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Abstract 

 

Hansen and Seo (2002) outline procedures to test for threshold cointegration, and to 
estimate a bi-variate model. However, in their conclusion they note that future research 
will have to find a way of estimating larger systems with multiple cointegrating vectors. 
This paper proposes a new algorithm that can be used to estimate such models. 
Simulation experiments are used to compare the algorithm’s performance with that of 
Hansen and Seo, and a practical application to the term structure of UK interest rates is 
also presented. 
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1. Introduction 

 

Threshold models are based on the principle that the data generation process for a time 

series is characterised by separate regimes, each with its own independent behaviour. The 

simplest class is the univariate Threshold Autoregression or TAR, developed by Tong 

(1983,1990). One of the key challenges is estimating the values of the thresholds that 

divide the separate regimes, since the sum of squares function is discontinuous and non-

differentiable with respect to these parameters. Tong suggests performing a grid search 

using the observations of the time series as potential candidates for the threshold, 

selecting the values that minimise the residual sum of squares or maximise the log 

likelihood (exactly equivalent under the assumption of Gaussian errors). This is probably 

the most common estimation procedure used in the applied literature. 

 Balke and Fomby (1997) introduce threshold cointegration which allows non-

stationary variables to be modelled in such a framework. The idea is intuitively appealing 

because costs of adjustment may prevent the restoration of equilibrium in a variety of 

economic circumstances. However, this will mean that often we will want the regimes to 

be defined by the error-correction term, so that the threshold effect is activated depending 

on the size of the disequilibrium in the system. This creates an additional problem if the 

cointegrating vector is unknown a priori because the error correction term will not be 

observable, and hence it becomes unclear how to form a grid search. 

 Hansen and Seo (2002), hereafter HS, suggest an algorithm that allows estimation 

of a cointegrating relationship and a single threshold when both are unknown in a 

bivariate vector error correction model (VECM). They show by simulation that the 

estimation procedure performs quite well, and apply it successfully to a model of the 

interest rate term structure in the US. However, this paper suggests there are ways in 

which their methodology can be improved. Firstly, it is shown that the number of 

computations necessary can be substantially reduced, without loss of efficiency. 

Secondly, their procedure is limited to the bi-variate case. A solution is therefore 

proposed which should be able to deal with these issues. 
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 The rest of the paper is organised as follows. In Section 2 the HS algorithm is 

described and evaluated. It is argued that improvements can be made, and an alternative 

procedure is suggested in an attempt to achieve this. Section 3 presents Monte Carlo 

evidence in order to compare the empirical performance of the two methodologies. 

Section 4 then illustrates an application to the term structure of interest rates in the UK of 

the new algorithm – a three dimensional VECM with two cointegrating relationships. 

 

2. The HS approach and a proposed alternative 

 

A linear cointegrated model can be set out as follows: 

 

 1t t tx A X u−′∆ = + , (1) 

 

where 

 

 [ ]1 11 ...t t tX x x x− − −′ = ∆ ∆ t l , 

 

 [ ]0 1 ... lA a aαβ′ ′= a . 

 

Here tx  is a p-dimensional I(1) time series with n observations and l is the maximum lag 

length. In the parameter matrix A, Į and ȕ are p by r matrices, where r is the number of 

cointegrating relations. The error term, , is assumed to be a vector martingale 

difference sequence with finite covariance matrix 

tu

E( )t tu u′Σ =  Using the same notation, a 

two-regime threshold cointegrated model is written as: 

 

 1 1 1 2 1 2( , ) ( , )t t t t t tx A X d A X d uβ γ β− −′ ′∆ = + +γ , (2) 
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where 

 

 1 1

2 1

( , ) 1( ( ) ),

( , ) 1( ( ) ),
t t

t t

d f x

d f x

β γ β γ
β γ β

−

− γ
′= ≤
′= >

 

 

with 1(·) denoting the indicator function, and Ȗ being the threshold parameter. 

 Assuming that the errors are iid Gaussian, the likelihood function is 

 

 1
1 2 1 2 1 2

1
( , , , , ) log ( , , , , ) ( , , , , )

2 2n t t

n
A A u A A u A Aβ γ β γ −′Σ = − Σ − Σ Σ ΣL β γ . (3) 

 

If ( , )β γ  is held fixed, then model (2) becomes 

 

 1 1 1 2 1 2( ) ( ) ( , ) ( ) ( ) ( , )t t t t t tx A X d A X d uβ β β γ β β β γ− −′ ′∆ = + + , (4) 

  

where 

 

 [ ]1 1( ) 1 ( ) ...t t tX w xβ β t lx− − −′ = ∆ ∆ , 

 

 0 1( ) ...j j j j jlA a aβ α′ a⎡ ⎤= ⎣ ⎦ , 

 

and 1( )tw 1txβ β− ′= −  is the error correction term. The concentrated likelihood function for 

(4) is: 
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 ˆ( , ) log ( , )
2 2n

nβ γ β γ= − Σ −L
np

. (5) 

 

For given values of ( , )β γ , all of the parameters in the Aj(ȕ) matrices can then be 

estimated by OLS regression. HS consider the case of model (4) when p = 2 and r = 1, so 

there is a single cointegrating vector, and specify that 

 

 1 1

2 1

( , ) 1( ( ) ),

( , ) 1( ( ) ).
t t

t t

d w

d w

β γ β γ
β γ β

−

− γ
= ≤
= >

 

   

In order to estimate β and γ, HS suggest using the following algorithm: 

 

1. Use the approach of Johansen (1988) to obtain an estimate β#  from a linear 

VECM. Given that 1 1( )t tw w β− −= ## , let [ ],L Uγ γ  denote the empirical support for 

, and construct an evenly spaced grid, 1tw −# Γ , on [ ],L Uγ γ . Then construct an 

evenly spaced grid, Β , on [ ],L Uβ β  based on a wide confidence interval over β# . 

The grid search should be constrained to ensure that a certain number of 

observations remain in each regime (i.e. 1 2
1 1

,
n n

t t

t t

d d
= =

0≠∑ ∑ ), otherwise the 

specification collapses to the linear model in (1). 

2. For all pair-wise combinations of ( , )β γ  from the respective grids, estimate 

1
ˆ ( , )A β γ , 2

ˆ ( , )A β γ , and ̂ ( , )β γΣ . 

3. Define the estimates ̂ ˆ( , )β γ  as the values of ( , )β γ  that maximise the likelihood 

function in (5). 

4. Set ˆˆ ˆ ˆ( , )β γΣ = Σ , 1 1
ˆ ˆ ˆ ˆ( , )A A β γ= , and 2 2

ˆ ˆ ˆ ˆ( , )A A β γ= . 
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Although this is shown to work quite well in practice, there are some ways in which it 

can be improved. Consider the fact that HS use an evenly spaced grid for γ . Let 1( )w β  

be a vector of stacked observations for ( )tw β  arranged in ascending numerical order. For 

a given value of β, there is no information about the likelihood function given in (5) for 

values of γ  between observations of 1( )w β . To put it another way, if more than one 

value iγ ∈Γ  lies between the same two consecutive observations in 1( )w β , they will 

result in an identical construction of 1 ( , )td β γ  and 2 ( , )td β γ , yielding identical estimates 

and value for the likelihood function. In this way, the HS algorithm is likely to perform 

computations that provide no new information and are hence unnecessary. Conversely, it 

may be the case when conducting an evenly spaced grid that there are no values of 

iγ ∈Γ  that lie between sets of two consecutive observations in 1( )w β . In this case, some 

candidates for γ  are simply not considered, even though the likelihood function does 

contain information about them. This may result in inefficiency of the estimates for all 

the parameters in the model. 

 Of course, if one uses a suitably large grid, they are more likely to suffer from 

unnecessary computational expense than a loss of efficiency. However, although this is 

not too important when carrying out the estimation, it is far from trivial when it comes to 

hypothesis testing. This is because γ  is a nuisance parameter that is not present under the 

null hypothesis of linear cointegration, and hence it becomes impossible to solve for the 

distribution of any test statistic applied. This is known in the literature as Davies’ (1977) 

problem. Deriving the null distribution under a residual bootstrap will obviously require 

repeating the estimation procedure for an absolute minimum of 1,000 replications. It is 

therefore preferable for the algorithm to be as fast as possible, particularly when it is 

desirable to compare the performance of several different models. 

 This issue can, however, be dealt with using only a small modification to the HS 

algorithm. First, the grid  for the cointegrating vector can be constructed as usual over 

a wide confidence interval for 

Β

β# . Now for each iβ ∈Β  construct a different grid for the 

threshold based on the empirical support for ( )t iw β ∈Β  so that 1( )i w iβΓ = . Whilst the 
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dimensions of the grid search remain the same, the grid values of γ  are allowed to 

change with their accompanying values of β, ensuring that there are no superfluous 

computations, and that all possible points on the likelihood function are considered. 

 Another limitation of the HS algorithm is that it is only really feasible to 

implement in a bi-variate VECM with a single cointegrating vector. For larger systems, 

the HS grid search quickly becomes unmanageable. This is because it involves a joint 

grid search over the threshold parameters and the cointegrating vector. Suppose for 

example, we had a bi-variate model, and considered 100 candidates each for γ  and β. 

This would require us to estimate 10,000 VECMs to determine the parameters that 

maximise the likelihood function. However, if we had a tri-variate system then there 

would be two cointegrating parameters to estimate, adding an extra dimension to the grid, 

requiring 1,000,000 estimations. Clearly, this makes the HS algorithm inappropriate for 

estimating larger systems, particularly when bootstrapping is required to produce p-

values for test statistics. An alternative algorithm, which shall be referred to as a 

Sequentially Modified Grid-search (SMG), is now outlined, that should be able to cope 

with multiple cointegrating vectors, and the concerns noted above. 

 

1. Use a linear estimator, such as Johansen’s, to obtain β# . 

2. Construct a grid for γ , containing all the observations of 1 1( )t tw w β− −= ## . Using 

model (4), estimate the parameters 1 2, ,A A Σ  over the grid, and select the value of 

γ  that maximises the likelihood function in (5). 

3. Using the value of γ  acquired in the previous step, construct  and , and re-

estimate β in model (2). This requires estimation using non-linear least squares, 

under the specification that the cointegrating vector(s) are constant across 

regimes. 

1td 2td

4. Reconstruct 1( )tw β−  and grid for γ  based on the estimate of β acquired in the 

previous step, again selecting the candidate that produces the highest value for the 

likelihood function. 
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5. Repeat steps 3-4 while the likelihood function continues to improve. 

 

Whereas the HS algorithm involves a joint search over the threshold and the 

cointegrating parameter, the SMG alternative repeats a one dimensional grid search over 

only the threshold (for a two regime specification). This is likely to be quicker, even for a 

bi-variate model. If we had, for example, 100 observations, the SMG algorithm would 

require fewer computations than the HS method, unless it needed to be repeated more 

than 100 times. Because the grid is always based on the observations of 1( )tw β−  for a 

given step, no superfluous calculations are performed, and each step records as much 

information about the likelihood function as possible. The biggest advantage, however, is 

that the grid search does not increase in dimension or size if extra cointegrating 

parameters, or even whole vectors, are added to the model. Only the number of regimes 

and observations determines this. It seems likely therefore that the SMG algorithm 

proposed above should be able to cope with much larger models, although it may be 

reasonable to expect steps 3-4 to have to be repeated a greater number of times. 

 

3. An empirical comparison of the HS and SMG algorithms 

 

There is currently no asymptotic distribution theory for the estimates of Threshold-

Vector-Error-Correction-Models. However, it is still possible to explore the finite sample 

distribution of estimators via Monte-Carlo simulation. To do this, data is generated 

according to the following model: 

 

 [ ] [ ]1 1 1
1 2

2 2 1

0.75 0.25
1 1

0 0
t t

t t

t t

1 1 1

2 1 2

t t

t t

x x x
d d

u

x x x
β β− −

− −

∆ − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤
= − + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥∆ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣u

⎤
+ ⎥

⎦
 (6) 

 

where  1 1 1 2 11( )t t td x xβ γ− −= − ≤ , 2 1 1 2 11( )t t td x xβ γ− −= − > , 
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[ ]1 2 ~ (0,t tu u Niid′ Σ) , and 
0.01 0

0 0.01

⎡ ⎤
Σ = ⎢ ⎥

⎣ ⎦
. 

 

For 1β =  and 0γ =  the model is estimated using both the HS and SMG algorithms for 

1000 replications, using sample sizes of n = 100 and n = 250. To elicit a clear 

comparison, the HS grid sizes for ȕ and Ȗ are set equal to the number of observations (the 

same as used by SMG for the threshold

1). To preserve degrees of freedom, candidates from the grid are only considered when 

their choice leaves a minimum of five percent of the total observations in each regime. 

The results are presented in Table 1, reporting the mean, root mean squared error 

(RMSE), mean absolute error (MAE), and percentiles from the distributions of the 

estimators. 

 

[Insert Table 1 here] 

 

For 100 observations the performance of both algorithms is quite similar. SMG has a 

slightly lower RMSE and MAE for ȕ, and marginally higher for Ȗ, although these 

differences are not statistically significant. The distributions show a roughly equal degree 

of dispersion; however, HS appears to have a higher bias for both the cointegrating 

coefficient and the threshold parameter. When n = 250, there are no statistically 

significant differences in bias or efficiency between the two estimation procedures. 

 These results generally suggest that both algorithms have a roughly equal degree 

of efficiency. However, the most striking difference is the number of computations 

necessary for each replication, which is reported in Table 2. 

 

[Insert Table 2 here] 
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The grid size for the HS algorithm is the same for each replication, requiring 9,000 

models to be estimated when the sample size is 100, and 56,250 when there are 250 

observations. Since the SMG algorithm repeats the grid search for the threshold until the 

likelihood function fails to improve, the number of computations varies for each model. 

Consequently, the average, minimum, and maximum number of estimations are reported. 

The average number of estimations is substantially lower for SMG, particularly as the 

sample size is increased. For 100 observations HS requires nearly thirty times the number 

of computations, and just over seventy times as many when n is set to 250. In this 

exercise, the maximum number of grid searches required when applying SMG was eight 

for both sample sizes. Even at this extreme, SMG is still much quicker than HS. To 

illustrate the extent of the computational burden, the number of calculations required for 

the full simulation are also shown. With 250 observations, the HS method required over 

56 million, but for SMG it was less than 800,000. This difference is far from trivial to the 

applied researcher, who will need to run such simulations to acquire accurate p-values to 

perform hypothesis tests on each individual model they estimate. 

 These results can be summarised as follows. The newly proposed SMG algorithm 

is comparable in terms of efficiency to the existing HS method, but appears to have a 

slightly lower bias in smaller samples. In computational terms, SMG is far quicker. 

However, the main advantage of SMG is that it can be applied to much larger systems for 

which HS would be unfeasible. Such an application is now illustrated in the next section. 

 

4. UK term structure of interest rates 

 

Following Campbell and Shiller’s (1987) suggestion that interest rates for various bonds 

should be cointegrated, a number of studies using linear VECMs for the term structure 

have appeared in the literature. As noted by HS, however, the theory does not necessarily 

imply a linear relationship. A threshold VECM is now applied to the following UK 

interest rates: 
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R1 = One month LIBOR rate. 

R3 = Three month LIBOR rate. 

R6 = Six month LIBOR rate. 

 

The data is monthly, ranging from June 1996 to September 2001 (a total of 100 

observations). An example of an unrestricted linear VECM for the three rates is given by 

 

 1 1t t t tR R R uµ αβ − −′∆ = + +Γ∆ +  (7) 

 

where [ ]1 3 6t t tR R R R′ = t . Applying the Johansen cointegration test to (7), evidence 

of two cointegrating vectors is found at the five percent significance level. Before 

proceeding to estimate a corresponding non-linear model, this leaves a number of options 

available for threshold estimation. For instance, one of the two cointegrating vectors may 

determine all regime switches, or alternatively each error correction term may respond to 

separate threshold values (estimating the latter would require a two dimensional grid 

search over both cointegrating relations). As a compromise, a single threshold value was 

specified for both error correction terms, with each responding individually. This is 

reasonable because the spreads R1-R3 and R3-R6 have a roughly equal variance. 

Experimentation with different possibilities also indicated that this specification produced 

the most significant non-linear model. 

 The estimated coefficients for the threshold VECM using the SMG algorithm are 

reported below, with standard errors in parentheses: 

 

  

1 1 1 1 1

1 1 1 1

1 0.05( 1 0.83 3 0.84) 0.49 ( 1 0.83 3 0.84)

(0.09) (0.09) (0.58) (0.15) (0.09) (0.58)

0.29 1 0.09 1

(0.12) (0.19)

t t t t t t

t t t t

R R R d R R

R d R u

− − − −

− −

∆ = − − − − − −

∆ + ∆ +
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1 1 2 1 1

1 2 1 2

3 0.01( 3 0.78 6 1.23) 0.57 ( 3 0.78 6 1.23)

(0.07) (0.04) (0.26) (0.16) (0.04) (0.26)

0.20 3 0.13 3

(0.11) (0.20)

t t t t t t

t t t t

R R R d R R

R d R u

− − − −

− −

∆ = − − − − −

∆ + ∆ +

 

  

1 1 2 1 1

1 2 1 3

6 0.08( 3 0.78 6 1.23) 0.68 ( 3 0.78 6 1.23)

(0.08) (0.04) (0.26) (0.17) (0.04) (0.26)

0.36 6 0.38 6

(0.11) (0.21)

t t t t t t

t t t t

R R R d R R

R d R u

− − − −

− −

∆ = − − − − − −

∆ − ∆ +

 

 

1 1 1 2 1 1

2 2 2
u1 u2 u3

1( 1 0.83 3 0.84 0.17) 1( 3 0.78 6 1.23 0.17)

ˆ ˆ ˆ0.01 0.02 0.02

SupLM 4.09 p-value 0.000

t t t t t td R R d R R

σ σ σ
− − − −= − − > = − − >

= = =

= =

 

 

The first thing to note is the specification of the regimes. The variables  and  are 

activated by the first and second equilibrium relationships respectively, but only when the 

magnitude of their deviation exceeds the threshold value. This allows the response of the 

interest rates to change when they are too far from equilibrium, either above or below, so 

the response is symmetric. The justification for such a specification is based on a simple 

premise that some agents may have a preference to invest for long periods, whilst others 

will require shorter commitments. It then follows that a higher rate of return may lead to 

an aggregate shift towards either long or short term lending, but only if the spread is 

significantly large. This is very different to the HS application to US term structure, when 

only large negative deviations induced a change in behaviour. 

1td 2td

 The findings can be summarised as follows. When the extent of the deviation 

from equilibrium is less in magnitude than the estimated threshold (0.17 percentage 

points), response to error-correction terms does not appear to be significant. However, 

when disequilibrium is greater than this value, the adjustment coefficients change by -

0.49, -0.57, and -0.68, which are all significant differences2. The short run responses 

however appear to change less in response to the threshold effect, except in the equation 
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for the six month LIBOR rate. In this case it appears that there is no short-run response at 

times when disequilibrium is sufficiently large, thereby increasing the relative importance 

of the error-correction mechanism in the outer regimes. The equilibrium error for the one 

and three month rates exceeds the threshold in 27% of the sample observations. The 

deviation of the three and six month rates from equilibrium is slightly more varied, being 

greater than the estimated threshold for 34% of the time during this period.  The SupLM 

statistic proposed by HS is also presented. An asymptotic p-value is calculated using the 

fixed regressor boot-strap proposed by Hansen (1996), with 10,000 replications 

performed in this case. This tests the null hypothesis of a linear model, where 

 for all i, against the above threshold specification. The null is clearly 

rejected in favour of threshold cointegration. 

1 2 0i id d= =

 

5. Conclusion 

 

This paper has presented a new algorithm for estimating threshold vector error correction 

models, based on a sequentially modified grid search. It has been shown by simulation 

that it produces parameter estimates with an almost identical degree of efficiency to the 

method proposed by Hansen and Seo, but it has a lower bias, and the computational time 

saved is considerable. More importantly, the new algorithm can also be used to estimate 

models containing multiple variables and cointegrating vectors, with the additional 

computational expense being minimal. This represents a significant step forward from the 

procedure of Hansen and Seo, which is only applicable in practice to a bivariate system 

with a single cointegrating vector. To illustrate the potential of the proposed algorithm, 

an application to the term structure of UK interest rates was then shown. Evidence is 

found of a threshold effect in the response to two cointegrating relationships, and the null 

of a linear model is strongly rejected. 
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Table 1

Distribution of estimators

Mean RMSE MAE

5 25 50 75 95

Algorithm

n  = 100

HS 0.0107 0.0747 0.0500 -0.0895 -0.0269 0.0055 0.0441 0.1215

SMG -0.0000 0.0629 0.0439 -0.0956 -0.0304 0.0002 0.0332 0.0950

HS 0.0115 0.1445 0.1243 -0.2152 -0.1068 0.0400 0.1128 0.2405

SMG 0.0077 0.1476 0.1290 -0.2207 -0.1126 0.0376 0.1144 0.2427

n  = 250

HS -0.0004 0.0265 0.0192 -0.0425 -0.0142 -0.0004 0.0142 0.0410

SMG -0.0009 0.0263 0.0193 -0.0427 -0.0157 -0.0005 0.0128 0.0439

HS -0.0050 0.1074 0.0946 -0.1780 -0.0936 0.0228 0.0779 0.1536

SMG -0.0065 0.1060 0.0923 -0.1769 -0.0892 0.0179 0.0773 0.1527

Percentiles (%)

β̂ β−
β̂ β−

β̂ β−
β̂ β−

γ̂ γ−
γ̂ γ−

γ̂ γ−
γ̂ γ−

 

 

Table 2
Computational requirements of the HS and SMG algorithms

HS SMG(MIN) SMG(AVE) SMG(MAX) HS SMG
Estimations n  = 100 9,000 182 305.760 728 9,000,000 305,760

n = 250 56,250 675 796.725 1800 56,250,000 796,725
Grid searches n  = 100 1 2 3.360 8 1,000 3,360

n  = 250 1 3 3.541 8 1,000 3,541

Simulation TotalRequired number per replication

 

 

 

 

 

                                                 

1 Note that Hansen and Seo perform a similar simulation exercise. It was, however, felt necessary to 
produce some new results for their method, not only so that the grid sizes were equivalent, but also so that 
the HS and SMG algorithms were applied to identical sets of experimental data. 
2 Individual hypothesis tests should be invariant to the nuisance parameter problem since the threshold 
enters the model through all explanatory variables. This only becomes an issue when testing against the 
null of the appropriate linear specification. 
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