
THE DECAY OF A WEAK LARGE-SCALE MAGNETIC FIELD IN TWO-DIMENSIONAL TURBULENCE

Todor KondiĆ, David W. Hughes, and Steven M. Tobias

Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK; t.kondic@leeds.ac.uk
Received 2016 January 15; accepted 2016 April 4; published 2016 May 27

ABSTRACT

We investigate the decay of a large-scale magnetic field in the context of incompressible, two-dimensional
magnetohydrodynamic turbulence. It is well established that a very weak mean field, of strength significantly
below equipartition value, induces a small-scale field strong enough to inhibit the process of turbulent magnetic
diffusion. In light of ever-increasing computer power, we revisit this problem to investigate fluids and magnetic
Reynolds numbers that were previously inaccessible. Furthermore, by exploiting the relation between the turbulent
diffusion of the magnetic potential and that of the magnetic field, we are able to calculate the turbulent magnetic
diffusivity extremely accurately through the imposition of a uniform mean magnetic field. We confirm the strong
dependence of the turbulent diffusivity on the product of the magnetic Reynolds number and the energy of the
large-scale magnetic field. We compare our findings with various theoretical descriptions of this process.
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1. INTRODUCTION

In a seminal paper, Vainshtein & Rosner (1991) proposed a
mechanism by which an extremely weak large-scale magnetic
field could suppress turbulent magnetic diffusion. More
specifically, they argued that even if the energy in the large-
scale field were as small as the kinetic energy divided by the
magnetic Reynolds number Rm, the ratio of Ohmic to
advective timescales, then the associated small-scale field
would be sufficiently strong to inhibit the turbulent diffusion
process. Given that Rm is invariably immense in astrophysics,
this raises the important consideration that extremely weak
large-scale magnetic fields may have dynamically significant
consequences. These ideas were substantiated for the case of
two-dimensional magnetohydrodynamic (MHD) turbulence by
the illuminating computations of Cattaneo & Vainshtein (1991)
and Cattaneo (1994).

While two-dimensional MHD turbulence has a relatively
constrained domain of application, further theoretical and
numerical work undertaken in this direction by various authors
(Kulsrud & Anderson 1992; Tao et al. 1993; Gruzinov &
Diamond 1994; Cattaneo & Hughes 1996) demonstrated that
similar principles to those underlying the suppression of
magnetic diffusion in two dimensions may be used to explain
the marked suppression of the mean-field dynamo α-effect in
three dimensions. Such a suppression, sometimes referred to as
the “catastrophic quenching” of the α-effect, presents a serious
difficulty for the operation of any α-effect dynamo at high Rm
in the non-linear regime.

Bearing in mind these wider implications of the conceptually
simple problem of turbulent diffusion in two-dimensional
MHD, here we revisit this problem in light of the tremendous
increases in computational power that have taken place since
the pioneering calculations of Cattaneo & Vainshtein (1991).
Current multi-processor machines allow the simulation of two-
dimensional MHD turbulence with a wide range of spatial
scales and with reasonably high values of the fluid and
magnetic Reynolds numbers.

One of the novel features of our paper is the employment of
a non-standard technique to determine the turbulent magnetic
diffusivity hT. The obvious way to calculate hT is via a
measurement of the decay rate of the large-scale component of

a zero-mean, large-scale magnetic field introduced into a
turbulent hydrodynamic flow. Determining this decay rate
accurately is, however, as we shall discuss, a procedure with
inherent inaccuracies. In a different approach, provided that
one can equate the turbulent diffusion of the magnetic field and
the magnetic potential (which, as we shall see, can be justified
in certain cases), we may use the result of Zeldovich (1957) to
obtain
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where á ñb2 is twice the magnetic fluctuation energy, á ñB is the
strength of the mean (large-scale) magnetic field, and η is the
laminar magnetic diffusivity. The angle brackets denote spatial
averages over a scale that is large compared with that of the
turbulent flow. As it stands, expression(1) is a prescription for
hT that is time-dependent; determination of a mean (time-
independent) value can be achieved by additional time
averaging. The beauty, and indeed the surprise, of expres-
sion(1) is that it holds for a uniform (and hence non-decaying)
magnetic field. There is thus no finite interval of time over
which measurements must be made; hence, in principle at least,
results for hT can be obtained to arbitrary accuracy.
The layout of the paper is as follows. Section2 summarizes

the results of previous work in this direction. Section3
contains the mathematical formulation of the problem. In
Section 4 we make a comparison between the two different
ways of determining hT, the decaying field and the imposed
field methods, and explain in some detail the conditions under
which the turbulent diffusion of the magnetic field and its
magnetic potential can be considered to be equivalent—a
necessary requirement for the imposed field method to work.
The results and discussion are in Section 5, followed by the
concluding remarks in Section 6.

2. PREVIOUS APPROACHES

For the investigation of large-scale astrophysical magnetic
fields with energy weak compared with the turbulent kinetic
energy of the flow, it is natural, at least as a first approximation,
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to regard the magnetic field as kinematic (i.e., passive), with no
dynamical influence on the flow. The evolution of the field is
then governed solely by the magnetic induction equation. For
the specific case of a planar two-dimensional field, independent
of the z-coordinate, the magnetic field can be expressed as

( ˆ)= ´B zA , where A is the magnetic potential. The
induction equation then reduces to the heat equation, which
describes the advection and diffusion of a passive scalar, i.e.,

· ( )h¶
¶

+ = u
A

t
A A. 22

Under the assumption that the flow is kinematic (i.e., the
Lorentz force can be neglected), the turbulent diffusion of the
magnetic potential therefore simply becomes that of a passive
scalar, i.e.,

( )h ~ uℓ, 3T

where u is a characteristic flow speed and ℓ is a typical eddy
scale.

However, the idea that a weak large-scale field has no
dynamical consequences was challenged by Vainshtein &
Rosner (1991) with a simple, yet powerful argument. Multi-
plying the induction equation (2) by A and averaging over the
characteristic length scale of the mean field leads to the result
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¶á ñ
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2
2

assuming that the surface term vanishes. In order to determine a
relationship between the large-scale and fluctuating magnetic
fields, two assumptions are made. The first is the basic premise
of the problem, namely that there is a well-defined turbulent
diffusion timescale,

( )t h= L , 52
T

where L is the (long) length scale characteristic of the system
under consideration. The second is that the large-scale field is
linked to the magnetic potential through the simple, though not
entirely obvious, scaling

∣ ∣ ( )á ñ ~ á ñBA L. 62 1 2

Under these assumptions, balancing the terms in Equation (4)
leads to expression(1), on identifying á ñB2 with á ñb2 and on
equating the turbulent diffusivities of the magnetic potential
and the magnetic field. In Section 4.2 we shall re-derive (1)
from a more formal, mean-field approach, which sheds further
light on the scaling(6). The crucial property of (1), namely that
it does not require the kinematic approximation, will also be
evident in this approach.

Using (3), expression(1) can be written as

( )á ñ ~ á ñB Rm B , 72 2

thereby showing the increased energy in the magnetic
fluctuations compared with that in the mean at high Rm.
Vainshtein & Rosner (1991) argued that if the magnetic energy
in the fluctuations becomes comparable with the kinetic energy,
then the field can no longer be regarded as kinematic; in
particular, its turbulent diffusion would be inhibited. Signifi-
cantly, given the scaling(7), the transition to non-kinematic
behavior occurs for very weak large-scale magnetic fields.
Cattaneo & Vainshtein (1991) thus argued that turbulent

diffusion would be inhibited if
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where VA is the Alfvén speed of the large-scale field; this leads
to the following estimate for the timescale for magnetic
diffusion,
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For very weak large-scale fields ( M Rm2 ), the diffusion is
kinematic, with turbulent diffusivity given by (3). By contrast,
for equipartition large-scale fields (i.e., ( )=M O 1 ), the
timescale is Ohmic. For  M Rm1 , values that still
represent weak large-scale fields, the small-scale field is of
sufficient strength to inhibit the diffusive process.
More formally, one can seek expressions for the turbulent

magnetic diffusivity through a standard mean-field approach.
On neglecting molecular diffusion, the evolution for the mean
magnetic potential á ñA is given by

· ( )
¶á ñ
¶

= - á ñu
A

t
a , 10

where a denotes the fluctuating magnetic potential. From a
standard Fickian assumption, the flux G = á ñua can be
expressed as hG = - á ñAT (see also Section 4.2). In general
it is not straightforward to solve the fluctuation induction
equation for a. However, under the assumption that the
correlation time of the turbulence tc is much smaller than an
eddy turnover time (the “short-sudden” approximation), a may
be approximated by

· ( )t » - á ñua A , 11c

leading to the expression

( )h t= á ñu , 12T c
2

again equating hT for A and B. It is important to note that there
is nothing intrinsically kinematic about the steps leading to
expression(12). Subject to the short sudden approximation—
and we shall return to this point—it is valid also in the
dynamical regime. However, the non-linearities are contained
in both tc and á ñu2 and so, without further information, the
result as it stands cannot be readily applied.
In a quasi-linear approach, the flux G is expressed in terms of

perturbations to some existing { }ua, state as

( )d dG = -á ñ - á ñu ua a . 13

Straightforward scalings for du and da from the momentum and
induction equations, assuming the short-sudden approximation
and the same correlation time in both, then lead to the result
(Gruzinov & Diamond 1994, 1996)

( ) ( )h t= á ñ - á ñu b . 14T c
2 2

This is an appealing expression, representing the turbulent
diffusion process as a competition between the fluctuating
kinetic and magnetic energies; in the kinematic limit it reduces
to(3). However, as pointed out by Proctor (2003), in his
discussion of the related problem of α-quenching, one has to
reconcile the results(12) and (14). In expression(12), the
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quantities tc and á ñu2 evolve with the flow and magnetic field. If
they are known, or can be deduced from additional physical
considerations, then expression(12), subject to the simplifica-
tions inherent in its derivation, tells the full story. By contrast,
expression(14) comes from a small perturbation of an existing
MHD state, where tc is characteristic of this state. Some caution
should therefore be exercised in interpreting (14) as a formula
for the quenching of the diffusivity as MHD turbulence evolves.

Combining (14) with the result (1), but again bearing in
mind that the two expressions for á ñb2 are derived under
different assumptions, leads to the suppression formula for the
turbulent diffusivity

( )h =
+ á ñ á ñ

ul

Rm B u1
. 15T 2 2

This is in agreement with the result(9) for the regime
M Rm2 . Equation (15) can also be derived from the more

general EDQNM theory (Pouquet et al. 1976; Pouquet 1978)
on the assumption of a single tc for the entire magnetic and
velocity spectra (Diamond et al. 2005). This assumption is
more likely to be valid when the field is relatively strong and
dominated by Alfvén Waves.

3. MATHEMATICAL FORMULATION

3.1. The Governing Equations

We consider the two-dimensional flow of an electrically
conducting fluid with density ρ, kinematic viscosity ν and
magnetic diffusivity η (all constant). The fluid is maintained in
a turbulent state via a homogeneous and isotropic excitation
centered on a particular length scale.

The velocity and magnetic field are confined to the xy-plane
and are dependent on x, y, and time t. It is thus convenient to
express the velocity and magnetic field in terms of a stream
function and flux function, respectively, i.e.,

( )y y
=
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-
¶
¶
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¶
¶
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¶
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The vorticity ˆ w´ =u z, where w y= -2 .
The dynamics is then governed by two scalar equations: the

vorticity equation with forcing and the (uncurled) magnetic
induction equation. In dimensionless form these can be
expressed as

( ) ( )
( ) ( )

w w k w¶ = Y +  + 
+ +

-J Q J A A
F k t S

, ,
, , 17

t
2 1 2

f f

( ) ( )e¶ = Y + -A J A A, , 18t
1 2

where the Jacobian ( ) = ¶ ¶ - ¶ ¶J g h g h g h, x y y x . Time has
been scaled with w=T 10 0, where w0 is some suitably chosen
normalization of the vorticity. The parameters k w n= L0

2 and
e w h= L0

2 , where L is a representative length scale, are
dimensionless measures of the inverse of viscosity and
magnetic diffusivity; their ratio is the magnetic Prandtl number,

e k=Pm . The parameter Q, which may be regarded as the
inverse of the square of the magnetic Mach number, is defined
by ( )m r=Q B u0

2
0 0

2, where w=u L0 0 , B0 is some measure
of the large-scale magnetic field strength, and m0 is the
magnetic permeability. A distinction can be drawn in MHD
between problems for which a magnetic field is imposed, such

as the problem considered here or that of magnetoconvection,
and those for which the strength of the field emerges through
dynamical considerations, as in dynamo studies. For the
former, one of the input parameters of the problem (Q in our
case) measures the strength of the imposed field, whereas for
the latter no such parameter is needed.
The term ( )F k t,f f denotes the forcing of a wave with

wavevector kf , the orientation of which changes randomly with
a period t ;f the simulations described here adopt =k 100f . In
two-dimensional hydrodynamic turbulence, there is an inverse
cascade of kinetic energy to large scales. Thus, in order to
maintain a steady state, it is necessary to remove this energy via
some sort of sink term, denoted by S. There are various
prescriptions available for this procedure (see, for example,
Danilov & Gurarie 2001); here we employ an inverse
Laplacian -2.
In this paper, in order to compare different techniques for

calculating the turbulent magnetic diffusivity we consider two
different types of problem, outlined in detail in Section 4. In
one, the initial magnetic field is of large scale and has zero
spatial mean. In the other, a uniform magnetic field is imposed.
The magnetic potential A in Equations (17) and (18) is thus the
potential for the entire magnetic field (including, where
appropriate, the imposed uniform component).
The velocity and magnetic field are assumed to be periodic

over the computational domain, which, in dimensionless units,
has length p2 .
Equations (17) and (18) are solved numerically, with input

parameters k, e, Q, kf , tf , and ∣ ( )∣F k t,f f , using a parallel
pseudo-spectral code implementing the second order, Runge–
Kutta time-stepping scheme described in Cox & Matthews
(2002). The simulations with =Pm 1 were carried out on a
collocation grid of 20482 points, while those with >Pm 1
employed 40962 points.

3.2. Quantifying Turbulence

In addition to the input parameters defined above, which
provide a unique formulation of the problem, it is helpful to
define a further set of output parameters in order to quantify the
properties of the turbulent flows generated. As the character-
istic length scale for the flow, we adopt the Taylor microscale
(see Monin & Yaglom 1975)

( )l
p

wº º
k

u
2

, 19u
u

2 2

where bars denote an average over space and time. A
characteristic length scale for the magnetic field can be defined
in a similar way, namely

( )l
p

º º
k

a b
2

. 20m
m

2 2

Turbulent quantities related to k, e, and Q are defined by

( )l
n

ºRe
u

, 21u

( )l
h
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( )º -M Q u , 232 1 2
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The values of the parameters for any particular run, both input
and derived, are contained in Table 1. The characteristic
Reynolds number Re and its magnetic counterpart Rm are
much smaller than the domain-related quantities k and e since
the flow is dominated by small-scale motions. The parameter q
denotes the ratio of the energy of the large-scale magnetic field
to the kinetic energy; as the simulations are all in the weak-field
regime, this number is always very small.

4. DETERMINING THE TURBULENT DIFFUSIVITY

In this section we describe the two techniques that we have
employed for measuring the turbulent diffusivity of the
magnetic field, compare the ensuing results, and discuss the
pros and cons of the two methods.

4.1. Decaying Large-scale Field

Here, once the hydrodynamic turbulence is established, we
impose a weak large-scale magnetic field of zero mean; in our
simulations this is given by the magnetic potential =A xsin .
As shown by Figure 1, the magnetic energy exhibits strong
initial transient growth before decaying (Zeldovichʼs anti-
dynamo theorem stipulates that it is impossible for the
magnetic field to be maintained indefinitely). The turbulent
diffusivity hT can then be measured directly from the decay of
the large-scale magnetic field by fitting a decaying exponential
to the amplitude of the large-scale magnetic field.

Although this procedure is manifestly correct, it has a
number of inherent inaccuracies. Simply stated, the problem
boils down to the difficulties in accurately fitting a straight line
to the plots in Figure 2, which, on log-linear axes, show several
examples of the decay of the large-scale field. Figure 3 shows
that the decay rate (i.e., a measure of the turbulent magnetic
diffusivity) itself changes with time, thereby introducing an
undesirable level of arbitrariness in the selection of the time
interval used to estimate the decay coefficient. Initially, when
the field is only large-scale and weak, the decay is kinematic;
the rate of decay then decreases as the magnetic fluctuations

grow (Figure 1). For definiteness, we define a single
representative decay coefficient to be the average of a set of
values obtained by fitting at various times during the most
dynamic phase of the decay. The arbitrariness is thus quantified
by the standard deviation.

4.2. Imposed Uniform Field

Maybe somewhat surprisingly, it is also possible to estimate
hT through consideration of turbulence with an imposed
uniform magnetic field (see Diamond et al. 2005). Suppose
we decompose the magnetic potential into the sum of mean
(large-scale) and fluctuating (small-scale) components,

= á ñ +A A a, where angle brackets again denote spatial
averages. Averaging the induction equation (in dimensional

Table 1
Averages of Turbulent Quantities Measured Using the Imposed Field Method

Pm Q ku km Re Rm q h hT

1 0e+00 5.24e+01 1.75e+02 2.18e+02 2.18e+02 0.00e+00 1.26e+02
1e–08 5.25e+01 1.73e+02 2.17e+02 2.17e+02 3.05e–07 1.21e+02
1e–07 5.25e+01 1.74e+02 2.17e+02 2.17e+02 3.05e–06 1.21e+02
1e–06 5.57e+01 1.74e+02 1.93e+02 1.93e+02 3.40e–05 1.02e+02
1e–05 6.91e+01 1.69e+02 1.27e+02 1.27e+02 5.09e–04 4.78e+01
5e–05 8.34e+01 1.61e+02 8.56e+01 8.56e+01 3.88e–03 2.12e+01

2 0e+00 5.22e+01 2.43e+02 2.19e+02 4.39e+02 0.00e+00 2.46e+02
1e–08 5.23e+01 2.44e+02 2.18e+02 4.37e+02 3.03e–07 2.48e+02
1e–07 5.29e+01 2.43e+02 2.13e+02 4.26e+02 3.10e–06 2.43e+02
1e–06 5.81e+01 2.41e+02 1.79e+02 3.57e+02 3.66e–05 1.82e+02
1e–05 7.53e+01 2.32e+02 1.07e+02 2.14e+02 6.06e–04 6.89e+01

4 0e+00 5.23e+01 3.44e+02 2.19e+02 8.74e+02 0.00e+00 5.02e+02
1e–08 5.24e+01 3.44e+02 2.17e+02 8.67e+02 3.05e–07 5.05e+02
1e–07 5.37e+01 3.43e+02 2.08e+02 8.32e+02 3.17e–06 4.64e+02
1e–06 6.22e+01 3.38e+02 1.57e+02 6.28e+02 4.14e–05 2.93e+02
1e–05 8.18e+01 3.14e+02 8.85e+01 3.54e+02 7.53e–04 9.98e+01
1e–04 1.01e+02 2.55e+02 5.38e+01 2.15e+02 1.34e–02 2.65e+01

Note. For all simulations listed here: k = 104, =k 100f , =t 0.2f and ∣ ( )∣ =F k t, 50f f .

Figure 1. Mean square fluctuation of the magnetic field (i.e., twice the energy
of the magnetic fluctuations) for decaying runs at different values of q and
with e = 104.
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form) over some intermediate spatial scale then gives

· ( ) h¶ á ñ + á ñ =  á ñuA a A , 25t
2

where the fluctuating component satisfies

· · ( )h ¶ + = - á ñ + u ua a A a. 26t
2

Upon multiplying by a, averaging and using incompressibility,
Equation (26) becomes

· ( ) ·

( )

  h
¶
¶

á ñ + á ñ = -á ñ á ñ + á  ñ⎜ ⎟⎛
⎝

⎞
⎠u u

t
a a a A a a

1

2
,

27

2 2 2

which simplifies, on adopting periodic boundary conditions for
the fluctuating potential a, and assuming a statistically
stationary state, to

· ( )h á ñ = -á ñ á ñub a A , 282

where b is the strength of the fluctuating magnetic field. From a
standard mean-field approach to expression(26), which relates
a and á ñA , we may express the flux in terms of a Fickian
diffusion as

ˆ ( )há ñ = - á ñua A , 29T

where ĥT denotes the turbulent diffusion of á ñA . Combining
(28) and (29) then gives

ˆ
( )

ˆ
( )

h
h

h
h

á ñ = á ñ = á ñb A B . 302 T 2 T 2

Expression(30) is an appealing result, linking the energies of
the small- and large-scale magnetic fields. It is, however, only
useful for calculating the turbulent diffusion of the magnetic
field if it can be shown that the turbulent diffusivities of A (i.e.,
ĥT) and of B (i.e., hT) amount to the same thing.

In order to address this question, it is instructive to revisit the
analysis of Cattaneo et al. (1988), who explored some of the
differences between the transport of scalar and vector fields in
two-dimensional turbulence, paying particular attention to the
turbulent advection of mean fields. Following Cattaneo et al.
(1988), we express the evolution equation for á ñA both as a
standard scalar advection-diffusion equation, i.e.,

· ( ) h
¶á ñ
¶

+ á ñ =  á ñu
A

t
a A , 312

and as the “uncurled” induction equation, i.e.,

( )h
¶á ñ
¶

- á ´ ñ =  á ñu b
A

t
A . 32z

2

As in Moffatt (1983), the flux term in (31) may be expressed as

( )º á ñ = -
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¶

-
¶ á ñ
¶ ¶

+F u a D
A

x
E

A

x x
, 33i i ij

j
ijk

j k

2

and the electromotive force in (32) as

( ) a bº á ´ ñ = á ñ +
¶á ñ

¶
+u b B

B

x
. 34i i ij j ijk

j

k

Comparison of these two transport terms in Equations (31) and
(32) thus gives

( )¶
¶

¶á ñ
¶

+
¶ á ñ
¶ ¶
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ˆ ˆ ˆ ( ) a b
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¶

+
¶á ñ
¶ ¶

+
⎛
⎝⎜

⎞
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z
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z , 36i jpq ij

p
q jpq ijk

k p
q

where ˆ d=zi i3. Equating derivatives of á ñA then leads to the
expressions

ˆ ˆ ( ) a
¶
¶

=
D

x
z z , 37il

i
i jlq ij q

ˆ ˆ ( )( )  b+
¶
¶

=D
E

x
z z , 38lm

s ilm

i
i jmq ijl q

where ( )Dlm
s denotes the symmetric part of the tensor. Cattaneo

et al. (1988) concentrated on Equation (37) and its con-
sequences, in particular highlighting an important difference in
the turbulent pumping velocity of two-dimensional scalar and
vector fields. Here, in considering turbulent diffusion, our

Figure 2. Decay of the large-scale magnetic field mode (k = 1) for several
values of q.

Figure 3. Evolution of the magnetic diffusivity hT for a decaying field run with
=Pm 2, = -Q 10 5.
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interest lies in Equation (38). The left-hand side describes the
diffusion of the mean scalar potential á ñA , and the right-hand
side describes the diffusion of a mean magnetic field (the “β-
effect” of mean-field electrodynamics). Comparison of expres-
sions(29) and (33) shows that ĥT is identified with D11; hence
(38) can be expressed as

ˆ ( )h b h+
¶
¶

= =
E

x
. 39T

111
231 T

Thus, in general, for inhomogeneous turbulence, hT and ĥT will
not be the same; however, for the case considered here of
homogeneous turbulence (for which, by definition, gradients of
any transport tensors will vanish), we can indeed identify hT
and ĥT. Thus expression(30) becomes expression(1) for the
turbulent diffusion of the magnetic field. We note that the
scaling(6), which also leads to expression(1), may thus be
interpreted as an assumption of homogenous turbulence.

In the derivation above, the details of the averaging
procedure are not important, provided the average is over
some spatial scale intermediate between that of the large-scale
field and that of the small-scale turbulence. In order to make
use of expression(1) to calculate hT computationally, it is most
convenient to adopt a uniform imposed field as the large-scale
field; spatial averages are then taken over the computational
domain. The uniform field component, which will of course
remain constant in time, may be regarded as being formally of
infinite lengthscale.

Expression(30), involving spatial averages, provides a
means of calculating hT at any particular instant. In a
sufficiently large domain, this value will be essentially
independent of time; however, the domain size needed for this
to hold is truly immense, as discussed by Cattaneo & Hughes
(2009). Thus, even with the large domains considered here, hT
defined by (30) varies with time, and so further temporal
averaging is needed in order to improve its accuracy. This is
illustrated by Figure 4, which shows the growth and subsequent
saturation of the spatial averages of the magnetic and velocity
fluctuations. The time averaging in the calculation of hT is
started once the system enters a stationary state, the precision of
the result being determined by the length of the averaging
interval.

In order to verify the correspondence between temporal and
spatial averaging, we have considered the determination of hT
in a series of simulations with differing scale separation
between that of the turbulent forcing and the size of the
domain. Figure 5, which plots the cumulative time average of
hT versus time for three different scale separations, reveals two
features. The first is that there is a well-defined time average of
hT, regardless of the domain size (although of course this must
be sufficiently large to allow unconstrained turbulent
dynamics), thus confirming that temporal and spatial averages
may be exchanged. The second is that, as expected, the degree
of fluctuation decreases with increasing domain size.

4.3. Comparison Between the Two Methods

Figure 6 shows a comparison between the two methods of
calculating hT, for a range of e and q. The standard deviation,
which quantifies the unavoidable inaccuracies associated with
the derivation of a single hT from a decaying large-scale field,
is represented by the error bars. In principle, the results
obtained from the experiments with an imposed uniform field

also have a spread of values; this, however, turns out to be
insignificant compared with that of the decaying field cases.
The results match surprisingly well, given the different nature
of the measurements and the forms of the initial large-scale
components, further supporting the validity of the calculations
with an imposed uniform field. At this point, we also note that

Figure 4. (a) Mean square of the velocity fluctuations as a function of time, for
several values of q and with e = 104. (b) Same as (a), but for the magnetic
fluctuations.

Figure 5. Cumulative time average of hT for runs with the same physical setup
(i.e., the same local Reynolds number), but with different scale separation.
Scale separation is quantified using the forcing wavenumber kf. (The case with
the largest kf is the =Pm 1, = -Q 10 6 entry in Table 1.)
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the imposed uniform field method has been successfully
compared at moderate Reynolds numbers with the “Turbulent
Ångström Method” and the “Method of Oscillatory Sines”
proposed by Tobias & Cattaneo (2013). These methods may
also be utilized to calculate the turbulent diffusivity to any
required accuracy.

5. TURBULENT MAGNETIC DIFFUSION

5.1. Dependence on Rm, Pm and Q

Given the advantages of the imposed field method, we chose
to employ it in order to determine the dependence of hT on the
various parameters of the problem: Q, Rm, and Pm. Computa-
tions of the governing equations (17)–(18) were performed for
three different values of Pm, each for a set of several Q values.
In all cases, the value of k is the same; changing Pm is thus
equivalent to changing ò, the magnetic Reynolds number
defined by the dimension of the domain. The input parameter
range for Q was chosen to span the transition between the
purely kinematic regime ( =Q 0) and the point where, although
the large-scale field strength is several orders of magnitude
below the equipartition value, hT is significantly suppressed.
The main output of the simulations is the mean square
fluctuation of the magnetic field; this is the only observable
required to calculate hT from (1).
All other quantities of relevance are summarized in Table 1.

From the wavenumber column, it is clear that the characteristic
length scale of the flow decreases once the Lorentz force is
non-negligible ( ¹Q 0). This trend is reflected in the behavior
of Rm, Re, and most importantly, hT, and corresponds to the
growing influence of the generated small-scale magnetic
fluctuations on the turbulent motions.
Figure 7 shows the time-averaged spectra for (twice) the

kinetic energy and magnetic energy, for =Pm 1 and three
different values of the imposed field, represented by the
parameter Q. The key point to note is that the characteristic
inverse cascade of two-dimensional hydrodynamic turbulence
is interrupted by an extremely weak large-scale field
( = -Q 10 5). This is therefore an indication that very weak

Figure 6. Comparison of hT obtained from the decaying (dotted line) and the
imposed field (solid line) runs for different e: (a)e = 104,
(b)e = ´2 104, (c)e = ´4 104.

Figure 7. Time-averaged spectra of (a) u2 and (b) b2 for Pm = 1 and = -Q 10 7

(solid line), = -Q 10 6 (dashed line) and = -Q 10 5 (dotted line).
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large-scale fields can have a significant dynamical effect. The
interesting question of the physics underlying the transition
between inverse and forward cascades in two-dimensional
MHD turbulence has been addressed recently by Seshasayanan
& Alexakis (2016).

As discussed above, the crucial idea under investigation here
is the ability of even a very weak large-scale field to reduce the
turbulent magnetic diffusivity significantly, as a consequence
of the strong small-scale fluctuations. As can be seen in
Figure 8 (solid lines), which shows the dependence of hT on the
strength of the large-scale magnetic field, this quenching of the
turbulent diffusion is confirmed by our high-resolution
simulations. The parameter q measures the ratio of the large-
scale component of the magnetic energy to the total kinetic
energy. For each of the three sets of runs distinguished by a
different value of Pm in Figure 8 (left column), the turbulent
diffusivity has decreased to about half of its kinematic value
even for q as small as -10 4, i.e., when q is of the order of the
inverse large-scale magnetic Reynolds number. At = -q 10 2,
hT is reduced by an order of magnitude. Furthermore, as the
right column of Figure 8 demonstrates, the disruptive effect of
the generated small-scale field is significant even when its
energy contribution is only a few percent of the total kinetic
energy.

Although, as described above, it is feasible to explore a wide
range of imposed field strengths at given, quite large, Reynolds
numbers, exploring a significant range of variation in Rm at a
fixed (high) value of Re remains extremely challenging.
Figure 9 shows the results for hT for a very modest range of
Pm at the fixed value of k = 104. The trend is as expected;
however, determining the precise e dependence accurately will
require runs at phenomenally high resolution.

5.2. The Mechanism of Suppression

Expression(12) reveals the simple dependence of hT on the
amplitude and correlation time of the turbulence under the
short-sudden approximation. Although this formula is not
strictly appropriate for general MHD turbulence, which is
neither particularly short nor sudden, it is nonetheless
instructive to examine the dependence of hT on tc and á ñu2 .
Cattaneo (1994) considered the Lagrangian correlation function
for the case of two-dimensional MHD turbulence with an
imposed field, and concluded that the suppression of turbulent
diffusion resulted from the emergence of a memory time long
compared with the turbulent turnover time, with very little
change in the amplitude of the turbulence. In a different line of
attack, Keating et al. (2008) considered the cross-phase  ,
defined, for two-dimensional turbulence with an imposed
magnetic field ˆ=B B y0 , by

( ) =
á ñá ñ

u a

u a
. 40x

x
2 2

They showed that the suppression of turbulent diffusion could
be accounted for solely by a reduction in  as B0 is increased,
again with essentially no reduction in the turbulence intensity.

Here we address this issue by considering how the
correlation length of the flow changes with the strength of
the mean field. Figure 10 shows the variation in the structure of
the velocity in the kinematic and weak-field regimes, with the
magnetic field causing a shift toward smaller scales. To
quantify this, and with the assumption that the correlation time

scales with the turnover time of the flow, the correlation length
may be calculated via the correlation function

( ) ( ) · ( ) ( )r = +x l u x u x l, . 41u

We define the correlation length lc to be the length scale at
which the normalized average of ru over the spatial domain is
reduced by a factor e. Since the velocity field is approximately
isotropic and homogeneous, lc does not depend strongly on
direction or position. Figures 11(a), (b) show plots of the rms
velocity u and the correlation length lc as functions of q.
Although both the velocity and the correlation length drop off
as the magnetic field strength is increased, the correlation
length suffers a much stronger reduction; depending on Pm, by
a factor of at least two, while the velocity decreases by only
about 30%. This again demonstrates that the suppression of the
turbulent magnetic diffusivity is associated predominantly with
a change in the correlation properties of the flow, rather than
with a decrease in the turbulent intensity. Figure 11(c) shows
the correlation time calculated in two different ways: as the
ratio l uc and as h uT

2. Their functional form is in agreement;
the mismatch in amplitude is not surprising, as there is some
arbitrariness in determining lc from the correlation
function(41).
It is also possible to use lc as a diagnostic tool by adopting it

as the characteristic scale of turbulence, i.e., to calculate
various turbulent quantities independently of those derived
from Zeldovichʼs theorem, and then to compare them. We note
that the local magnetic Reynolds number defined by

h= -Rm l ul c
1

c is in quantitatively better agreement with
h hT than Rm based on the Taylor microscale; this can be seen
from a comparison of Rmlc in Figure 12 with the values of h hT
and Rm in Table 1.

5.3. Comparison with Theoretical Models

In order to compare the results of our simulations with the
suppression formula(15), we calculate Rmlc as a ratio of the
kinematic turbulent diffusivity (i.e., that of the =Q 0 case) to
the molecular diffusivity. We then useQ from Table 1, together
with Rmlc, to obtain hT from (15). The left column of Figure 8
shows both the model and the measured hT. It turns out that the
model consistently predicts weaker suppression of hT. The
discrepancy is almost negligible near the kinematic state, as
expected, but increases as the field becomes more dynamic
(Figure 8). Furthermore, this effect is exhibited more strongly
in the runs at higher e.
Finally, it is of interest to examine the meaning of

expression(14) and to see whether, despite the misgivings
expressed in Section 2, it can be of practical use in the
prediction of hT suppression. Given that, subject to the short-
sudden approximation, hT is given by expression(12), with tc

and á ñu2 evolving with the turbulence, it would seem that in
expression(14), tc and á ñu2 must be interpreted as taking their
kinematic values. From our numerical experiments we are able
to calculate both hT and ( )t á ñ - á ñu bc

2 2 independently; with tc

and á ñu2 taking their kinematic (Q=0) values, the only
dynamical element in the formula is á ñb2 . Figure 13 plots the
ratio of these two quantities, after an additional averaging in
time, as a function of the imposed field strength. It can be seen
that there is agreement only in the kinematic regime, and hence
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Figure 8. (a), (c), (e): Turbulent diffusivity, normalized by its kinematic value, as a function of q. (b), (d), (f): Ratio of magnetic to kinetic energy. For (a) and (b),
e = 10 ;4 for (c) and (d), e = ´2 10 ;4 for (e) and (f), e = ´4 104. Solid curves are obtained directly from the simulations, by measuring hT. Dashed lines are
calculated from the closure model equation (15). The critical q, given by ( )h h= =-q Rmlcr

1
T kinc

, is marked as the dotted line.
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that expression(14) is not a particularly good description of the
suppression process.

6. CONCLUSIONS

We have revisited the classical problem of the diffusion of
magnetic field in two-dimensional MHD turbulence. Todayʼs
computational power allows two important properties of
turbulent flows to be captured, particularly when attention is
restricted to two-dimensional flows. One is the considerable
separation of spatial scales between the size of the system and
that of the energy-containing eddies; the other is the large
(though not astronomically large) values of the Reynolds
numbers ( ( )O 104 on the system scale and ( )O 102 on the scale
of the eddies). Also, rather than estimating the turbulent
diffusivity hT through the decay of a spatially varying large-
scale magnetic field, we have instead considered the diffusion
of the vector potential A for a uniform imposed gradient in A,
i.e., a uniform magnetic field; although the turbulent diffusiv-
ities of B and A are, in general, not the same, they are
equivalent for homogeneous turbulence. This method, which
analyzes a stationary state of MHD turbulence, thus allows the
calculation of hT to arbitrary accuracy.

Our high-resolution simulations confirm the key finding of
Vainshtein & Rosner (1991) and Cattaneo & Vainshtein (1991)
that a very weak large-scale magnetic field has a strong

Figure 9. Turbulent diffusivity, normalized by its kinematic value, as a
function of q for different values of Pm.

Figure 10. Sections (1/16 of the simulation area surface) of the x-component
of the velocity for =Pm 1. Left: kinematic case; right: = -Q 10 5. Figure 11. (a) rms velocity u as a function of q for =Pm 1 (solid line) and

=Pm 2 (dashed line). (b) lc as a function of q; the error bars represent the
standard deviation resulting from the time averaging. (c) Correlation time
calculated in two different ways. The dot–dashed curves show tc defined by
t = l uc c (circles denote =Pm 1, triangles =Pm 2). The dashed curves show
tc defined by t h= uc T

2.

Figure 12. Local magnetic Reynolds number Rmlc as a function of q for
Pm = 1 and Pm = 2. The error bars represent the standard deviation resulting
from the time average of Rmlc.
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dynamical influence, through the small scales generated, on the
turbulent magnetic diffusivity. Indeed, as shown in Figure 8,
the suppression of hT appears to be even stronger than
suggested by the model formula(15). We have explored the
dependence of hT on a range of large-scale field strengths B0 at
several fixed large values of the magnetic Reynolds number
Rm; unfortunately, even with the high resolutions currently
possible, exploring a wide range of Rm remains impracticable.

As discussed in Section 2, theoretical considerations ascribe the
suppression of the turbulent diffusivity to changes in either the
correlation time or the amplitude of the turbulence (or some
combination of the two). Our findings back up those resulting
from the Lagrangian analysis of Cattaneo (1994), and the cross-
phase analysis of Keating et al. (2008), in that the reduction of the
turbulent diffusivity arises primarily not from a marked reduction
in the turbulence amplitude, but through a disruption of the
correlation of the phase of the flow. This rather subtle
modification of the small-scale features of the flow through the
forces arising from a small-scale magnetic field that, ultimately,
derives from a weak large-scale field, is of widespread
astrophysical relevance. Here we have considered the rather
simple case of the turbulent magnetic diffusivity in two-
dimensional turbulence. As noted in Section 1, similar considera-
tions apply also to the quenching of the mean-field dynamo
α-effect. In a different context, Tobias et al. (2007) showed that jet
formation in β-plane turbulence, which arises through the
coherence of the small-scale Reynolds stresses, can be totally
disrupted by the inclusion of an extremely weak large-scale field;
as in the current study, the large-scale field leads to dynamical
consequences even when its energy is ( )-O Rm 1 times the
turbulent kinetic energy. In another area of astrophysical
importance, rapidly rotating convective turbulence, the Reynolds
stresses can lead to the formation of large-scale vortices (e.g.,
Favier et al. 2014; Guervilly et al. 2014). The flow may then act as
a dynamo, as a consequence of which the strong small-scale
magnetic field diminishes the coherence of the Reynolds stresses,
and hence the driving for the large-scale vortices. Whether this
signifies the demise of the large-scale vortices, or whether they
can recover, depends critically on the value of Rm, which
determines whether the small-scale field can be maintained

(Guervilly et al. 2015). Although the physics is more complicated
than that considered in this paper, in that the magnetic field is self-
generated rather than imposed, the main underlying idea is again
that a strong small-scale field can inhibit turbulent transport.
The set-up we have considered here is essentially the

simplest model of MHD turbulence. Still within the context of
two-dimensional turbulence, there are two interesting exten-
sions that we are currently pursuing. The first is to consider
inhomogeneous turbulence, which brings in the possibility of
turbulent pumping of the magnetic field (the γ-effect of mean-
field electrodynamics, sometimes referred to as “turbulent
diamagnetism”); the important question is then to quantify any
suppression of the pumping by a dynamic magnetic field (cf.
Tao et al. 1998). The second is to explore the possible
suppression of the turbulent transport of passive scalar
concentration in MHD turbulence (cf. Diamond & Gruzi-
nov 1997). This is of significance, for example, in considering
the transport of light elements in magnetized stellar interiors.
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