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Abstract

Hansen and Seo (2002) outline procedures to test for threshold cointegration, and to
estimate a bi-variate model. However, in their conclusion they note that future research
will have to find a way of estimating largsystems with multiple cointegrating vectors.

This paper proposes a new algorithm that can be used to estimate such models.
Simulation experiments are used to comphee algorithm’s performance with that of
Hansen and Seo, and a practical applicatioimeéoterm structure of UK interest rates is

also presented.
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1. I ntroduction

Threshold models are based on the principé the data generation process for a time
series is characterised by separate regisssh with its own independent behaviour. The
simplest class is the univariate Threshdlutoregression or TAR, developed by Tong
(1983,1990). One of the key chalfges is estimating the value$ the thresholds that
divide the separate regimes, since tha s squares function is discontinuous and non-
differentiable with respect to these parameters. Tong suggests performing a grid search
using the observations of the time ser&s potential candidagefor the threshold,
selecting the values that minimise the residual sum of squares or maximise the log
likelihood (exactly equivalent under the assumption of Gaussian errors). This is probably

the most common estimation procedused in the applied literature.

Balke and Fomby (1997) introducerdbhold cointegration which allows non-
stationary variables to be modelled in such a framework. The idea is intuitively appealing
because costs of adjustment may preventréstoration of equilibrium in a variety of
economic circumstances. However, this will mean that often we will want the regimes to
be defined by the error-correction term, so thatthreshold effegs activated depending
on the size of the disequilibrium in the systélrhis creates an additional problem if the
cointegrating vector is unknown a priori basa the error correct term will not be

observable, and hence it becomeslear how to form a grid search.

Hansen and Seo (2002), hereafter HS, sstgme algorithm that allows estimation
of a cointegrating relatiohfp and a single threshold when both are unknown in a
bivariate vector error correction model EZM). They show bysimulation that the
estimation procedure performs quite welhdaapply it successfully to a model of the
interest rate term structuie the US. However, this papsuggests there are ways in
which their methodology can be improvedrsy, it is shown that the number of
computations necessary can be substintieeduced, without loss of efficiency.
Secondly, their procedure is limited to thévariate case. A solution is therefore

proposed which should be albtedeal with these issues.



The rest of the paper is organisedf@®ws. In Section 2 the HS algorithm is
described and evaluated. It is argued timgrovements can be madend an alternative
procedure is suggested in an attempt taeaehthis. Section 3 presents Monte Carlo
evidence in order to compare the enwali performance of the two methodologies.
Section 4 then illustrates an ajgption to the term structure ofterest rates in the UK of

the new algorithm — a three dimensionalGME with two cointegrating relationships.

2. The HS approach and a proposed alter native

A linear cointegrated model cée set out as follows:

Ax, = A'X, 4y +u,, (1)

where

X' = [1 X, 4 Axtfl Axtfl] )

t

A'=la, af a, .. a].

Here x, is ap-dimensional(1) time series witlx observations andis the maximum lag

length. In the parameter mattiy o« andp arep by » matrices, where is the number of

cointegrating relations. The error term,, is assumed to be a vector martingale
difference sequence with finite covariance maklix E(u,u) Using the same notation, a

two-regime threshold cointegrated model is written as:

Ax, = AX,_dy, (B,y)+ A X, _d,(B.y)+u,, (2)
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where

dy (B, y)=1f(B'x, 1) <7)
dy (By) =1f (B'x1)> 7).

with 1(-) denoting théndicator function, angl being the threshold parameter.

Assuming that the errors are {®hussian, the likdnood function is
1 B
(o 4,2 foy) == I0glS] =S Gy oy 2 Sy 2 U A2 By ) ()
If (B,7) is held fixed, then model (2) becomes

Ax, = A (B) X (B)dy, (B.y)+ A,(B) X, _(B)d ,(B.y)+u,, (4)

where
Xt(ﬁ)':[l w,(B) Ax, .. AXH]’

4,8) =la, a, a, .. a,],

andw,_,(B) = B'x, , is the error correction term. Tleencentrated likelihood function for

@) is:



£,(p.7)=-logfE (5.7}~ (5)

For given values of(3,y), all of the parameters in th(s) matrices can then be

estimated by OLS regression. HS ddes the case of model (4) wherrs 2 andr = 1, so

there is a single cointegrating vector, and specify that

d,(B,y)=1w,_,(B)<7),
dy (Bry)=1w,_,(B)> 7).

In order to estimatg andy, HS suggest using the following algorithm:

1. Use the approach of Johangdi988) to obtain an estimatg from a linear
VECM. Given that#, , =w,,(5), let [y,,7,] denote the empirical support for
w,_,, and construct an evenly spaced giid, on [7/u7u]- Then construct an
evenly spaced grid3, on [,BL,,BU] based on a wide confidence interval oy&r

The grid search should beonstrained to ensure ah a certain number of

observations remain in each regime (i.3.d,,> d, #0), otherwise the
t=1 t=1

specification collapses to the linear model in (1).

2. For all pair-wise combinations of,7) from the respective grids, estimate
4(B.7), 4(By), andE(B,7).

3. Define the estimate@é,;?) as the values off,y) that maximise the likelihood

function in (5).

4. Seti=i(,é,];), Al:Al(ﬁ1?)1andAZZAZ(ﬁ’?)'



Although this is shown to work quite well practice, there are some ways in which it

can be improved. Consider the fact thk8 use an evenly spaced grid for Let w; (/)
be a vector of stacked observationsiiorg @rjanged in ascending numerical order. For

a given value ofj, there is no information about the likelihood function given in (5) for

values of y between observations of;(f). To put it another way, if more than one
value y, eI" lies between the same two consecutive observationg (i), they will
result in an identical construction af (£,y) andd,, (5,7), yielding identical estimates

and value for the likeliod function. In this way, the HSgalrithm is likely to perform
computations that provide no new infornaatiand are hence unnecessary. Conversely, it
may be the case when conducting an eveplgced grid that there are no values of

7, €' that lie between sets of two consecutive observatiomg(ifi) . In this case, some
candidates fory are simply not considered, evémough the likelihood function does

contain information about them. This may result in inefficiency of the estimates for all

the parameters in the model.

Of course, if one uses a suitably lagyed, they are more likely to suffer from
unnecessary computational expense than adbséficiency. However, although this is
not too important when carrying out the estimatit is far from trivial when it comes to

hypothesis testing. This is becayseés a nuisance parameter that is not present under the

null hypothesis of linear coingeation, and hence it becomes impossible to solve for the
distribution of any test statistic applied. Tissknown in the literaire as Davies’ (1977)
problem. Deriving the null distribution undereasidual bootstrap will obviously require
repeating the estimation procedure for an absolute minimum of 1,000 replications. It is
therefore preferable for the algorithm to befast as possible, patilarly when it is
desirable to compare the performea of several different models.

This issue can, however, be dealt with using only a small modification to the HS
algorithm. First, the gridB for the cointegrating vector cdre constructed as usual over

a wide confidence interval fof . Now for eachg, € B construct a different grid for the

threshold based on the pirical support forw, g € B )so thatl', = w;(5,) . Whilst the



dimensions of the grid search réamahe same, the grid values of are allowed to

change with their @ompanying values of, ensuring that there are no superfluous

computations, and that all possible poinitsthe likelihood function are considered.

Another limitation of the HS algorithm ithat it is only really feasible to
implement in a bi-variate VECM with a single cointegrating vector. For larger systems,
the HS grid search quickly becomes unmaadoie. This is because it involves a joint
grid search over the thresdoparameters and the coigtating vector. Suppose for
example, we had a bi-variate modahd considered 100 candidates eachyfaand £.
This would require us to estimate 10,000 GMEs to determine the parameters that
maximise the likelihood function. However, wie had a tri-variate system then there
would be two cointegrating parameters to eatenadding an extra dimension to the grid,
requiring 1,000,000 estimations. Clearly, thiskemthe HS algorithm inappropriate for
estimating larger systems, particulasshen bootstrapping isequired to produce p-
values for test statistics. An alternatiadgorithm, which shallbe referred to as a
Sequentially Modified Grid-seeh (SMG), is now outlined, #t should be able to cope

with multiple cointegrating vectors, and the concerns noted above.

1. Use a linear estimator, suaf Johansen’s, to obtajh.

2. Construct a grid foy, containing all the observations of ; =Wt71(ﬂ~')- Using
model (4), estimate the parametets4,,X over the grid, and select the value of

y that maximises the likelihood function in (5).

3. Using the value of acquired in the preous step, construef, andd,,, and re-

estimates in model (2). This requires es@ton using non-linealeast squares,
under the specification that the cointayng vector(s) areconstant across

regimes.

4, Reconstructy, ,(#) and grid fory based on the estimate gfacquired in the

previous step, again selecting the canditiaé produces the highest value for the

likelihood function.



5. Repeat steps 3-4 while the lik@od function continues to improve.

Whereas the HS algorithnmvolves a joint search ev the threshold and the
cointegrating parameter, the SMG alternative repeats a one dimensional grid search over
only the threshold (for a two rage specification). This is likely to be quicker, even for a
bi-variate model. If we had, for example, 100 observationsS¥M& algorithm would
require fewer computations than the HS rmodthunless it needed to be repeated more

than 100 times. Because the gridala/ays based on the observationswof, (5) for a

given step, no superfluous calculations pegformed, and each step records as much
information about the likelihood function as pitde. The biggest advantage, however, is
that the grid search does not increasedimension or size if extra cointegrating
parameters, or even whole vectors, are dddeghe model. Only the number of regimes
and observations determines this. It sedikasly therefore that the SMG algorithm
proposed above should be able to coph \imuch larger models, although it may be

reasonable to expect steps 3-4 to have to be repeated a greater number of times.

3. An empirical comparison of theHS and SM G algorithms

There is currently no asymptotic distribution theory for the estimates of Threshold-
Vector-Error-Correction-Models. However, it is still possible to explore the finite sample
distribution of estimators via Monte-Carlmulation. To do this, data is generated

according to the following model:

P I R ol R v R el S

where d,, =1(x, ;, — X, <7), dy, =Ux, , — fx, 1 > 7),



001 O }

[u, uy,] ~ Niid(0,%), andX :{ 0 o.01

For =1 and y =0 the model is estimated using both the HS and SMG algorithms for

1000 replications, using sample sizes mof= 100 andn = 250. To elicit a clear
comparison, the HS grid sizes fpandy are set equal to the nuetbof observations (the

same as used by SMG for the threshold

1. To preserve degrees of freedom, cand&l&iem the grid are only considered when
their choice leaves a minimum of five perten the total observations in each regime.
The results are presented in Table 1, répgrthe mean, root mean squared error
(RMSE), mean absolute error (MAE), andrqantiles from the diributions of the

estimators.
[Insert Table 1 here]

For 100 observations the penfwaince of both algorithms is quite similar. SMG has a
slightly lower RMSE and MAE fors, and marginally higher fop, although these
differences are not statisticakygnificant. The distributions show a roughly equal degree
of dispersion; however, HS appears to havéigher bias for both the cointegrating
coefficient and the threshold parameter. When= 250, there areno statistically

significant differences in bias or efficienbetween the two estimation procedures.

These results gendisasuggest that both algorithnieve a roughly equal degree
of efficiency. However, the most strikindifference is the number of computations

necessary for each replication,ialthis reported in Table 2.

[Insert Table 2 here]



The grid size for the HS algorithm isetteame for each repéiton, requiring 9,000
models to be estimated when the sang#e is 100, and 56,250 when there are 250
observations. Since the SMG alglom repeats the grid searétr the threshold until the
likelihood function fails to improve, the numbef computations varies for each model.
Consequently, the average, minimum, ancimam number of egthations are reported.
The average number of estimations is substantially lower for SMG, particularly as the
sample size is increased. For 100 observatitiisequires nearly thirty times the number
of computations, and just aveeventy times as many whenis set to 250. In this
exercise, the maximum number of grid shas required whempplying SMG was eight
for both sample sizes. Even at this exteerBMG is still much quicker than HS. To
illustrate the extent of the computational dem, the number of calculations required for
the full simulation are also shown. With 26Bservations, the HS method required over
56 million, but for SMG it was less than 800,000. Tdhigerence is far from trivial to the
applied researcher, who will need to run ssechulations to acquire accurate p-values to

perform hypothesis tests on each individual model they estimate.

These results can be summarised Hevis. The newly proposed SMG algorithm
is comparable in terms of efficiency toe existing HS method, but appears to have a
slightly lower bias in smaller samples. In computational terms, SMG is far quicker.
However, the main advantage of SMG is thaiam be applied to much larger systems for

which HS would be unfeasible. Such an appiacais now illustrated in the next section.

4. UK term structure of interest rates

Following Campbell and Shiller's (1987) suggestthat interest rasefor various bonds
should be cointegrated, a number of studising linear VECMs for the term structure
have appeared in the literature. As ndigdHS, however, the theodoes not necessarily
imply a linear relationship. A threshold VECM is now applied to the following UK

interest rates:
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R1 = One month LIBOR rate.
R3 = Three month LIBOR rate.

R6 = Six month LIBOR rate.

The data is monthly, ranging from Jud®96 to September 2001 (a total of 100
observations). An example of an unrestridiedar VECM for the three rates is given by

AR, = u+afi'R,  +TAR,  +u, (7)

where R,’:[R]7 R3 RQ]. Applying the Johansen cointegjon test to (7), evidence

of two cointegrating vectors is found atetHive percent significance level. Before
proceeding to estimate a corresponding non-lineadel, this leaves a number of options
available for threshold estimation. For instarm®e of the two cointegrating vectors may
determine all regime switches, or alternalyveach error correctn term may respond to
separate threshold valuesstjeating the latter would regqe a two dimensional grid
search over both cointegrating relations).aAsompromise, a single threshold value was
specified for both error correction termsjth each responding individually. This is
reasonable because the spre®isk3 and R3-R6 have a roughly equal variance.
Experimentation with different possibilities alsalicated that thispecification produced

the most significant non-linear model.

The estimated coefficients for the threshold VECM using the SMG algorithm are

reported below, with standaedrors in parentheses:

ARl =—0.05R1,— 0.8% 3,— 0.84) 0.49 R(_1- 083 3 0.84)
(0.09) (0.09)  (0.58) (0.15) (0.09)  (0.58)
0.2NR1,+ 0.09,AR 1, +u,

(0.12) (0.19)
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AR3 =0.01R 3,- 0.7® 6,— 1.23) 0.57 R(,3- O0.R8 6 1.23)
(0.07) (0.04)  (0.26) (0.16) (0.04)  (0.26)
0.20AR 3, + 0.13,AR 3,+u,,

(0.11) (0.20)

ARG, =—0.08R 3,— 0.7® 6,— 1.23) 0.68 R(,3- OR8 B 1.23)
(0.08) (0.04)  (0.26) (0.17) (0.04)  (0.26)
0.36AR 6, — 0.39,AR 6,+u,
(0.12) (0.22)

d, =1(R1,~0.8R 3,~ 0.8 0.17)d,= [K ,3- 0.7, 6- 1|23 0.17)
62=0.01 6%=0.02 %= 0.02
SupLM= 4.09 p-value= 0.000

The first thing to note is the specification of the regimes. The variableand d,, are

activated by the firstnd second equilibrium relationshispectively, buonly when the
magnitude of their deviation exceeds the thoéd value. This allowshe response of the
interest rates to change when they are todréem equilibrium, either above or below, so
the response is symmetric. The justificatfonsuch a specification is based on a simple
premise that some agents may have a preferaminvest for long periods, whilst others
will require shorter commitments. It then follows that a higher rate of return may lead to
an aggregate shift towards either long bors term lending, but only if the spread is
significantly large. This is very different toehdS application to US term structure, when

only large negative deviationsduced a change in behaviour.

The findings can be summarised as foo When the extent of the deviation
from equilibrium is less in magnitude thdhe estimated threshold (0.17 percentage
points), response to error-cact®n terms does not appear lie significant. However,
when disequilibrium is greater than this value, the adjustment coefficients change by -
0.49, -0.57, and -0.68, which aa#l significant differences The short run responses

however appear to change léssesponse to the thresholffeet, except in the equation
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for the six month LIBOR rate. In this case@fipears that there m® short-run response at
times when disequilibrium is sufficientlyrige, thereby increasing the relative importance

of the error-correction mechanism in the outsgimes. The equilibrium error for the one

and three month rates exceeds the threshol@i7% of the sample observations. The
deviation of the three and six month rates freemilibrium is slightly more varied, being
greater than the estimated threshold for 3f%he time during this period. The SupLM
statistic proposed by HS is also presented. An asymptotic p-value is calculated using the
fixed regressor boot-strap proposed by Hansen (1996), with 10,000 replications
performed in this case. This tests the null hypothesis of a linear model, where

d,=d, =0 for all i, against the above threshold gspeation. The null is clearly

rejected in favour of threshold cointegration.

5. Conclusion

This paper has presented a new algorithnesbimating threshold vemt error correction
models, based on a sequentially modified geadrch. It has been shown by simulation
that it produces parameter estimates with larost identical degree of efficiency to the
method proposed by Hansen and Seo, butsitthiwer bias, and the computational time
saved is considerable. More importantly, the rdgorithm can also be used to estimate
models containing multiple variables andintegrating vectors, with the additional
computational expense being minimal. This espnts a significant step forward from the
procedure of Hansen and Seo, which is onlgliagble in practice to a bivariate system
with a single cointegrating vector. To illuste the potential of the proposed algorithm,
an application to the term structure of UK interest rates was then shown. Evidence is
found of a threshold effect e response to two cointegreg relationships, and the null

of a linear model is strongly rejected.
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Table 1
Distribution of estimators

Mean RMSE MAE Percentiles (%)
5 25 50 75 %5

Algorithm

n =100 .

HS B-PB 0.0107 0.0747 0.0500 -0.0895  -0.0269 0.0055 0.0441 0.1215
SMG /} -p -0.0000 0.0629 0.0439 -0.0956  -0.0304 0.0002 0.0332 0.0950
HS 7y 0.0115 0.1445 0.1243 -0.2152  -0.1068 0.0400 0.1128 0.2405
SMG y-v 0.0077 0.1476 0.1290 -0.2207  -0.1126 0.0376 0.1144 0.2427

n =250
HS ,3 -p -0.0004 0.0265 0.0192 -0.0425 -0.0142 -0.0004 0.0142 0.0410
SMG ﬁ’ -8B -0.0009 0.0263 0.0193 -0.0427 -0.0157 -0.0005 0.0128 0.0439
HS 7-r -0.0050 0.1074 0.0946 -0.1780 -0.0936 0.0228 0.0779 0.1536
SMG 7-v -0.0065 0.1060 0.0923 -0.1769 -0.0892 0.0179 0.0773 0.1527
Table 2
Computational requirements of the HS and SMG algorithms
Required number per replication Simulation Total
HS SMG(MIN) SMG(AVE) SMG(MAX) HS SMG

Estimations n =100 9,000 182 305.760 728 9,000,000 305,760

n =250 56,250 675 796.725 1800 56,250,000 796,725
Grid searches n =100 1 2 3.360 8 1,000 3,360

n =250 1 3 3.541 8 1,000 3,541

! Note that Hansen and Seo perform a similar sitimmaexercise. It was, however, felt necessary to
produce some new results for their method, not only so that the grid sizes were equivalent, but aiso so th
the HS and SMG algorithms were applieddentical sets of experimental data.

2 Individual hypothesis tests should be invariant to the nuisance parameter problem since the threshold
enters the model through all explanatory variables. This only becomes an issue when testing against the
null of the appropriate linear specification.
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