fine-grained siltstone.
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Figure 5. (A) Core log through subunit C2 in borehole
Bav 2. (B) Fine-grained sandstone with mudstone clasts
dispersed throughout the entire 1-m (3-ft) section (lo-
cation of core photograph shown on core log A). (C) Core
photograph and interpretation showing an upward pro-
gression from structureless fine-grained sandstone to
planar lamination followed by climbing ripple lamination.
(D) Structureless fine sandstone with a mudclast mantled
channel base at the top of the core interval. (E) Deformed
and dewatered fine-grained sandstone showing a well-
developed loaded basal contact and an upper deformed
sandstone and siltstone zone. CC1 = channel complex 1;
CC2= channel complex 2; CC3= channel complex 3; Csi=
coarse-grained siltstone; fs = fine-grained sandstone; Fsi =
fine-grained siltstone; ms = medium-grained sandstone;
Msi = medium-grained siltstone; Mud = mud grade
sediment; vfs = very fine-grained siltstone.
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lowstand sequence set. Unit D, interpreted as another
lowstand sequence set (Flint et al., 2011), crops out
as a 2-km-wide (1-mi-wide), greater than 100-m-thick
(330-ft-thick), entrenched slope valley fill at the CD
Ridge (Figures 2, 3) on the south limb of the Baviaans
syncline where it removes part of unit C (see Hodgson
et al., 2011, for further details).

METHODOLOGY AND DATA SET

The primary study area covers 36 km2 (14 mi2) in
which units C and D crop out on the north and south
limbs of the Baviaans syncline (Figure 1). Correlation
panels constructed on both limbs of the structure
(Figure 3) capture the evolving style of channels
and levees in C2. Field-based sedimentological and
stratigraphic observations including 247 measured
sections (16 km [10 mi] of cumulative thickness)
were used to construct the correlation panels: 147
sections for the panel on the north limb of the
Baviaans syncline (Pringle et al., 2010; Di Celma
et al., 2011) and 100 sections in the western area of
the CD Ridge panel on the south limb of the syn-
cline (Di Celma et al., 2011; Hodgson et al., 2011).
Channelized deposits within C2 have been described
in detail from two of the research boreholes, Bav 1a
(Figure 4) and Bav 2 (Figure 5), and external levee
deposits in Bav 6 (Morris et al., 2014a). A suite
of slim-hole well logs was collected that include
borehole electrical images with the formation mi-
croscanner (FMS) tool (Mark of Schlumberger). These
images are orientated with respect to geographic
north, and therefore, the direction of paleocurrent
indicators was determined. No logs were run in the
Bav 2 well because of a loss of the drill bit in the
hole. The combination of well-constrained outcrop
data on the south and north limbs of the Baviaans
syncline (Figure 3) and continuous core in the three
boreholes that intersect the C2 system permits a high-
confidence understanding of what can be recognized
from combinations of conventional wireline and bore-
hole image logs. The porosities, permeabilities, and fluid
saturations of the rocks, however, are not comparable
to oil or gas reservoirs because the Karoo Basin deposits
have been buried to depths greater than 6 km (>4 mi)
and are highly compacted and cemented by quartz.
Detrital clay minerals have been transformed into low-
grade metamorphic minerals (Luthi et al., 2006). As a

result, density and neutron porosity logs were not run,
and conventional logging was restricted to spectral
gamma-ray and sonic logs.

FACIES ASSOCIATIONS

In the channelized C2 succession, six facies associations
have been identified and are shown in Table 1: CLf1
is a thick-bedded, structureless fine-grained sand-
stone; CLf2 is structureless fine-grained sandstone
withmudstone and siltstone clasts; CLf3 is structured
fine- and very fine–grained sandstone; CLf4 is sand-
prone thin beds; CLf5 is silt-prone thin beds; and
CLf6 is deformed heterolithic sediments. Subunit
C2 has been well documented in outcrop (Di
Celma et al., 2011; Hodgson et al., 2011) and in
core from adjacent boreholes in this study. Sixmain
environments of deposition have been interpreted:
(1) channel axis (CLf1 and CLf2), (2) channel
margin (CLf3, CLf4, CLf5, and CLf6), (3) prox-
imal internal levee (CLf3 and CLf4), (4) distal in-
ternal levee (CLf4), (5) proximal external levee (CLf3,
CLf4, and CLf5), and (6) distal external levee (CLf4
and CLf6). Table 2 shows key facies examples from
the combined outcrop, core, and borehole image
data sets for each of the environments of deposition.

ONE-DIMENSIONAL DATA SET: BEHIND
OUTCROP CORES AND WIRELINE LOGS

Of the six research boreholes drilled behind the CD
Ridge, three (Bav 1a, Bav 2, and Bav 6) intersected
C2. Boreholes Bav 1a and Bav 2 are approximately
0.7 km (0.44 mi) apart (Figure 3), whereas Bav 6 is
situated approximately 2 km (1 mi) east of Bav 2.
Borehole Bav 1a captures the C2 axis where it has
locally removed the B–C interfan, Bav 2 captures a
more eastward component of the channel complex
set and part of the unit D slope valley, and Bav 6 in-
tersects the external levee of C2 (Kane and Hodgson,
2011; Morris et al., 2014a) (Table 2).

Borehole Bav 1a

In Bav 1a, six channel complexes (channel complex 1
[CC1]–channel complex 6 [CC6]) have been inter-
preted (Figure 4). Fine-grained sandstone with mul-
tiple erosion surfaces lined by mudstone and siltstone
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Table 1. Characteristics of the Six Facies Associations of Subunit C2

Lithofacies Code Facies Facies Description
Depositional Processes and
Depositional Environments

CLf1 Thick-bedded, structureless
fine-grained sandstone

Thick-bedded fine-grained sandstone
bedsets 0.1–2 m (0.33–6.56 ft), commonly
thicker than 0.3 m (0.98 ft). Amalgamated
bed contacts are most prevalent; however,
erosive and loaded bed bases are recorded.
Sandstone beds are generally structureless;
however, rare occurrences of planar and
current ripple lamination are observed, and
thicker beds commonly contain abundant
water escape structures, commonly flame
and dish structures. A general trend exists
of individual beds grading normally
upward.

Medium- to high-density flows depositing
rapidly. Aggradational facies, amalgamated
sandstone deposits with some erosion
surfaces. Structureless sandstone bedsets
suggest Bouma Ta. Environment of
deposition: Fall in capacity of high-
concentration flows and rapid deposition.
Late-stage fill within channels and proximal
areas of frontal lobes.

CLf2 Structureless fine-grained
sandstone with mudstone
and siltstone clasts

Structureless fine-grained sandstone beds,
approximately 0.25–0.7 m (0.82–2 ft) thick,
reaching up to 1 m (4 ft). Mudstone clasts
are abundant, averaging between less than
0.01 and 0.04 m (0.03 and 0.13 ft) in
diameter, although some are approximately
0.2 m (0.66 ft) in diameter. Rare examples
of thin horizons (0.01–0.05m [0.03–0.16 ft])
where a slurry of sandstone with abundant
millimeter-sized mudstone clasts is present.
The mudclast-rich zone is generally
preserved at/near the base of sand units,
and the clasts themselves become sandier
in composition up through the succession
of subunit C2 (this is best observed in
core Bav 1a).

Mudstone clast mantled surfaces and
mudclast conglomerate deposited and
moved in traction beneath confined flows.
They are both commonly associated with
flows confined within channels. Locally,
clasts show secondary injection features.
Environment of deposition: The presence of
mudstone clasts indicates erosion higher in
the channel profile. Mudstone clasts are
deposited as a channel lag/drape.

CLf3 Structured sandstones Very fine–grained sandstone beds
(VFS) 0.05–0.4 m (0.16–1 ft) thick.
Well-developed current ripple cross-
lamination, climbing ripple (10–15°)
cross-lamination, stoss-side preserved
ripple cross-lamination, and sinusoidal
laminae are common. Small-scale
(centimeter–decimeter) erosion surfaces,
some soft-sedimentary deformation, but
little bioturbation and few mudstone
drapes present. Overall, there is little silt or
clay gradematerial present. Individual beds
continuous for greater than 100 m (328 ft).

Rapidly deposited medium- to low-density
turbidity currents. Aggradational facies, with
some erosion surfaces. Sustained bedload
traction, particularly within or close to
channels. Environment of deposition:
Deposition from expanding flows with
sustained bedload traction: frontal lobe,
crevasse splay, internal levee, and/or
proximal external levee.

(continued )
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clasts (Figure 4C) (CLf2), typical of channel axis
and channel off-axis environments, produce an
erratic gamma-ray log trace. Packages of structureless
fine-grained sandstone between the erosion surfaces
show dewatering features (CLf1) (Figure 4). The
composition of the clasts changes upward through
the succession, from mudstone- to siltstone- and

sandstone-dominant. Many of the clast-lined erosion
surfaces are spaced at 1–2 m (3–7 ft) vertically.
Without the control from the nearby outcrop it would
be easy to consider these units as too thin for channels
and to therefore interpret them as story boundaries.
However, the detailed outcrop logs, spaced at 20-m
(66-ft) intervals along the CD Ridge, where every bed

Table 1. Continued

Lithofacies Code Facies Facies Description
Depositional Processes and
Depositional Environments

CLf4 Sand-prone thin-bedded
heterolithics

Sandstone-dominated interbedded
sandstone and siltstone packages
0.05–0.4 m (0.16–1 ft) thick. The
sandstone beds are generally normally
graded from VFS to coarse siltstone (CSi).
Sedimentary structures within the VFS
beds include sinusoidal laminae, current
ripple cross-lamination, climbing ripple
cross-lamination, stoss-side preserved
ripple cross-lamination, and planar
laminae. The CSi beds are generally planar
laminated. Loaded bed contacts are
common, although erosive and
amalgamated basal contacts are observed.

Deposition by low- to medium-density
turbidity currents that deposited rapidly
(climbing ripple cross-lamination and
sinusoidal lamination). Environments of
deposition: This facies is present in channel
margin, proximal internal levee, and
proximal external levee subenvironments.

CLf5 Silt-prone thin-bedded
heterolithics

Interbedded CSi and VFS, beds are
0.01–0.3 m (0.03–0.98 ft) thick. VFS
beds are commonly normally graded.
Sedimentary structures present in the
VFS include current ripple lamination,
stoss-side preserved ripple lamination,
wavy lamination, and planar lamination.
The CSi beds are commonly planar
laminated and are generally interbedded
with mudstone drapes associated with
bioturbation.

The bed thicknesses and the low sand
volume suggest that deposition was by
dilute turbidity currents. The bioturbated
interval suggests either there was a longer
time period between events or a change in
oxygen and nutrient delivery. Environment
of deposition: Regions distal to sediment
feeder system, such as distal overbank,
distal levee (internal and external
examples), channel margin, distal lobe,
or abandonment.

CLf6 Deformed heterolithics Highly deformed bedded lobe to channel
sandstone deposits. All predeformed
textures and structures are still recognized,
and deformed material can be traced back
into predeformed deposits. Where
present, gentle folding of grain laminations
or bed surfaces suggests small transport
distances. Internal characteristics not easily
identified in structureless sandstones.
Packages are generally less than 2 m (7 ft)
thick; however, the deposit may extend for
up to 100 m (328 ft) across outcrop.

A loss of internal shear strength in all or part
of a sediment mass resulting in a failure
where the deposit can no longer resist
downslope gravitational shear occurs on a
large scale with slope margin collapse and
on a small scale as slumping and sliding at
the steepened margins of channels.
Environment of deposition: Fill within
erosional channels (channel wall collapse).
Normally associated with the collapse of
deeply erosional and oversteepened
incisional margins.
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Table 2. The Six Main Environments of Deposition Interpreted within C2

See Tables A–F (supplementary material available as AAPG Datashare 75 at www.aapg.org/datashare) for more details. FMS = formation microscanner.
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Figure 6. Correlation panel be-
tween boreholes Bav 1a and Bav 2
using the Upper C mudstone as a
datum: (A) Gamma-ray log through
Bav 1a;. (B) Bav 1a sedimentary log
(no well logs were run in this bore-
hole). (C) Dipmeter measurements of
erosion surfaces in subunit C2. (D)
Bav 2 sedimentary log. Csi = coarse-
grained siltstone; fs = fine-grained
sandstone; Fsi = fine-grained silt-
stone; ms = medium-grained sand-
stone; Msi = medium-grained
siltstone; Mud =mud grade sediment;
vfs = very fine-grained siltstone.
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has been traced between them (Hodgson et al., 2011),
show that the lower part of C2 is composed of
stacked erosional remnants of channel fills. Dis-
tinction of a channel base from a channel complex
base is informed by outcrop observations, and the
bases of channel complexes are marked by thicker
concentrations of mudstone and siltstone rip-
up clasts, which are interpreted as lag deposits that
mark time periods dominated by sediment bypass
(Stevenson et al., 2015). Thickness increases upward
between erosion surfaces in both core and outcrop,
culminating with the uppermost channel complex
that is 16 m (53 ft) thick. This reflects a stratigraphic
increase in element preservation. The thin-bedded
facies (CLf4 and CLf5) in this core record abun-
dant soft-sediment deformation and are typical of
channel margin deposits (Figure 4) (CLf6). The thin-
bedded nature of the siltstone-prone deposit (CLf5)
combined with the abundance of mudstone drapes

and the increased intensity of bioturbation suggests
that the system was waning and that only dilute
turbidity currents were entering the basin. Figures 4
and 5 show that this uppermost 8 m (26 ft) of C2
in this well has been interpreted to be part of an
abandonment unit deposited as the C2 system
began to backstep and before the shutdown asso-
ciated with the upper C mudstone, as described by
Di Celma et al. (2011) and Flint et al. (2011).

Borehole Bav 2

In Bav 2, three C2 channel complexes have been
interpreted (Figure 5) based on erosion surfaces and
channel lag deposits (CLf2). The C2 channel com-
plex set does not have the same depth of erosion as
recorded in Bav 1a because the B–C interfan and 30m
(98 ft) of the overlying B–C mudstone are present

Figure 7. Cross-plot of gamma-
ray (GR) and sonic log values,
exhibiting typical ranges for the
main architectural elements of
the unit C depositional system.
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(Figure 5). This core contains similar facies to Bav 1a,
characteristic of channel axis and channel off-axis
environments of deposition (Campion et al., 2000;
McHargue et al., 2011), but thick channel lag de-
posits are absent, and there is no variation in the
composition of the mudstone clasts throughout the
channelized succession. Overlying the three subunit
C2 channel complexes, the Bav 2 core records 27 m
(90 ft) of both proximal and distal internal levee
deposits (CLf3, CLf4, and CLf5) that is capped by
an 8-m-thick (26-ft-thick) abandonment unit (CLf4
and CLf5).

Figure 6 is a correlation of C2 between Bav 1a and
Bav 2. The correlation datum is the upper Cmudstone.
This panel highlights the channel elements, channel
complexes, and channel complex set interpreted in
each of the wells and shows that there is no clear
correlation at channel element or channel complex
scale over the 0.7 km (0.4 mi) interwell spacing.
However, it is likely that the heterogeneous thin-
bedded deposits recorded in Bav 2 acted to confine
the late stage vertically stacked channel complex
in Bav 1a (CC6) within the late stage erosion
surface, suggesting these deposits were constructed

Figure 8. (A) Entire CD Ridge panel. (B) Enlarged crop of the western CD Ridge panel showing the C2 channel complex set. (C)
Correlation panel showing the same enlarged crop of the CD Ridge panel showing the six main channel complexes (CC1–CC6) that are
observed and correlated across the syncline.
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by this channel complex as internal levees (Kane
and Hodgson, 2011).

Although it is not possible to correlate channel ele-
ments between the two wells (Figure 6), the erosion
surface separatingCC3 and the overlying internal levee in
Bav 2 is correlated to the erosion surface at the base of
CC6 in Bav 1a. Also, althoughCC3 is intersected in both
wells, the channel remnants preserved in Bav 1a are older
than those captured in Bav 2 based on stacking pattern.

Contribution of Borehole Images and Wireline
Logs

The generally high gamma-ray readings in the Fort
Brown Formation are caused by a high percentage

of potassium feldspar in the rocks. Cross-plotting
gamma-ray and sonic log values shows that among
the types of thin beds, it may be possible to distin-
guish external levees from internal levees (Figure 7)
because the external levees are a little sandier and
cleaner. This plot shows that it is not possible to dis-
tinguish channel margin thin beds from either external
or internal levees on conventional logs, which be-
comes a problem when making interpretations of
architectural elements in uncored wells. The gamma-
ray log for the lower half of the C2 interval in Bav 1a
(Figure 4) has a spiky character with no clear in-
ternal trends. We know from outcrop control that
this section of the borehole passes through CC1
and CC3 (Figure 8). The CC1 comprises stacked

Figure 9. Correlation panels from the north limb of the Baviaans syncline: (A) Correlation panel showing units C and D, with boxes that
correspond to the four enlarged panel crops in (C)–(F). (B) Units C and D with the six C2 channel complexes that correlate to the
corresponding numbered channel complexes identified on the CD Ridge panel (Figure 8). (C) Enlarged panel showing CC1 and CC5
identified at Baviaans Farm. (D) Panel crop for CC2 at the West Rubbish Dump. (E) Detail panel showing CC6 at the Whaleback. (F)
Enlarged panel showing CC3 and CC4 at the Old Rubbish Dump.
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Figure 10. Paleogeographic maps, re-
constructed using correlations between
channel complexes identified on the north
and south limbs of the Baviaans syncline. (A)
The oldest channel complex (channel complex
1) observed in the study area, (B) channel
complex 2, (C) channel complex 3, (D)
channel complex 4, (E) channel complex 5,
and (F) the youngest channel complex
(channel complex 6).
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erosional remnants of channels, the bases of each one
being mantled by mudstone rip-up clasts. Three in-
tervals of channel margin thin beds also exist, but
these are only imaged clearly for one interval at 120m
(394 ft) (Figure 4). The high gamma-ray expression of
this channel margin facies could easily be interpreted
as a laterally extensive abandonment drape. The
upper section of the borehole passes through the al-
most completely preserved CC6 channel complex,
which shows an upward cleaning trend.

Borehole electrical images from the FMS tool
were analyzed for paleocurrent information such
as climbing ripples and cross-beds but also on sec-
ondary structures such as erosion surfaces and sedi-
mentary faults (see Tables A–F, supplementary
material available as AAPGDatashare 75 at www.aapg.
org/datashare). The scatter of these data within the
C2 channel complexes is quite large, most probably
caused by channel sinuosity, channel margin collapse,
and lateral stepping. In the absence of core, the
borehole images are crucial in the correct identi-
fication of channel and channel complex boundaries,

which can be recognized by concentrations of mud-
stone rip up clasts and subtle erosion surfaces that are
onlapped by channel margin thin beds that display
a shallowing upwards of bed dips. These features are
not resolvable reliably on conventional wireline
logs. Paleocurrent indicators from the unconfined
deposits, particularly in the external levees, show
a more coherent paleoflow pattern with a much
smaller scatter in directions that are consistent with
the outcrop-derived paleoflow directions (Kane
and Hodgson, 2011). This paleocurrent information,
together with the basal surfaces that can be identi-
fied on borehole images, is a valuable contributor
to constraining reservoir models in channel–levee
systems.

TWO-DIMENSIONAL OUTCROP
CORRELATIONS

On the CD Ridge outcrop, six C2 channel complexes
(CC1–CC6) comprising structureless channel axis

Figure 11. Cross sections combining outcrop observations from the CD ridge panel, Baviaans south limb (Figure 8) and the
paleogeography maps of Figure 10, using the B–C interfan as a datum: (A) time slice 1, (B) time slice 2, (C) time slice 3, (D) time slice 4, (E)
time slice 5, and (F) time slice 6.
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sandstone (CLf1 and CLf2) and thin-bedded chan-
nel margin facies (CLf4, CLf5, and CLf6) have been
identified by mapping erosion surfaces where they
cut into older deposits (Figure 8). The surfaces are
mantled by mudstone and siltstone clasts and are on-
lapped by channel margin thin beds. The relative ages
of the channel complexes is constrained by cross-
cutting relationships (Figure 8). On the north limb
of the Baviaans syncline, six corresponding channel
complexes have been correlated using geometry,
stacking patterns of component channels, paleo-
current data, and depths of erosion surfaces. Figure 9
shows where the numbered channel complexes crop
out, their geometries, and their interpreted strati-
graphic relationship.

PALEOGEOGRAPHIC RECONSTRUCTIONS

Using the combined outcrop and core observations
from both limbs of the syncline, a series of paleo-
geographic maps (Figure 10) and cross sections

(Figures 11, 12) have been constructed, detailing
the evolution of the C2 channel complex set through
time. Regional depositional dip for C2 is to the
northeast, but individual channel complexes vary in
orientation, from north to east.

Time Slice 1: Channel Complex 1

Time slice 1 (Figure 10A) correlates the oldest and
deepest preserved remnant channel complex of C2
age recorded on the CDRidge (CC1; Figure 8) to the
deepest and oldest channel complex 2-km (1-mi)
downdip on the north limb of the Baviaans syncline
(CC1 in Figure 9). The low degree of asymmetry of
the remnant complex preserved on both limbs of
the syncline suggests that this channel complex
had a low degree of sinuosity. The 30+ m (98+ ft)
of incision on this channel complex suggests that it
was mostly erosionally confined.

The cross sections for time slice 1 (Figures 11A,
12A) show the CC1 erosion surface down-cutting

Figure 12. Cross sections combining outcrop observations from the north limb of the Baviaans syncline (Figure 9) and the paleo-
geography maps of Figure 10A–F, using the B–C interfan as a datum: (A) reconstructed cross section for time slice 1, (B) time slice 2, (C)
time slice 3, (D) time slice 4, (E) time slice 5, and (F) time slice 6.
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into the B–C interfan on the south limb with inferred
small, symmetrical external levees adjacent to it
(Figure 11A). The complex shows similar features
on the north limb but with basal erosion down to
just above the B–C interfan (Figure 12A).

Time Slice 2: Channel Complex 2

Channel complex 2 (Figure 10B) is preserved as
two remnant channel complexes on the CD Ridge,
directly overlying the CC1 complex (Figure 8).
These remnants are correlated to the symmetrical
channel complex that incises below the base of
unit C mapped out 8.5 km (5 mi) to the east–
northeast near the West Dump on the north limb of
the syncline (CC2; Figure 9). The asymmetry of the
channel complex, with its eastward stepping con-
stituent channel elements on the CDRidge and the
preservation of several channel margins preferen-
tially on the western side of the complex farther
downdip, implies moderate sinuosity.

The cross section for time slice 2 (Figure 11B)
on the south limb shows two remnant channel com-
plexes, both of which incise to the base of unit C,
and the western complex is the youngest. We in-
terpret asymmetric levees adjacent to these channel
complexes, with the larger external levee to thewest.
The two channel complexes identified on the south
limb are undifferentiated on the north limb, where
thick external levees are inferred to have confined
the CC2 complex, possibly aggrading with it. A
crevasse splay deposit is present in the western
external levee, captured on the outcrop correlation
panel (Figure 9); its stratigraphic position in the mid-
dle of the external levee succession suggests that the
channel complex and the external levees aggraded
quasi-synchronously.

Time Slice 3: Channel Complex 3

Time slice 3 (Figure 10C) shows a C2-aged channel
complex adjacent to the unit D slope valley on the
CD Ridge (CC3; Figures 4, 5, 8). Constituent remnant
channel elements show an eastward stepping stacking
pattern, with channel margin material preferentially
preserved to the west. This channel complex has been
correlated to a channel complex at the Old Rubbish

Dump (Pringle et al., 2010) exposed 10 km (6 mi)
downdip (CC3; Figure 9), where channel elements re-
cord a similar eastward stepping with extensive chan-
nel margin material also preserved toward the west.
Both channel complexes cut down to the stratigraphic
level of base subunit C1. The asymmetry and internal
eastward stepping of channel elements within the CC3
channel complexes suggest that external levee deposits
associated with these channel complexes were asym-
metric, with a thicker levee to the east.

The cross-section reconstruction for time slice 3 on
the CD Ridge shows how a channel complex partly
truncates the older, eastern CC2 channel complex, in-
cising to the base of unit C. Individual channel elements
in the CC3 channel complex are eastward stepping. On
the north limb (downdip), this same deeply incised and
eastward stepping channel element trend is present. We
interpret that asymmetric external levees bounded the
channel complex, with the higher levee on the eastern
margin with preferential flow stripping and overspilling
to the east as a consequence of the eastward stepping of
the individual channel elements.

Time Slice 4: Channel Complex 4

Time slice 4 (Figure 10D) comprises the large, western
CC4 channel complex on the CD Ridge (Figure 8).
This complex incises into the westernmost exposed
deposits of the CC3 channel complex, removing the
stratigraphic relationship with external levee deposits.
The lack of exposedchannelmargindeposits andchannel
element–scale surfaces means that the geometry of this
channel complex is poorly constrained. It has been
correlated to the youngest, asymmetric channel
complex cropping out at the Old Rubbish Dump
(Pringle et al., 2010) (CC4; Figure 9) on the north
limb. The asymmetry of constituent channel elements
here suggests that the channel complex was weakly
sinuous in planform.

Topography on theCC3eastern external levee on
the south limb of the syncline is likely to have acted
to partially confine the eastern external levee of the
CC4 channel complex, forming a confined external
levee. The western external levee of CC4 was not
confined. This pattern is extended downdip, with the
eastern CC4 external levee inferred to have been
confined by topography created by the eastern external
levee of CC3, whereas the CC4western external levee
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is largely unconfined. In both correlation panels, CC4
incised through part of CC3, cutting down to the base
of unit C, removing older external levee deposits ge-
netically related to older channel complexes.

The asymmetry of the channel complex on the
north limb suggests that the external levees adjacent to
that channel complex are likely to have been asym-
metric, with a thicker western levee at an interpreted
outer bend position. The reconstructed cross section for
the north limb suggests that the eastern external levee
of CC3 was high enough to act as a confining surface.

Time Slice 5: Channel Complex 5

Channel complex 5 shows the paleogeographic in-
terpretation of the westernmost C2-aged channel
complexes recorded on the CD Ridge and on the
north limb of the syncline opposite Baviaans Farm
(Figure 10E). In both areas, the constituent channel
elements show a west-stepping stacking pattern, with
extensive preserved channel margin deposits (CC5;
Figures 8, 9). Themap shows this channel complex as
sinuous with an outer bend to the west.

It is suggested that the thick eastern external
levee constructed during time slice 3 on the south
limb of the syncline confined the eastern external
levee associated with CC5. On the north limb, the
deposits of thewestern external leveewere unconfined,
and the eastern levee onlapped the western external
levee of CC4, forming a composite levee succession.

Time Slice 6: Channel Complex 6

Channel complex 6 is the youngest channel complex
recorded in C2 on the CD Ridge (CC6; Figures 4, 5,

8) and in Bav 1a (Figure 10F) and the most com-
pletely preserved. At outcrop, this complex is char-
acterized by vertically stacked aggradational channel
elements confined by internal levee deposits. Chan-
nel complex 6 is correlated to the complex exposed
at the Whaleback, 5 km (3 mi) downdip on the
north limb of the syncline (CC6; Figure 9). The
channel complex at the Whaleback is asymmetric,
indicating sinuosity. Internal levees overlying a CC6
erosion surface confine the late stage aggradational
channel complex on both limbs of the syncline.

The northern correlation panel shows CC6 to
be a highly erosive channel complex that incised
through external levee deposits, constructed during
time slices 2–5. It is interpreted to have been confined
by external levees to the east that onlap onto older
external levees constructed during time slice 4 and by
an internal levee to the west.

DISCUSSION

Subsurface Implications of the
One-Dimensional and Two-Dimensional Data

The integration of core and well log data to adjacent
outcrops provides a link between 1-D and 2-D data
and scales the well data up to field mapping scale.
The correlation across the Baviaans syncline provides
between 2 km (1 mi) and 10 km (6 mi) of downdip
control. Figure 13 highlights five of the key learnings
from this high-resolution integrated study of sub-
marine channel complex evolution:

1. A stratigraphic trend of channel complexes and
channel elements being thicker through the

Figure 13. Key learnings from this integrated study that can be applied to exhumed and subsurface submarine channel–levee systems.
GR = gamma ray.
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channel complex set (Figure 4A) exists such that
the youngest, vertically aggradational channel
complex (CC6) is the best preserved in both
updip and downdip data sets. On average, channel
remnants are 3 m (10.5 ft) thick, channel complex
remnants are 11 m (36 ft) thick, and the C2
channel complex set is 40 m (131 ft) thick.
This is interpreted to reflect the increased pre-
servation potential of younger components of
a channel complex set as the deep-water system
evolved from bypass-dominated to aggradational
within the lowstand systems tract (Hodgson et al.,
2011).

2. Although the basal surface of the C2 channel
system is the most correlative, it can be difficult
to pick out using well logs alone because mud-
stone clast conglomerate produces high gamma-
ray readings. The same issue holds when trying to
identify correlative channel surfaces (channel el-
ement and channel complex boundaries) in well
logs. However, borehole images can be more
helpful because they show basal mudstone clasts
as dark (conductive) features and basal surfaces
as abrupt changes in conductivity (Table 2).

3. Preservation of thin-bedded turbidites within the
main composite bounding surfaces are either
channel margin (Bav 1a) or internal levee deposits
(Bav 2; Figures 8, 13). Therefore, it is important
to consider the environment of deposition of
thin beds and their connectivity to sand-rich
deposits. Channel margin thin beds show similar
electrofacies to external or internal levee thin beds
in conventional wireline logs (Figure 7), but image
logs help todistinguish between these thinbed types.

4. A single vertical well will not intersect all channel
complexes. This is a combined function of lateral
channel switching, stacking pattern, and sinuosity.
Furthermore, a bypass surface in updip locations
can be represented bymultiple channel complexes
downdip (Stevenson et al., 2015).

5. Boreholes Bav 1a (Figure 4) and Bav 2 (Figure 5) are
0.7 km (0.44 mi) apart, and although sever-
al channel element–scale surfaces and channel
complex–scale surfaces were identified in each of
the cores, none of these surfaces could be cor-
relatedwith confidence between thewells (Figure
6). Typically, the correlation lengths of channel
elements are less than the well spacing. However,
using additional information provided in the

outcrop correlation panel from the CD Ridge
(Figure 8), the CC3 and CC6 erosion surfaces
were correlated. Combining observations from
both wells, only CC1, CC3, and CC6 were in-
tersected in both Bav 1a and Bav 2. The hierarchy
and scale of channel erosion surfaces, combined
with stratigraphic position, are key when corre-
lating and interpolating in three dimensions. Dip
measurements from electrical borehole image
logs can be employed to calculate the angle and
direction of erosion surfaces to help with corre-
lating these surfaces between wells.

Controls on Location and Stacking Patterns of
Channels

A long-term entry point in the southwestern corner
of the Baviaans syncline is interpreted as due to
the presence of channelized axes of units B, C, and D
(Di Celma et al., 2011; Hodgson et al., 2011; Brunt
et al., 2013b; van derMerwe et al., 2014). The coeval
shelf edge has been removed because of later uplift
of the Cape fold belt so the mechanism for this long-
term focus of supply is unknown. The paleogeographic
reconstructions for C2 indicate a levee-confined chan-
nel system that bifurcates downslope into a series of
isolated channel complexes. This pattern means that
more of the stratigraphic history of the system is
preserved as deposits on the north limb of the Ba-
viaans syncline, with more time locked up on erosion
surfaces farther updip on the CD Ridge.

The paleogeographic maps (Figure 10) show
two main clusters of channel complexes on the north
limb of the syncline that are separated by approx-
imately 6 km (4 mi) of overlapping siltstone-rich
external levee deposits (Figure 9). This composite
external levee succession was built by overspilling
and flow stripping from different channel complexes
(Figure 12), although there is no evidence that more
than one channel complex was active at a time. At
any one time, the topography of the composite
levee would influence the behavior of sediment
gravity flows that escaped the active conduit. The
constructional topography likely hindered the po-
tential for an avulsion into this area.

An internal levee is defined as a constructional
feature deposited lateral to a channel but within a
larger confining surface (Kane and Hodgson, 2011;
Hansen et al., 2015). The situation described here
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between the western and eastern channel axes is
different because the external levees were partially
confined by constructional topography of older ex-
ternal levees. The term “confined external levee” is
introduced here for levees that are deposited outside
the channel belt confining surface but subject to the
influence of underlying constructional topography.
External levees are commonly seen to onlap each
other in seismic section (e.g., McHargue and Webb,
1986; Bastia et al., 2010; Catterall et al., 2010), and
the area between the western and eastern channel
complexes is interpreted as an outcrop example of
this situation. The sedimentary processes within
a confined external levee deposit and an internal

levee may be similar; therefore, the sedimentary
facies may share affinities, such as deflection of
flows by the confining surface, recorded by multi-
directional current and climbing ripple cross-
lamination (Kane and Hodgson, 2011). Also, flows
within a confined external levee cannot travel as
far from the parent conduit as those within an un-
confined external levee, which will influence bed
thickness patterns and bed geometries. In the hi-
erarchy used here, these composite external levees
would represent an external levee complex set;
however, it has not yet been possible to distinguish
constituent external levee complexes and external
levee elements.

Figure 14. Planform and cross-
section examples of subsurface
submarine channel–levee sys-
tems scaled to the unit C system
to illustrate comparable scale and
architecture. The gray shape on
the map is the Fort Brown For-
mation (Fm.), and the yellow stars
refer to key localities. (A) Channel
patterns from an avulsion node
mapped offshore Niger delta
(Armitage et al., 2012, used with
permission of AAPG) that shares a
similar rate of divergence. (B)
Map of a Miocene hybrid channel
from offshore West Africa with
a combination of early incision
and later construction of external
levees, as interpreted from
the Laingsburg C2 succession.
Adapted from Janocko et al.
(2013), with permission from
Elsevier. (C) Map view of a seabed
submarine channel system, the
Y channel, from offshore
Nigeria. Adapted from Jobe et al.
(2015). (D) Unit C in the CD
ridge, adapted from Figure 3B.
(E) Seismic cross section through
the Y channel, from offshore
Nigeria. Note the lateral to ag-

gradational stacking pattern at a similar scale to the complexes in unit C2. Adapted from Jobe et al. (2015). (F) Seismic profile from the Dalia
M9 Upper Channel System, adapted from Abreu et al. (2003), with permission from Elsevier. Note the similar architecture. Red line is
the base of the system, and the youngest channel complex is highlighted by green lines. (G) Seismic section through two hybrid
channels with erosional and levee confinement, from offshore West Africa, adapted from Janocko et al. (2013), with permission from
Elsevier. Note apparent simplicity of the channelized part in contrast to the C2 stratigraphy in (D). BF = Baviaans Farm; CDR = CD Ridge;
ORD = Old Rubbish Dump; WB = Whaleback.
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Scale and Architectural Comparison to Other
Systems

The unit C lowstand sequence set is up to 80 m
(260 ft) thick in the study area; it overlies the 50-m-
thick (165-ft-thick) B–C mudstone, and is overlain
by the 26-m-thick (85-ft-thick) C–D mudstone.
These thicknesses and likely strong acoustic im-
pedance contrasts at base and top of unitC suggest the
succession would be mappable in many deep-water
seismic reflection data sets. Although the two outcrop
panels provide a wealth of architectural data in two
dimensions, augmented by the boreholes, the map
view geometries are interpreted instead of directly
imaged. In recent years, there have been many
publications showing map view geometries derived
from seismic amplitude horizon slices through slope
channel–levee complexes and slope valleys. In most
cases, the systems imaged are at the whole unit C
scale. Notwithstanding this resolution difference,
and mindful of the well-developed hierarchy in deep-
water systems, such map view images provide a useful
constraint on the geometries interpreted within C2.
Figure 14 shows a horizon slice and cross section
through Cenozoic slope deposits, offshoreWest Africa
(Abreu et al., 2003; Armitage et al., 2012; Janocko
et al., 2013; Jobe et al., 2015). The horizontal distance
scales well with the distance across the Baviaans
syncline, and the 25-ms (~25-m [82-ft]) vertical
scale suggests that the channel features are only a
little larger than the C2 channel complexes. What is
mappable as a channel element is likely a channel
complex in outcrop and well data (Figures 13, 14).

To obtain map view images of features that
scale with outcrop-scale vertical resolution requires
either extremely high–resolution shallow seismic
data or studies of the modern seabed. A comprehen-
sively studied Pleistocene slope channel example is the
Lucia Chica system, offshore central California. High-
resolution data collected by autonomous underwater
vehicle radar surveys provide information at similar
resolution to the C2 channel complexes (Maier et al.,
2011, 2012, 2013). The system was active during
the last glacioeustatic lowstand and was abandoned at
11 ka during the postglacial sea-level rise. Maier et al.
(2013) documented the evolution of four chan-
nels, which initiated as erosional features and sub-
sequently developed levees, in a similar mechanism
envisioned herein.

Janocko et al. (2013) described hybrid channels
that show characteristics of both erosional and levee-
confined types, which we interpret to be the domi-
nant style in C2. The high-resolution data from
Lucia Chica led Maier et al. (2013) to argue that
the channels in that system evolved from erosional
to levee confined, before avulsion occurred. Older
channels have thicker levees, higher sinuosity, and
evidence of lateral stepping. A similarity between
the Lucia Chica system (Maier et al., 2012), the Y
channel (Jobe et al., 2015), and C2 is that lateral
movement of channels was achieved through lateral
stepping instead of lateral migration.

An Exhumed Example of an Avulsion Node

The CD Ridge area marks a site that was prone to
multiple abrupt changes in the pathways of channel
complexes and is interpreted as a unique example of
an exhumed deep-water avulsion node. Three types
of avulsion pattern have been noted in deep-water
channel systems. These include forward-stepping,
back-stepping, radial, and single node (Kolla, 2007;
Armitage et al., 2012; Pyles et al., 2014). Triggers
for avulsion events include allocyclic controls such
as changes in climate, sea level, or tectonics (Kolla,
2007; Maier et al., 2012). Autocyclic controls may
include increasing channel sinuosity (Kolla, 2007),
limited downstream accommodation, and backfilling
of individual channel thalwegs caused by lobe depo-
sition (Prélat et al., 2010) or breaching of a levee and
response to a changed base level (Fildani et al., 2006;
Brunt et al., 2013a; Covault et al., 2014; Ortiz-Karpf
et al., 2015). However, the lack of longitudinal mi-
gration of the C2 avulsion node points to an under-
lying control, such as a break-in-slope, although this is
too subtle to resolve at outcrop. The channel com-
plexeswere not active at the same time, so the pattern
is not bifurcation; however, themap view pattern and
scale of channel complex divergence are remarkably
similar to those identified by Armitage et al. (2012)
(Figure 14). In the Lucia Chica system, Maier et al.
(2013) suggested overall low channel relief, and
highly asymmetrical channel levees influenced the
position of an avulsion node, which is a situation
common in the C2 succession.

The area downdip of the avulsion node (the
north limb) in C2 is notable for the lack of sand-rich
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frontal lobe deposits, although they are interpreted
at the base of the underlying subunit C1 (Di Celma
et al., 2011) and overlying subunit C3 (Morris et al.,
2014b). The wide belt of channel complexes and
composite external levees on the north side of the
Baviaans syncline suggests that the absence of fron-
tal lobes at the base of C2 external levees cannot be
ascribed to low preservation potential and indicates
persistent sediment bypass of high-energy flows
(Stevenson et al., 2015). Sand-rich C2 lobe deposits
are found approximately 25 km (15.5 mi) downdip
of the study area (Di Celma et al., 2011; Brunt et al.,
2013a), which is consistent with an accommodation-
limited slope in the study area, such that flows re-
mained in sand bypassmode. Deposition of a crevasse
or frontal lobe (or splay) is common where there is
available accommodation following an initial breach
of an external levee (Fildani et al., 2006). Depending
on usable accommodation, flows will deposit rap-
idly (e.g., Parsons et al., 2002; Hall and Ewing,
2007; Morris et al., 2014b). As the system stabilizes,
a channel and levee may develop over the lobe
(Lopez, 2001; Maier et al., 2012). High-amplitude
continuous-to-discontinuous reflection packages
(Posamentier and Kolla, 2003) are preserved be-
tween or underlying channel and levee deposits, as
identified in the Amazon, Indus, Zaire, and Bengal
fan systems (Damuth et al., 1988; Flood et al., 1991;
Normark et al., 1997; Pirmez et al., 1997, 2000;
Lopez, 2001; Droz et al., 2003; Kolla, 2007).
However, Ortiz-Karpf et al. (2015) provide a sub-
surface example of a deep-water avulsion cyclewhere
there is a zone between the point of avulsion and the
updip pinchout of the avulsion lobe. The implication
is that not all avulsion nodes will be associated
spatially with sand-rich frontal lobe deposits, which
is an important consideration in subsurface reservoir
prediction.

CONCLUSIONS

The C2 deep-water slope system shows a temporal
evolutionary trend in the style of constituent channel
complexes and in the nature of external levees. The
oldest and most deeply incised channel complex
is overlain by a series of external levee-confined,
laterally stepping asymmetric channel complexes
succeeded by an aggradational channel complex

confined by internal and external levees. The older
complexes are only partly preserved because of deep
erosion on complex boundaries. Constituent chan-
nels are similarly preserved remnants, with no con-
sistent aspect ratios. Channel and channel complex
boundaries are marked by combinations of mudstone
clast accumulations and channel margin or internal
levee thin beds that onlap erosion surfaces. Neither of
these expressions can be reliably picked on con-
ventional wireline logs and, in the absence of core,
image logs are vital for accurate interpretations.

Moving 2–5 km (1–3 mi) downdip, the external
levees overlap to form a thick composite external levee
succession that was supplied by flows escaping from
channel complexes of different ages and spatial posi-
tions. The external levees genetically related to the
younger channel complexes were partially confined
because of topography created through deposition of
unconfined external levees associated with the older
channel complexes 1–3. The facies in these confined
external levees are similar to those of internal levees.
The growth of this confined external levee complex
inhibited channel avulsion, resulting in two prefer-
ential pathways being used by channel complexes.

The downdip change over 2–5 km (1–3mi) from a
narrow, focused system to a more dispersed system is
interpreted to record an exhumed deep water avulsion
node. The position of the node may reflect a structural
control such as a break in slope. Frontal lobes, crevasse
lobes, or splays are commonly associated with avulsion
nodes; however, these features are not present in the
Baviaans study area, and instead they have been ob-
served approximately 25 km (15.5 mi) downdip. This
suggests that the channels remained in sand bypass
mode.
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