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Abstract�Temperature prediction can enhance datacenter 

thermal management towards minimizing cooling power draw. 

Traditional approaches achieve this through analyzing task-

temperature profiles or resistor-capacitor circuit models to 

predict CPU temperature. However, they are unable to capture 

task resource heterogeneity within multi-tenant environments 

and make predictions under dynamic scenarios such as virtual 

machine migration, which is one of the main characteristics of 

Cloud computing. This paper proposes virtual machine level 

temperature prediction in Cloud datacenters. Experiments 

show that the mean squared error of stable CPU temperature 

prediction is within 1.10, and dynamic CPU temperature 

prediction can achieve 1.60 in most scenarios. 

I. INTRODUCTION 

The study within 2011 [1] shows that the energy used by 
datacenters increased by 36% in US and 56% worldwide 
from 2005 to 2010. It is expected to increase continuously 
during the coming years and the global annual datacenter 
construction size for 2020 is predicted to reach $78 billion 
[2]. Datacenter energy usage can be categorized as stemming 
from computing and cooling infrastructure, with the latter 
forming approximately half of the total consumption [3]. 
Thermal management is an approach to reduce energy usage 
within cooling infrastructure. This is achieved through 
minimizing temperature distribution disparity throughout the 
system to reduce the probability of hotspot occurrence within 
the system. Temperature prediction is a fundamental 
technique to conduct thermal management proactively and 
provides substantial value to decision making [4]. 

With the rapid development of Cloud computing, 
virtualization technology plays a key role for workload 
scheduling and resource allocation, and imposes a new set of 
challenges towards temperature prediction. Traditional 
approaches such as task-temperature [4] and Resistor-
Capacitor (RC) thermal model [5] assume homogeneous 
workload characteristics within the system, and that only a 
single task is deployed at any point within a server or CPU 
core. For more complicated scenarios such as Virtual 
Machine (VM) migration, these approaches are unable to 
model CPU temperature. Virtualization allows VM creation 
with heterogeneous resource characteristics deployed within 
multi-tenant scenarios, imposing inevitable constraints to 
traditional temperature modeling approaches. 

This paper proposes a method for VM level temperature 
prediction for Cloud datacenters. Our method comprises 
parameters cross-cutting datacenter infrastructure including 

server capacity, virtual machine characteristics and 
environmental conditions which are integrated into a 
supervised machine learning algorithm for modeling server 
temperature.  

II. TEMPERATURE MODELING AND PREDICTION 

Temperature prediction is typically used to discover the 
correlation between future temperature and current status. 
Numerous experiments were conducted under different 
scenarios in order to analyze the features of temperature 
profiles of VM executing within a server. When altering 
running conditions (e.g. number of VMs, environment 
temperature), we observed that temperate will first 
experience variation and subsequently stability after reaching 
a certain temperature value. Therefore, our method begins 
with stable CPU temperature (ȥstable) prediction, calculated 
as the average CPU temperature after a certain period of time 
(tbreak, set to 600s deduced from experiments). 
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where texp is defined as the experiment duration measured 
in seconds. Formally, we use ȥ and ĳ to denote predicted and 
actual measured temperature, respectively. To make stable 
CPU temperature prediction, we collect data from the 
Virtual Machine Manager (VMM) and temperature sensors. 
In addition, we collect data pertaining to the environment 
temperature reflecting the overall cooling capacity within a 
datacenter as environment temperature imposes a non-
negligible impact on CPU temperature. A Support Vector 
Machine (SVM) model was trained from the collected data 
and deployed in real environment. Then the model received 
data collected online and output prediction values. The data 
collected used for training (datatrain) and testing (datatest) 
follows the format shown below. 
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where the input comprises server CPU capacity (șcpu), 
memory size (șmemory), fan status (șfan), VM status (ȟVM, 
including VM configurations and deployed tasks), and 
environment temperature (įenv). The output produces stable 
CPU temperature (ȥstable), defined as a stable temperature 
value for a server shown in Equation (1). We select LIBSVM 
(Version 3.17) as the modeling tool using the Radial Basis 
Function (RBF) kernel. LIBSVM is an integrated software 



for support vector classification, regression and distribution 
estimation [6]. For each experiment, one record is produced 
as shown in Equation (2). Records are divided into training 
and test sets. Parameters for model training are selected 
using easygrid, a tool for grid parameter search, with 10-fold 
validation. 

Based on the prediction of ȥstable, we further consider 
dynamic CPU temperature prediction. We construct a pre-
defined temperature curve ȥ*(t) shown below. 
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where ĳ(0) is the temperature prior to experiment starts. 
The pre-defined model shown in Equation (3) provides 
coarse-grain prediction. It is necessary to calibrate the 
prediction based on ȥ*(t) at run time. At the very beginning 
(t=0), the calibration Ȗ is set to 0 (Ȗ=0). For example, if the 
objective was to predict CPU temperature 60s after the time 
making prediction. The current time is 0, and the calibrated 
prediction based on ȥ*(t) is: 

 ( ) ( ) ( )60 60 60* *ψ ψ γ ψ= + =  (4) 

However when t≠0 (e.g. 15s), we determine a difference 
(dif) between the actual measured value ĳ(15) and the 
predicted value ȥ*(15). The latter is the sum of pre-defined 
temperature and the latest calibration. Until now (t=15s), the 
calibration has not been updated and remains 0. 

 ( ) ( )( ) ( ) ( )1515 1515dif +* *γ ψϕψϕ= − = −  (5) 

The difference between the prediction and measurement 
indicates the precision of our last prediction. The calibration 
is updated based on dif and a learning rate Ȝ (defined as 0.8). 

 ( ) ( )( )15 15*difγ γ λ λ ϕ ψ= + ∗ = ∗ −  (6) 

Ȗ on left side is the newly updated calibration, while the 
other Ȗ is the former calibration (equals 0 here). At t=15, if 
we were to predict temperature 60s later (i.e. 75s), it is 

 ( ) ( )75 75*ψ ψ γ= +  (7) 

where Ȗ is derived from Equation (6). If prediction gap 
represents the time interval we want to predict (ǻgap, 60s in 

this case), and update interval represents the time interval 
between two calibration updates (ǻupdate, 15s in this case), the 
prediction can be formalized as follows. 

 ( ) ( )gap gap
*t tΔ Δ γψ ψ+ = + +  (8) 

in which Ȗ is updated on a regular interval of ǻupdate. This 
represents a complete solution to predict CPU temperature 
dynamically in a virtualized environment. This is an 
important consideration because that Cloud computing 
characteristics result in input features such as server and VM 
configuration changing at run time. 

III. EVALUATION 

The proposed temperature prediction model for stable 
and dynamic CPU temperature was evaluated through 
experiments to ascertain model accuracy compared to real 
system operation. Fig. 1(a) shows a comparison between 
empirical temperature readings and stable CPU temperature 
prediction for 20 randomized experiment cases with 2-12 
VMs. It is observed that the model is capable of predicting 
stable CPU temperature with an average Mean Squared 
Error (MSE) value within 1.10. Fig. 1(b) shows a particular 
experiment case study of predicting temperature dynamically 
with/without calibration compared to empirical data. Results 
indicate that dynamic CPU temperature modeling with 
calibration at run time produces a lower MSE. Fig. 1(c) 
shows the MSE when varying prediction gap and update 
interval with 4 server fans. It is observable that the MSE 
varies from 0.70 to 1.50, indicating high prediction accuracy 
with different prediction gaps and update intervals. 
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Figure 1(a): stable CPU temperature prediction results; (b): A case study of dynamic CPU temperature modeling against empirical data; (c): prediction 
accuracy with 4 server fans. 


