This is a repository copy of *Self-contained pedestrian tracking during normal walking using an inertial/magnetic sensor module*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/98817/

Version: Accepted Version

**Article:**
Meng, X, Zhang, Z-Q, Wu, J-K et al. (2 more authors) (2014) Self-contained pedestrian tracking during normal walking using an inertial/magnetic sensor module. IEEE Transactions on Biomedical Engineering, 61 (3). pp. 892-899. ISSN 0018-9294

https://doi.org/10.1109/TBME.2013.2291910

---

**Reuse**
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

**Takedown**
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Self-contained Pedestrian Tracking during Normal Walking using an Inertial/Magnetic Sensor Module

Xiaoli Meng, Zhi-Qiang Zhang*, Jian-Kang Wu, Wai-Choong Wong, and Haoyong Yu

Abstract—This paper proposes a novel self-contained pedestrian tracking method using a foot-mounted inertial and magnetic sensor module, which not only uses the traditional zero velocity updates (ZUPT), but also applies the stride information to further correct the acceleration double integration drifts and thus improves the tracking accuracy. In our method, a velocity control variable is designed in the process model, which is set to the average velocity derived from stride information in the swing (non-zero velocity) phases or zero in the stance (zero-velocity) phases. Stride-based position information is also derived as the pseudo-measurements to further improve the accuracy of the position estimates. An adaptive Kalman filter (AKF) is then designed to fuse all the sensor information and pseudo-measurements. The proposed pedestrian tracking method has been extensively evaluated using experiments, including both short distance walking with different patterns and long distance walking performed indoors and outdoors, and have been shown to perform effectively for pedestrian tracking.

Index Terms—Sensor fusion, zero velocity update, stride counting, Unscented Kalman filter, pedestrian navigation.

I. INTRODUCTION

SELF-CONTAINED pedestrian navigation systems have been applied in numerous applications, such as rescue/emergency first response, location-aware computing, augmented reality and so on [1]. Until now, current outdoor position tracking technologies mainly rely on GPS, which normally requires an unobstructed line of sight to four or more GPS satellites [2]. However, in urban and indoor environments GPS signals are unreliable or even unavailable due to the signal attenuation caused by buildings, tunnels, and other construction materials. Various acoustic, optical or radio frequency (RF) localization systems have been suggested so far, but such systems all require complicated setup and calibration, which impose tremendous challenges for routine use [3].

As wearable sensors can work in arbitrary unprepared indoor and outdoor environments, to this end, self-contained pedestrian tracking systems based on inertial/magnetic measurement units have attracted lots of research interests. A typical inertial/magnetic measurement unit contains a triaxial accelerometer, a triaxial angular rate sensor, and a triaxial magnetometer, and these sensor units are already commercially available on the market at reasonable cost [4] [5]. The basic idea of the inertial/magnetic measurement unit-based pedestrian tracking is an adaptation of the well-known strapdown navigation algorithm, which incorporates double integration of the measured acceleration to estimate distance or position. However, it is extremely difficult to extract accurate motion accelerations from the accelerometer signals due to sensor bias and noises, and any small error can make the position error increase exponentially; therefore, zero-velocity updates (ZUPTs) are commonly employed to mitigate this problem by resetting the accumulated error [6] [7]. This technique exploits the intrinsic property of pedestrian walking: there are repeated recognizable periods when the foot stays stationary on the ground, during which the velocity and acceleration of the foot are zero. Extensive research has been performed on how to use ZUPTs for accurate position estimation. For example, both Ojeda et al. [8] and Bebek et al. [9] simply reset the integrated velocity to zero during the zero velocity phases. Foxlin [10] and Godha et al. [11] introduced ZUPTs as pseudo-measurements into an extended Kalman filter as the navigation error corrector. Instead of simply resetting the accumulated velocity error periodically, Yun et al. [12] further improved the idea of ZUPTs and applied a time variant acceleration bias error to revise the acceleration in the swing phases. Although the removal of the acceleration bias error can significantly improve the accuracy of position tracking, it is still problematic for long distance tracking.

To increase the accuracy of the ZUPT-based methods over long durations, some extra infrastructures and technologies, such as ultrasound, short-range radio (Wi-Fi, Ultra-Wideband (UWB)), radio frequency identification (RFID) and Zigbee) or vision, have been explored in pedestrian navigation together with the inertial/magnetic sensor units. For instance, Fischer et al. [13] proposed a pedestrian navigation system based on a combination of foot-mounted inertial sensors and ultrasound beacons. Both Hol et al. [14] and Corrales et al. [15] combined UWB with inertial/magnetic sensor units for position tracking. Ruiz et al. [16] fused inertial navigation system (INS) techniques with active RFID technology for accurate indoor pedestrian localization and navigation. Widyawana et al. [17] presented a multi-modal indoor navigation technique that integrated inertial/magnetic sensor units with RF and ultrasound beacons to reduce the impact of incremental er-
ror accumulation. All the above mentioned methods have illustrated that the incorporation of extra infrastructures can improve location accuracy, but the extra instrumentations can make the systems less ubiquitous in terms of installation and maintenance.

However, except for ZUPT, more information, such as stride frequency, stride length and heading direction, can also be derived from the raw sensor measurements, and this information can be used for pedestrian localization as well [18] [19]. Through the counting of strides, the position of the pedestrians can be estimated based on an approximate stride length and heading direction, which can avoid the excessive double integration drifts, but is susceptible to stride mis-detection/false-detection and the errors in stride length estimation and heading direction. Moreover, the stride-based method can only be implemented with relatively low frequency to update the positions once per gait cycle.

In this paper, we propose a novel pedestrian navigation method which integrates the ZUPT-based method with the stride-based method under the framework of an adaptive Kalman filter (AKF). In order to compensate for the velocity drift, a velocity control variable is designed in the process model, which is set to the average velocity derived from the stride information in the swing (non-zero velocity) phases or zero in the stance (zero velocity) phases. Stride-based position estimates are also derived as the pseudo-measurements to further improve tracking accuracy. The proposed pedestrian tracking method has been extensively evaluated using experiments including both short distance walking with different patterns and long distance walking performed indoors and outdoors. The significant improvement of tracking accuracy in comparison with the two pure ZUPT-based methods has been illustrated that the incorporation of extra infrastructures can improve location accuracy, but the extra instrumentations can make the systems less ubiquitous in terms of installation and maintenance.

The rest of the paper is organized as follows. Section II presents the proposed pedestrian tracking method under the framework of the AKF, including the stance phase detection, process model, sensor measurement model, pseudo-measurement model and adaptive filtering. Experimental results and discussions are described in Section III. Finally, we conclude the paper in Section IV.

II. PROPOSED PEDESTRIAN TRACKING METHOD

For a pedestrian navigation system, three coordinate systems are defined: 1) the global coordinate system (GCS): North east down (NED) coordinate system is introduced as the GCS with X-axis pointing north, Y-axis pointing east, and Z-axis pointing down to construct a right-handed coordinate system; 2) body coordinate system (BCS): coordinate system of the foot segment; 3) sensor coordinate system (SCS): three orthogonally axes of the mounted sensors. To facilitate our analysis, the BCS is assumed to coincide with the SCS after sensor to body alignment calibration [20].

As shown in Fig. 1, the proposed pedestrian tracking method consists of stance phase detection, process model, sensor measurement model, pseudo measurement model and adaptive filtering. We will introduce them in sequence in this section.

A. Stance Phase Detection

During any stance phase, the foot stays stationary on the ground, which means that the accelerometer only measures the gravity and the gyroscope readings should be zero. As shown in Fig. 2, a simple stance phase detector can be designed as:

$$\text{Stance} = \begin{cases} 1, & \|z_{A,t}\| - g < \lambda_A \text{ and } \|z_{G,t}\| < \lambda_G \\ 0, & \text{else} \end{cases}$$  

where $z_{A,t}$ is the accelerometer measurement at time $t$, while the $z_{G,t}$ is the gyroscope reading at time $t$, $\|\|$ and $|\cdot|$ are the magnitude and absolute operations, respectively, and $g$ denotes the gravity magnitude. $\lambda_A$ and $\lambda_G$ are the predefined thresholds which are set to the same value empirically in this paper.

B. Process Model

The process model employed by the AKF governs the dynamic relationship between the states of two successive time steps. The state vector at time step $t$, denoted by $x_t$, consists of position $p_t$, velocity $v_t$, motion acceleration $a_t$, low frequency accelerometer bias error $b_{A,t}$, and quaternion $q_t$ associated with orientation:

$$x_t = [p_t^T, v_t^T, a_t^T, b_{A,t}^T, q_t^T]^T$$
where $p_t$, $v_t$, $a_t$ and $b_{A,t}$ are defined in the GCS; $q_t$ represents the foot’s orientation relative to the GCS, and $q_t = [q_{1,t}, q_{2,t}, q_{3,t}, q_{4,t}]^T = [e^T_{1} q_{4,t}]^T$, $q_{4,t}$ and $e_t = [q_{1,t}, q_{2,t}, q_{3,t}]^T$ are the scalar part and vector part of $q_t$, respectively; the superscript ‘$T$’ means ‘transpose’.

The motion acceleration $a_t$ is modeled as a first-order low-pass filtered white noise process, as in

$$a_t = c_a q_{4,t-1} + w_{a,t} \tag{3}$$

where $c_a$ is a constant, and $w_{a,t}$ is a random Gaussian noise with zero mean and covariance matrix $Q_a$. The slow variation of the accelerometer bias $b_{A,t}$ is modeled as a random walk driven by a Gaussian noise $w_{bA,t}$, with covariance matrix $Q_{bA}$,

$$b_{A,t} = b_{A,t-1} + w_{bA,t}. \tag{4}$$

To reduce the acceleration integration drift during the swing phase, we introduce the average velocity of the last stride as an control variable in the velocity dynamic model. Thus, the velocity can be modeled as:

$$v_t = \xi (v_{t-1} + a_{t-1} \delta_t) + (1 - \xi) [0 0 0]^T + w_{v,t} \tag{5}$$

where $\delta_t$ is the sampling interval (it was set to 0.01s in our implementation); $v_{S,t-1}$ is the average velocity of last stride calculated from stride-based tracking; $k$ is the index of the current stride; $\xi$ is the weight; and $w_{v,t}$ is the velocity process noise with covariance matrix $Q_v$. During the stance phase, the foot velocity should be zero. To get a unified equation, the velocity in the stance phase can be written in the following form:

$$v_t = \xi (v_{t-1} + a_{t-1} \delta_t) + (1 - \xi) [0 0 0]^T + w_{v,t} \tag{6}$$

where $[0 0 0]^T$ is the control vector during the stance phase and $\xi$ is set to 0. The covariance matrix of the process noise for velocity $w_{v,t}$ in the stance phase would also be a zero matrix. In summary, the control vector $u_t$ can be defined as follows:

$$u_t = \begin{cases} v_{S,t-1}, & \text{Stance = 0} \\ [0 0 0]^T, & \text{Stance = 1} \end{cases} \tag{7}$$

The position of the foot is calculated by

$$p_t = p_{t-1} + v_{t-1} \delta_t + \frac{1}{2} a_{t-1} \delta_t^2 + w_{p,t} \tag{8}$$

where $w_{p,t}$ is the position process noise with covariance matrix $Q_p$.

Given the gyroscope measures $z_{G,t}$, the foot orientation $q_t$ at time step $t$ can be propagated as [21]:

$$q_t = \exp \left( \frac{1}{2} \Omega [z_{G,t}] \delta_t \right) q_{t-1} + w_{q,t} \tag{9}$$

where $\Omega [z_{G,t}]$ is a $4 \times 4$ skew symmetric matrix as in

$$\Omega [z_{G,t}] = \begin{bmatrix} - [z_{G,t} \times] & z_{G,t} \\ -z_{G,t}^T & 0 \end{bmatrix}, \tag{10}$$

$[\times]$ represents the cross product operator [22], and $w_{q,t}$ is a zero-mean Gaussian noise with covariance matrix $Q_q$.

From (3)–(6), (8), and (9), the linear process model can be summarized as:

$$x_t = F x_{t-1} + u_t + w_t = \begin{bmatrix} I_3 & \delta_t I_3 & \frac{1}{2} \delta_t^2 I_3 & 0_{3 \times 3} & 0_{3 \times 4} \\ 0_{3 \times 3} & \xi I_3 & \xi \delta_t I_3 & 0_{3 \times 3} & 0_{3 \times 4} \\ 0_{3 \times 3} & 0_{3 \times 3} & 0_{3 \times 4} & I_3 & 0_{3 \times 4} \\ 0_{4 \times 3} & 0_{4 \times 3} & 0_{4 \times 3} & 0_{4 \times 3} & A_t \end{bmatrix} x_{t-1} + \begin{bmatrix} \xi \delta_t w_{p,t} \\ 0_{3 \times 1} \\ u_t \\ w_{v,t} \\ w_{a,t} \end{bmatrix} \tag{11}$$

where $I_3$ denotes a $3 \times 3$ identity matrix; $0$ stands for zero matrix; and $A_t$ is the transition matrix given by

$$A_t = \exp \left( \frac{1}{2} \Omega [z_{G,t}] \delta_t \right). \tag{12}$$

In this paper, $w_{p,t}$, $w_{v,t}$, $w_{a,t}$, and $w_{q,t}$ are assumed to be uncorrelated with each other, thus the process noise covariance matrix $Q_t$ will have the following expression:

$$Q_t = \text{diag} ([Q_p, Q_v, Q_a, Q_{bA}, Q_q]). \tag{13}$$

### C. Sensor Measurement Model

The gravity acceleration and earth magnetic field strength are used to compensate for the predicted quaternions to get drift-free orientation estimation. Given a quaternion $q_t$ and the reference magnetic vector in the GCS $r_M$, the measurement equation of the magnetometer signal $z_{M,t}$ can be defined as:

$$z_{M,t} = C(q_t) r_M + n_{M,t} \tag{14}$$

where $C(q_t)$ is the corresponding rotational matrix of the quaternion $q_t$ [22]:

$$C(q_t) = \begin{bmatrix} q_{1,t}^2 - c_t^2 e_t^T & 2 c_t \epsilon_t e_t^T \end{bmatrix} I_3 + 2 \epsilon_t e_t \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \tag{15}$$

where $n_{M,t}$ is the magnetometer measurement noise with zero mean and covariance matrix $\Sigma_{M,t}$. As the magnetometer measurements include the earth magnetic field and disturbance from environments, which would introduce inaccuracy to the orientation estimates. The influence from the magnetic disturbance to the orientation estimates is guarded by the adaptive mechanism proposed in [23].

The accelerometer measures gravitational acceleration together with acceleration caused by human motion, plus bias and measurement noises, as in

$$z_{A,t} = C(q_t) (a_t + g_0 + b_{A,t}) + n_{A,t} \tag{16}$$

where $n_{A,t}$ is the accelerometer measurement noise with covariance $\Sigma_{A}$; and $g_0$ denotes the gravitational acceleration in GCS.

From (14) and (16), the sensor measurement model is given by:

$$z_{S,t} = \begin{bmatrix} z_{M,t} \\ z_{A,t} \end{bmatrix} = f(x_t) + n_{S,t} = C(q_t) \begin{bmatrix} r_M \\ a_t + g_0 + b_{A,t} \end{bmatrix} + \begin{bmatrix} n_{M,t} \\ n_{A,t} \end{bmatrix} \tag{17}$$
The covariance matrix of the sensor measurement noises \( n_{s,t} \), denoted by \( R_{s,t} \), is given by:

\[
R_{s,t} = \begin{bmatrix}
\Sigma_{d,t} & 0_{3\times 3} \\
0_{3\times 3} & \Sigma_A
\end{bmatrix}
\]  

(18)

D. Pseudo Measurement Model

The pseudo measurements of the position attained from the stride information during the stance phase can further improve tracking accuracy of the pedestrians. According to the stride-based pedestrian tracking method, at time \( t \), when the \( k \)th stride occurs, the pseudo measurements of the pedestrian location \( z_{p,t} \) can be updated by:

\[
z_{p,t} = l_{p,k-1} + [S_k \cos \theta_k, S_k \sin \theta_k, 0]
\]  

(19)

where \( l_{p,k-1} \) is the location of the previous stride after the AK-F update; \( S_k \) and \( \theta_k \) are the stride length and the heading angle of the current stride, respectively. The above equation requires three important steps: stride detection, stride length estimation and heading angle determination. Here, stride detection is the same as the stance detection, so we will only introduce the stride length estimation and heading angle determination.

1) Stride length estimation: in practice, stride length varies from across different strides, but it has shown some relationship to the angular rates [24], which is given below:

\[
S_k = K \cdot \sqrt{Y_{\text{max}}^{G,k} - Y_{\text{min}}^{G,k}}
\]  

(20)

where \( Y_{\text{max}}^{G,k} \) and \( Y_{\text{min}}^{G,k} \) are the maximum and minimum values of the angular rates along the Y-axis during the \( k \)th stride, respectively. The constant \( K \) is personal-dependent and determined through off-line training by collecting some walking data before the actual experiments from the subject.

2) Heading angle determination: when a stride is detected, the heading angle \( \theta_k \) is extracted from the orientation of the \( k \)th stride, represented by \( q_{S_k} \), as given in:

\[
\theta_k = \arctan \left( \frac{2(q_{S_k,4}q_{S_k,3} + q_{S_k,1}q_{S_k,2}), 1 - 2q_{S_k,2}^2 + q_{S_k,3}^2} - \theta_0 \right)
\]  

(21)

where \( \theta_0 \) is the initial foot toe-out angle, which is assumed to be the same of each stride.

To sum up, when a stride is detected, the pseudo measurement equation is governed by:

\[
z_{p,t} = p_t + n_{p,t}
\]  

(22)

where \( n_{p,t} \) is zero mean Gaussian noise with covariance \( \Sigma_P \).

E. Adaptive Filtering Design

Through the process model (11), the measurement model (17) and (22), the ZUPT-based method is tightly integrated with the stride-based method. Because of the nonlinear measurement function (17), the Unscented Kalman Filter (UKF) is employed in this paper. The detailed UKF equations can be found in [25]. To avoid the effects of stride mis-detection/false-detection or errors in stride length estimation and the heading direction, the pseudo measurement \( z_{p,t} \) is regarded as invalid and disregarded when the \( k \)th stride is detected if:

\[
\|z_{p,t}\| - \|p_t\| > \lambda_p,
\]  

(23)

where \( p_t \) is the predicted position using the process model, and \( \lambda_p \) is the error threshold of the position. Otherwise, the pseudo position measurement \( z_{p,t} \) will be used to update the position estimates to get the location of the pedestrian at time \( t \), denoted by \( p_t^k \), and the control vector \( v_{S_k} \) in (5) is also updated by:

\[
v_{S_k} = \frac{[S_k \cos \theta_k, S_k \sin \theta_k, 0]}{T_{S_k}^k}
\]  

(24)

where \( T_{S_k}^k \) is the swing phase duration of the \( k \)th stride.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

To evaluate the performance of the proposed algorithm, an inertial/magnetic sensor module is placed on the right foot as shown in Fig. 3. The sensor chip is the ADIS16405 from Analog Devices, which contains a triaxial accelerometer, triaxial gyroscope and triaxial magnetometer [26]. The sensor module is connected to a base station by SPI serial data bus, and it controls the data collection and send the data to PC for offline processing through Bluetooth. All the data analysis was implemented using MATLAB on a PC with 3.40 GHz Intel Core i5 processor and 8G RAM. Two types of walking experiments are carried out to validate the performance of the algorithm. Simple walking experiments including straight line walking, turning around and circle walking are evaluated first. As follows, long distance walking experiments performed both indoors and outdoors are analyzed.

B. Experimental Demonstration

A comparative study between the proposed method and two ZUPT-based methods are carried out to evaluate the pedestrian tracking performance. In what follows, ‘Truth’ represents the marked trajectory that the tester needs to follow; ‘Our’ shows the tracking results of our method, while the results using Godha’s method [11] and Yun’s method [12] are also shown for comparison.

1) Short distance walking: for short distance walking, three experiments are carried out according to the predefined paths: 1) the subject walks in a straight line for 15m; 2) the subject walks in a straight line for 10m, makes a 180° turn and walks back to the starting point; 3) the subject walks in a circle of radius 3m. Each experiment is repeated 5 times. One example of the estimated displacements for the three experiments are...
shown in Figs. 4–6, respectively. In these figures, the thick grey solid line in the plots represents the predefined path, the thin solid line shows the estimated trajectory using our proposed methods, the dotted-dashed line are the estimated results using Godha’s method, and the dashed line illustrates the position estimation of Yun’s method. Table I shows the position errors of each test for the three experiments. For the straight line walking, the path is not a closed-loop trajectory, and the position error is calculated using the difference between the estimated final position and the truth final position. For the other two experiments with closed-loop trajectories, the position error is evaluated by the difference between the starting and final position. Table I also show the average position errors over the 5 trials. The average position error of the proposed method for straight line walking is 0.44 ± 0.20m, for walking with 180° turn is 0.45 ± 0.08m, and for walking in a circle path is 0.40 ± 0.07m, respectively. The figures show that our method is more accurate than the other two pure ZUPT-based methods.

2) Long distance walking: both indoor and outdoor long distance walking experiments are conducted to further validate the feasibility of our method in long-term tests. The indoor experiment is carried out in a laboratory on campus. The walking path of the experiment is shown in Fig. 7, which totally covers about 132m in distance, with various obstacles and turns. Along the walking path, distinctive points with 1m distance are marked on the floor to guide the subjects to walk along the path. As shown in Fig. 7, the thick grey solid line in the plot represents the predefined path. From the start position which is the (0, 0) point in the plot, the subject walks along the path, makes several turns and walks back to the starting position. The subject takes about 3 minutes to walk along it under normal walking speed. In Fig. 7, the thin solid line shows the estimated trajectory using the proposed method, the dash-dotted line follows Godha’s method, and dashed line illustrates the position estimation by Yun’s method. Both indoor and outdoor walking experiments are repeated 5 times, and the position errors of each test are shown in Table II. The average position errors over the 5 trials are also shown in the table. Based on our method, the averaged error for 3 minutes indoor walking is 4.31 ± 1.77m, and for 6 minutes outdoor walking is 3.88 ± 0.35m. The comparison results of the average position errors among the three methods indicates our method has achieved the highest accuracy in the long-term experiments.
### Table I

<table>
<thead>
<tr>
<th></th>
<th>line</th>
<th>turn</th>
<th>circle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our</td>
<td>0.21</td>
<td>0.63</td>
<td>0.44</td>
</tr>
<tr>
<td>Godha’s</td>
<td>2.19</td>
<td>1.86</td>
<td>0.34</td>
</tr>
<tr>
<td>Yun’s</td>
<td>1.52</td>
<td>2.93</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Position error(%) line turn circle

<table>
<thead>
<tr>
<th></th>
<th>Our</th>
<th>Godha’s</th>
<th>Yun’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our</td>
<td>0.40</td>
<td>0.64</td>
<td>0.44</td>
</tr>
<tr>
<td>Godha’s</td>
<td>1.20</td>
<td>1.00</td>
<td>0.44</td>
</tr>
<tr>
<td>Yun’s</td>
<td>0.44</td>
<td>1.08</td>
<td>0.34</td>
</tr>
</tbody>
</table>

### Table II

<table>
<thead>
<tr>
<th></th>
<th>indoor</th>
<th>outdoor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our</td>
<td>5.35</td>
<td>4.31</td>
</tr>
<tr>
<td>Godha’s</td>
<td>14.68</td>
<td>14.73</td>
</tr>
<tr>
<td>Yun’s</td>
<td>9.03</td>
<td>4.93</td>
</tr>
</tbody>
</table>

Position error(%) indoor outdoor

<table>
<thead>
<tr>
<th></th>
<th>Our</th>
<th>Godha’s</th>
<th>Yun’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our</td>
<td>4.16</td>
<td>3.39</td>
<td>3.72</td>
</tr>
<tr>
<td>Godha’s</td>
<td>22.01</td>
<td>16.17</td>
<td>15.09</td>
</tr>
<tr>
<td>Yun’s</td>
<td>8.13</td>
<td>12.48</td>
<td>10.79</td>
</tr>
</tbody>
</table>

### C. Discussion

The performance of the proposed method has been extensively compared with those of the two pure ZUPT-based methods. As we can see from Table I and Table II, the proposed method has achieved the smallest position error compared with the other two methods. Compared with Godha’s method, which simply resets the velocity to zero during the stance phase, Yun’s method has improved the tracking accuracy. This is mainly because Yun’s method not only applied ZUPT to the stance phase, but also applied a time-variant velocity drift error to revise the acceleration in the swing phase. However, in Yun’s method, there was one stride delay in the position estimation, because it had to wait for the stride to be executed and then determined the drift error afterwards. Our method corrects the velocity using the different velocity control vectors in the stance phase or swing phase, without the introduction of the one-stride delay. Based on the results shown in Figs. 4–8, the integration of ZUPT with stride counting can significantly improve the tracking performance compared with the pure ZUPT-based methods. This is mainly due to the extracted average stride velocity and the position from stride counting, which can be used to further compensate for the acceleration double integration and thus improve the estimation accuracy. We also believe that with the tolerance of one stride delay, the tracking accuracy could be further improved by using the velocity of current stride as the control vector.

In our experiments, we use the position difference between the starting and final points to evaluate the performance of the proposed pedestrian tracking algorithm. Although it is commonly recognized in the assessment of the pedestrian tracking accuracy [9], [12], [16], the tracking performance...
may not be fully exploited by this method since it ignores the possible deviation of the other points from the walking path. Therefore, more points are extracted from the walking path for the performance evaluation. One possible way is to choose the critical turning points from the path of the ground truth. The corresponding turning points will be found manually from the position estimates provided by the three different methods. Then the position differences between these turning points can be calculated for performance comparison. Take the outdoor long-term walking as an example, except the starting and final points, 7 more points can be used for evaluation, which are marked by the square number plates in Fig. 8. The average distance errors and standard deviations between the estimated position and actual position of the 7 points from the 5 trials are shown in Fig. 9. To further illustrate how the stride information can be used to improve estimation accuracy of the ZUPT-based methods, the results of the pure stride-based method are also shown in the figure. It is evident that integration of the ZUPT-based method with stride-based method can achieve better results than applying any of the methods alone.

When stride is mis-detected/false-detected, or errors exist in the estimated stride length or heading direction, the pseudo measurement from stride counting should be regarded as invalid by setting the threshold $\lambda_p$. During our experiments, all the strides could be accurately detected, but the estimated stride length or heading direction had significant errors under some certain situations, like turning, activities switching (from standing still to walking or from walking to standing still) or even walking on the spot. Take the 180° turn or sharp turn for example, the subjects normally did the turning at the same spot with little displacement change. In such case, the inaccurate pseudo measurement should be ignored, which was achieved via the threshold $\lambda_p$; the double integration could then take the leading role in position estimation to reduce the error in the pedestrian’s location estimation. To further illustrate the behavior of the ZUPT method with/without intervention of the pseudo measurement model, different values of $\lambda_p$ have been chosen to compare the displacement estimation performances. The pure stride-based method in Fig. 9 can be taken as the estimation results when $\lambda_p = \infty$, while the ZUPT method without any pseudo measurements intervention can be considered as the estimation results when $\lambda_p = 0$. It is evident that the displacement estimation performance is slightly better than the that of Yun’s method when $\lambda_p = 0$, but not as good as our final results. Although the both of pure stride-based method and the ZUPT method without any pseudo measurements intervention work poorly, the integration of these two method can act as the best one. The possible explanation is that though the stride method is not performing good for turns and activity transitions or other situations, it outperforms double integration method in the rest of conditions. Therefore, by integrating of these two methods together, we have obtained best results.

IV. CONCLUSION AND FUTURE WORK

In this paper, a novel pedestrian navigation method using a sole foot-mounted sensor module has been proposed, which integrates the ZUPT-based method with the stride-based method under the framework of an AKF. In order to compensate for the velocity drift, a velocity control variable has been designed in the process model, which has been set to the average velocity derived from stride information in the swing phases or zero in the stance phases. Stride-based position estimates are also derived as the pseudo-measurements to further improve tracking accuracy. The impressive experimental results have demonstrated that our proposed method can accurately track the positions of pedestrians in both indoor and outdoor environments.

The proposed method is only evaluated for normal walking experiments on level ground. Our future work will focus on further extending our method for other walking patterns, like backwards walking, sideways walking and stair climbing.

REFERENCES


Haoyong Yu is an Assistant Professor of Department of Bioengineering at NUS. He received his PhD in Mechanical Engineering from MIT in 2002. His PhD research at MIT was to develop smart personal mobility aids and health monitoring systems for the elderly, with his main contribution in the areas of omni-directional mobility design and adaptive shared control for human machine interaction. He then worked in DSO National Laboratories of Singapore as a Principal Member of Technical Staff. His research areas in DSO included exoskeleton and humanoid robots as well as intelligent ground and aerial robots. Dr. Yu joined Department of Bioengineering of NUS in September 2010. His current research focus is on robotics for neurorehabilitation, especially on using exoskeleton systems and smart mobility aids for patients with stroke and Parkinson’s Diseases. His is collaborating with NUHS, SGH, DSO, MIT, UPMC of France, and Maebashi Institute of Technology of Japan for his research.