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forecasts of damaging earthquakes during future swarms. Equally
important, the Izu test suggests that a central unresolved problem of
earthquake interaction—the response of seismicity to a large shock
followed by viscoelastic rebound—is essentially a sudden stress
change succeeded by a transient stressing rate change, which can
be simulated by combining the two processes shown in Fig. 5. A

Methods
To calculate the updated daily seismicity rate, R, due to a stressing rate change (Fig. 5b), we
seek the updated state variable g from equation (11) of ref. 16, R¼ r=ðg _trÞ, where ṫr is the
background stressing rate, and the background seismicity rate r is set to 1. At t ¼ 0, g is
steady state, where gss ¼ 1=ð _trÞ: To evolve g, we use equation (B17) of ref. 16, g¼

g0 2
1
_t

� �

exp 2t _t
Ajn

h i

þ 1
_t
; where g0 is the state variable before each time step, and ṫ is the

stressing rate. For the response to a sudden stress change Dt (Fig. 5d), g¼ g0 exp
2Dt
Ajn

� �

;
modified from equation (B11) in ref. 16. For the Izu swarm, we inferAjn using the relation
Ajn ¼ ta _t: From Fig. 2a, ta for the M < 6 shocks close to the dyke is ,0.3 d where the
calculated stressing rate _t< 150baryr21: The observed ta for the background M < 6
shock in Fig. 2a is ,1 yr, and the background _t< 0:1baryr21: Both estimates yield
Ajn < 0.1 bar, which we use here. The mean stressing rate in Fig. 4a is 32 bar yr21, and
the mean ta for the M < 6 shocks is ,3 d, for Ajn < 0.3 bar, similar to a previous
estimate21.
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Animal societies are stages for both conflict and cooperation.
Reproduction is often monopolized by one or a few individuals
who behave aggressively to prevent subordinates from reprodu-
cing (for example, naked mole-rats1, wasps2 and ants3). Here we
report an unusual mechanism by which the dominant individual
maintains reproductive control. In the queenless antDinoponera
quadriceps, only the alpha female reproduces. If the alpha is
challenged by another female she chemically marks the pretender
who is then punished4 by low-ranking females. This cooperation
between alpha and low-rankers allows the alpha to inflict punish-
ment indirectly, thereby maintaining her reproductive primacy
without having to fight.
Queenless ponerine ants have evolutionarily lost the morpho-

logical queen caste5. All females are workers who can potentially
mate and reproduce sexually (mated workers are called gamer-
gates)5. Colonies ofD. quadriceps have, on average, 80 adult workers
and a single gamergate6, who has the alpha rank in a near-linear
dominance hierarchy of about 3–5 high-ranking workers7. High-
rankers are hopeful reproductives. They do little work, and one of
them, usually the beta, replaces the gamergate if she dies7. Workers
with lower ranks work, and are little involved in dominance

Figure 5 The rate/state effect of stress on seismicity. Details of the calculations are given

in Methods. A change in the stressing rate (a) causes a swarm (b). A sudden stress

change, Dt (c), causes an aftershock sequence that decays inversely with time (d). The

Izu swarm has several aftershock sequences embedded in it. Comparison of dashed and

solid curves shows that the higher the stressing rate, the more quickly the seismicity rate

reaches equilibrium. As the stressing rate change is highest close to the source, swarm

seismicity appears to migrate away from an intrusion or creep site.

† Present address: Laboratoire d’écologie CNRSUMR 7625, Université Pierre etMarie Curie, 7 quai Saint

Bernard, 75 005 Paris, France.
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interactions. Males, as in other social Hymenoptera8, play no active
role in colony life. Mating experiments show that the gamergate is
mated to a single unrelated male6, so that workers are either
daughters of the gamergate, or—if gamergate replacement has
recently occurred—daughters and sisters of the new gamergate.
A high-ranker can enhance her inclusive fitness by overthrowing

the gamergate, rather than by waiting for her to die naturally,
because the high-ranker is more related to her own offspring than
to those of another high-ranker (Methods, Benefits of attempted
gamergate replacement to pretender). When a high-ranker chal-
lenges the gamergate, the two ants may engage in short fights and
chase each other inside the nest, jostling others and trampling
brood7. Bouts of chasing are interspersed with periods of relative
calm, during which the gamergate may rub her sting against the
pretender7 (‘sting smearing’, Fig. 1a). Following sting smearing, the
pretender is often immobilized by low-ranking workers (ref. 7, and
C. Peeters, personal communication) (Fig. 1b). Immobilization can
last several days, and typically results in the pretender losing her
high rank. It is not clear why punishment causes loss of rank, but it is
probably a combination of the stress caused by immobilization and
being prevented from performing dominance behaviours.
Occasionally the immobilized individual is killed outright. Here
we experimentally test the hypothesis that the gamergate can trigger
immobilization of a pretender by a distinct chemical signal.
When performing sting smearing, the gamergate marks the

pretender with chemicals from the Dufour’s gland, which empties
via the sting9. We smeared beta workers with the Dufour’s gland

content of either a gamergate, or another beta or a low-ranker, and
then recorded the duration of immobilization induced (Methods,
Immobilization trial). Immobilization cannot be confused with
other aggressive behaviours (Fig. 1b). We applied extracts to betas
because beta is the rank most often naturally smeared by the
gamergate7.

Gamergate glands induced immobilization significantly more
often and for longer than beta or low-ranker glands (Fig. 2), and
with more damaging consequences. Betas lost high rank signifi-
cantly more often following smearing with gamergate gland than
with gland of betas and low-rankers (4 of 9 trials versus 2 of 27 trials;
P ¼ 0.0245, Fisher’s exact test, one-tailed). Because gland extracts
were all from non-nestmates (Methods, Immobilization trial), our
results also show that the signal is neither colony specific nor unique
to each gamergate.

Chemical analyses (by gas chromatography/mass spectrometry,
GC/MS) show that Dufour’s glands contain mostly hydrocarbons
(alkanes, alkenes and methyl-branched alkanes with 15–30 carbon
atoms), and that gamergate glands differ from beta and low-ranker
glands. Gamergate glands (n ¼ 12) have significantly more hydro-
carbons than low-rankers’ (n ¼ 9, summed area of the 30 peaks of
highest abundance is 3.2 times higher in gamergates, Mann–
Whitney U-test: z ¼ 22.487, P ¼ 0.013) but not more than beta
glands (n ¼ 7, summed area is 1.9 times higher in gamergates but
z ¼ 21.268, P ¼ 0.205). Furthermore, gamergate glands contain a
distinctive chemical mixture with a higher proportion of high-
molecular-mass hydrocarbons than low-ranker glands, with beta
glands intermediate (Figs 3 and 4). This is in agreement with the
results of the bioassay, and suggests that Dufour’s gland chemicals
are a pheromonal signal that induces immobilization, and that only
the gamergate produces sufficient quantities or the correct compo-
sition or both.

The use of a chemical signal to trigger immobilization, and hence
to control reproduction, raises the question of why other females do
not produce and apply this signal. One possibility is that the signal
can only be produced by fully fertile individuals10,11, whereas betas
have only partially active ovaries at most12. Alternatively, counter-

Figure 1 Dominance interactions. a, Sting smearing. The gamergate (left) approaches the

pretender, usually from behind or from the side, briefly rubs her sting against the

pretender without inserting the sting, and then runs away. Sting smearing differs from

actual stinging. A stinging worker, typically a forager, bites and holds the prey and then

inserts the sting into the prey to inject venom. b, Immobilization. One to six low-ranking

workers bite and hold the appendages of the pretender for up to 3–4 days with workers

taking turns (modified from ref. 7).

  

 

Figure 2 Bioassay results. Percentage of trials where betas were immobilized (black

columns, left-hand y axis) following topical application of Dufour’s gland content from

either a gamergate, beta, or low-ranking worker, and average duration of immobilization

(mean ^ s.e.m., white columns, right-hand y axis). Gamergate gland triggers

immobilization more often (x2 for the three groups, 7.263; degrees of freedom d.f. ¼ 2;

P , 0.05. Fisher exact test, one-tailed: gamergate versus beta, P ¼ 0.025; gamergate

versus low-ranker, P ¼ 0.017) and induces longer immobilization (Kruskal–Wallis

ANOVA for the three groups: H ¼ 9.151, d.f. ¼ 2, P ¼ 0.0103; Mann–Whitney U-test:

gamergate versus beta: z ¼ 22.198, P ¼ 0.028; gamergate versus low-ranker:

z ¼ 22.899, P ¼ 0.0037). Beta and low-ranker glands do not differ in either effect

(Fisher exact test, P . 0.05; Mann–Whitney U-test: z ¼ 20.285, P . 0.05).
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feiting the signal could be evolutionarily unstable, because it would
result in repeated gamergate replacement. This would be costly to
low-rankers, because it would reduce their genetic relatedness to the
gamergate’s offspring. Low-rankers would, therefore, benefit by
ignoring the signal. Furthermore, frequent gamergate replacement
would presumably decrease colony productivity.

Our results are, to our knowledge, the first to implicate the
Dufour’s gland in the resolution of intracolony reproductive con-
flict in ants. There are, however, several precedents for the import-
ance of the Dufour’s gland in ant aggression9,13. Slave-makers and
workerless social parasites trigger panic and aggression among host
workers with Dufour’s gland chemicals14,15. Queen Leptothorax
gredleri usurp conspecific nests by smearing resident queens with
Dufour’s gland secretions that induce resident workers to attack
their own queens16. These propaganda substances manipulate
worker behaviour in a non-adaptive way, as responding workers
lose inclusive fitness14-16. This contrasts sharply with D. quadriceps,
where workers who prevent gamergate replacement in response to
the gamergate signal increase their inclusive fitness.

Immobilization also occurs in the queenless ponerine ants
Gnamptogenys menadensis17 and Harpegnathos saltator18 (reviewed
in ref. 19), but is not triggered by the gamergate. Both species have
several gamergates per colony, and recruitment of additional
gamergates does not result in the overthrow of current gamergates.
Low-rankers probably regulate gamergate number to maintain an
efficient balance between egg-layers and workers, given that gamer-
gates work less. Immobilization is directed against workers activat-

ing their ovaries17,18, who are probably detected by unavoidable
chemical cues of ovarian activity20–22, rather than by an externally
applied signal as in D. quadriceps.
Our results show sophisticated cooperation between the gamer-

gate and low-rankers in preventing gamergate overthrow by a
pretender. Cooperation is favoured because both the gamergate
and low-rankers are more related to the current gamergate’s off-
spring than to the pretender’s potential offspring (Methods, Ben-
efits of cooperative punishment to gamergate and low rankers). The
cooperation integrates the ability of the gamergate to signal the
identity of the pretender with the collective physical power of low-
rankers to immobilize her. Immobilization in D. quadriceps pre-
cisely fits the definition of punishment: “individuals (or groups)
commonly responding to actions likely to lower their fitness with
behaviour that reduces the fitness of the instigator and discourages
or prevents him or her from repeating the initial action”4. Loss of
high rank is costly, as the punished pretender loses any hope of
future reproduction (only high-rankers can replace the gamergate7).
Immobilization in D. quadriceps is perhaps the clearest yet demon-
stration of punishment in animal societies. Similar forms of punish-
ment, where low-rankers prevent replacement of the reproductive,
could potentially occur in many insect and vertebrate societies with
totipotent individuals (for example, Polistinae and Stenogastrinae
wasps, Halictidae bees, cooperatively breeding birds and mam-
mals23,24). In addition, because immobilization is a mechanism by
which workers prevent other workers, the pretenders, from repro-
ducing, it is also a novel form of worker policing7,19,25, analogous to

 

 

 

 

     
  

   
 

   
  

     

       

  

  

   

    

     

    

 
 

 
  

  
  

   

  
   

     

    

     
   

 
  

    
 
    

    

Figure 3 Chromatograms showing differences in Dufour’s gland contents of workers of

different ranks. Many of the hydrocarbons abundant in gamergates are rare in low-

rankers and vice versa. Betas have intermediate profiles (n ¼ 12 gamergates, 7 betas

and 9 low-rankers). The major compounds are: heptadecadiene (a); (Z)8-heptadecene (b);

n-heptadecane (c); (Z)9-nonadecene (d); (Z)9-heneicosene (e); n-heneicosane (f);

n-docosane (g); n-tricosane (h); 7-,9-,11-methyltricosane (i); 3-methyltricosane (j);

n-tetracosane (k); 11-methyltetracosane (l); n-pentacosane (m); 9-,11-methylpentacosane

(n); 5-methylpentacosane (o); n-heptacosane (p); 9-,11-,13-methylheptacosane (q);

nonacosene (r); and 4-,5-,6-octacosanone (s). Chemicals a–d are characteristic of betas

and low-rankers, e–h are common to all groups, and i–s are characteristic of gamergates

and betas. Chemicals present in lower quantities include: n-pentadecane; 9-hexadecene;

n-hexadecane; octadecene; nonadecadiene; n-nonadecane; octadecenal; tricosene;

pentacosene; 3-methylpentacosane; hexacosene; n-hexacosane; 11-,

13-methylhexacosane; 5-methylhexacosane; heptacosene; 7-methylheptacosane;

5-methylheptacosane; 3-methylheptacosane; octacosene; 5, 9-, 5, 15-, 5,

17-dimethylheptacosane; n-octacosane; 9-,11-,13-methyloctacosane; n-nonacosane;

9-,11-,13-,15-methylnonacosane; n-triacontane; and 9-,11-methyltriacontane. Asterisk

indicates the contaminant isophthalate.
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the killing of worker-laid eggs in honeybees26,27 and wasps28,29 but
acting in the context of policing breeder replacement rather than
male production. Another difference is that policing by immobil-
ization directly targets the ‘selfish’ worker who tries to reproduce,
whereas policing by egg-killing targets only the products of selfish
reproduction. A

Methods

Study animals

18 colonies of D. quadriceps were collected at the State University of Feira de Santana
(Bahia, Brazil) in February 1998, February 2000 and October 2000. All individuals were
individually marked (in Sheffield), and dominance interactions were recorded to
determine social ranks. ‘Blocking’ and ‘gaster rubbing’ behaviours readily allow alpha and
beta ants to be identified7.

Benefits of attempted gamergate replacement to pretender

High-rankers are usually daughters of the gamergate. They are not directly in conflict over
reproduction with a mother gamergate, because they are as related to her offspring (0.25
brothers, 0.75 sisters), on average, as to their own offspring (0.5). However, a high-ranker
can benefit by early replacement of a mother gamergate as a result of competition with
other high-rankers, because she is more related to her own offspring (0.5) than to a sister’s
offspring (0.375)7. Additionally, a high-ranker would benefit from gamergate overthrow if,
following recent gamergate replacement or colony fission, the gamergate is a sister (own
offspring 0.5 versus sister’s offspring 0.375).

Benefits of cooperative punishment to gamergate and low-rankers

The gamergate and low-rankers cooperate to prevent gamergate replacement because both
parties are more related to the current gamergate’s offspring than to the pretender’s
potential offspring (gamergate: own offspring 0.5 versus daughter’s 0.25; low-rankers:
mother gamergate’s 0.5 versus sister’s 0.375)7. Cooperation is still favoured if gamergate
replacement has recently occurred. The new gamergate is then the low-rankers’ sister, and
pretenders are either sisters or nieces to low-rankers. Low-rankers favour the gamergate
because they are equally or more related to the gamergate’s offspring than to the
pretenders’. Low-rankers additionally benefit from preventing replacement, because
replacement itself would be costly. In particular, there would be a delay in brood rearing,
because it takes approximately 6 weeks for a replacement alpha to mate6 and activate her
ovaries fully30. Furthermore, the colony would lose one worker, approximately 1% of the
workforce, as the gamergate dies when overthrown7.

Immobilization trial

Dufour’s glands of gamergates, betas and low-rankers were dissected (n ¼ 9, 11 and 16,
respectively). Gamergate glands were thick, beige-brown and filled with a yellow oily
secretion whereas beta and low-ranker glands were thin and pale-coloured. Histological
studies show that gamergate glands have a thicker epithelium and biosynthetically more
active cells than worker glands (J. Billen, personal communication; T.M. and F.L.W.R.,
unpublished work). The Dufour’s glands, tubes approximately 10mm £ 1mm in
gamergates, were cut in half across the length. One half was used for chemical analysis
(below). The other half was applied on the cuticle of a beta worker from another colony to
simulate sting smearing.We could not smear a betawith nestmate Dufour’s glands because

it is impossible to treat a beta with her own gland. In addition, using the gland of the
colony’s gamergate would orphan the colony and increase worker aggressiveness7. Before
application of the gland, the beta was chilled for 3–5minutes to prevent her from
struggling. The beta was then returned to her nest, where she rapidly warmed up and was
video-recorded for 30min. When several workers simultaneously immobilized the beta,
we summed the durations of immobilization inflicted by each worker, to reflect the higher
intensity of immobilization. Betas were used in 1–8 trials carried out at 1–121-day
intervals. The beta was reused soon afterwards only when the previous trial had resulted in
zero or little immobilization. The venom gland also empties by the sting. The
destructiveness of the bioassay and the limited supply of gamergates prevented us from
studying the effect of venom. However, venom is unlikely to be involved in sting smearing
and gamergate behaviour. The venom sac is full in foragers, who use venom to kill large
arthropod prey, but empty in gamergates (T.M., unpublished work).

Chemical analysis

Half of each Dufour’s gland was extracted in 0.5ml hexane. 100 ml of the extract was dried
by evaporation under nitrogen flow, re-dissolved in 2ml hexane and analysed with an high
performance (HP) 5890GC/MS apparatus fitted with a 30m £ 0.25mm internal diameter
column covered with a 5%diphenyl–95%polysiloxane phase (1.0 mm thickness, Rtx-5,
Restek). The carrier gas was helium (1mlmin21), and injections were splitless. The
temperature was initially kept at 100 8C for 3min, then increased by 15 8Cmin21 to 170 8C,
then by 5 8Cmin21 to 300 8C and finally kept at 300 8C for 10min. Linear and methyl-
branched compounds were identified by retention times, equivalent chain length, NIST
MS library and common fragmentation patterns. These identifications were not
confirmed by co-injection of reference compounds and are, therefore, tentative. Double
bounds were determined by derivatization with dimethyl disulphide, and their
stereochemistry was determined by equivalent chain length and co-injection. Chirality of
methyl-branched compounds was not determined. The numbers of individuals used for
the bioassay and for chemical analysis vary, because some individuals were available for
GC/MS when no colony was available for the bioassay (for example, a beta had been
replaced recently, or the gamergate had been dissected).
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2. Röseler, P.-F. in The Social Biology of Wasps (eds Ross, K. G. & Matthews, R. W.) 309–335 (Cornell

Univ. Press, Ithaca, 1991).

3. Heinze, J., Hölldobler, B. & Peeters, C. Conflict and cooperation in ant societies. Naturwissenschaften

81, 489–497 (1994).

4. Clutton-Brock, T. H. & Parker, G. A. Punishment in animal societies. Nature 373, 209–216

(1995).

5. Peeters, C. in Queen Number and Sociality in Insects (ed. Keller, L.) 234–261 (Oxford Univ. Press,

Oxford, 1993).

6. Monnin, T. & Peeters, C. Monogyny and regulation of worker mating in the queenless antDinoponera

quadriceps. Anim. Behav. 55, 298–306 (1998).

7. Monnin, T. & Peeters, C. Dominance hierarchy and reproductive conflicts among subordinates in a

monogynous queenless ant. Behav. Ecol. 10, 323–332 (1999).

8. Wilson, E. O. The Insect Societies (Harvard Univ. Press, Cambridge, Massachusetts, 1971).

9. Billen, J. & Morgan, E. D. in Pheromone Communication in Social Insects. Ants, Wasps, Bees, and

Termites (eds Vander Meer, R. K., Breed, M. D., Espelie, K. E. & Winston, M. L.) 3–33 (Westview,

Boulder, 1998).

10. Keller, L. & Nonacs, P. The role of queen pheromones in social insects: queen control or queen signal?

Anim. Behav. 45, 787–794 (1993).

11. Ortius, D. &Heinze, J. Fertility signalling in queens of aNorthAmerican ant. Behav. Ecol. Sociobiol. 45,

151–159 (1999).

12. Monnin, T. & Peeters, C. Cannibalism of subordinates’ eggs in the monogynous queenless ant

Dinoponera quadriceps. Naturwissenschaften 84, 499–502 (1997).

13. Hölldobler, B. & Wilson, E. O. The Ants (Harvard Univ. Press, Cambridge, Massachusetts, 1990).

14. Regnier, F. E. & Wilson, E. O. Chemical communication and “propaganda” in slave-maker ants.

Science 172, 276–269 (1971).

15. Allies, A. B., Bourke, A. F. G. & Franks, N. R. Propaganda substances in the cuckoo ant Leptothorax

kutteri and the slave-maker Harpagoxenus sublaevis. J. Chem. Ecol. 12, 1285–1293 (1986).

16. Heinze, J., Oberstadt, B., Tentschert, J., Hölldobler, B. & Bestmann, H. J. Colony specificity of Dufour

gland secretions in a functionally monogynous ant. Chemoecology 8, 169–174 (1998).

17. Gobin, B., Billen, J. & Peeters, C. Policing behaviour towards virgin egg layers in a polygynous

ponerine ant. Anim. Behav. 58, 1117–1122 (1999).

18. Liebig, J., Peeters, C. & Hölldobler, B. Worker policing limits the number of reproductives in a

ponerine ant. Proc. R. Soc. Lond. B 266, 1865–1870 (1999).

19. Monnin, T. & Ratnieks, F. L. W. Policing in queenless ponerine ants. Behav. Ecol. Sociobiol. 50, 97–108

(2001).

20. Monnin, T., Malosse, C. & Peeters, C. Solid phase microextraction and cuticular hydrocarbon

differences related to reproductive activity in the queenless ant Dinoponera quadriceps. J. Chem. Ecol.

24, 473–490 (1998).
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Sequences of motor activity are encoded in many vertebrate
brains by complex spatio-temporal patterns of neural activity;
however, the neural circuit mechanisms underlying the gener-
ation of these pre-motor patterns are poorly understood. In
songbirds, one prominent site of pre-motor activity is the fore-
brain robust nucleus of the archistriatum (RA), which generates
stereotyped sequences of spike bursts during song1 and recapi-
tulates these sequences during sleep2. We show that the stereo-
typed sequences in RA are driven from nucleus HVC (high vocal
centre), the principal pre-motor input to RA3,4. Recordings of
identified HVC neurons in sleeping and singing birds show that
individual HVC neurons projecting onto RA neurons produce
bursts sparsely, at a single, precise time during the RA sequence.
These HVC neurons burst sequentially with respect to one
another. We suggest that at each time in the RA sequence, the
ensemble of active RA neurons is driven by a subpopulation of
RA-projecting HVC neurons that is active only at that time. As a
population, these HVC neurons may form an explicit represen-
tation of time in the sequence. Such a sparse representation, a
temporal analogue of the ‘grandmother cell’5 concept for object
recognition, eliminates the problem of temporal interference
during sequence generation and learning attributed to more
distributed representations6,7.

Songbirds produce highly stereotyped, learned vocalizations8,9.
Zebra finch (Taeniopygia guttata) song consists of a complex pattern
of sounds with spectral and temporal modulation over a wide range
of timescales10. A basic acoustic element is the song syllable, which
may itself be composed of a complex sequence of sounds varying on
a 10-ms timescale, or even less11. Several distinct song syllables are
organized into a single, repeated pattern of about 1 s in duration,

called a song motif. Two pre-motor nuclei have been identified for
their importance in song generation: nucleus RA and nucleus
HVC12. Premotor HVC neurons project onto RA neurons, which
in turn project with amyotopic mapping ontomotor neurons of the
vocal organ13, and to respiratory brain areas14. During singing, RA
neurons generate a highly stereotyped, complex sequence of action
potential bursts, each precisely correlated to the song vocalization
on a submillisecond timescale1,15. The average burst duration is
roughly 10ms, and each RA neuron generates a unique pattern of
roughly ten bursts per song motif, such that on average 12% of
RA neurons are active at any time (A. Leonardo, and M.S.F.,
unpublished data) (Fig. 1a).

Figure 1 RA sequences and identification of HVC neurons. a, Neurons in nucleus RA

generate complex sequences of brief action potential bursts during song vocalizations.

Spectrogram (top) and acoustic signal of the song motif, and plots of instantaneous firing

rate (bottom) of song-related spike activity in three different RA neurons recorded in one

zebra finch. Neural activity is aligned using the onset of the second syllable of each motif

(arrowhead). Two renditions are displayed for each neuron. b, Single-unit recordings were

made in pre-motor nuclei HVC and RA. HVC neurons were antidromically identified by

electrical stimulation in RA and area X. RA projects to vocal motor neurons in the nucleus

of the twelfth nerve (nXIIts). c, RA-projecting neurons and putative interneurons could be

activated from RA but not from area X. Stimulation in RA, triggered by spontaneous spikes,

resulted in spike collision for RA-projecting neurons but not for interneurons.
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