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Micro Magnetometer Calibration for Accurate

Orientation Estimation
Zhi-Qiang Zhang and Guang-Zhong Yang, Fellow, IEEE

Abstract—Micro-magnetometers, together with inertial sen-
sors, are widely used for attitude estimation for a wide variety
of applications. However, appropriate sensor calibration, which
is essential to the accuracy of attitude reconstruction, must be
performed in advance. Thus far, many different magnetometer
calibration methods have been proposed to compensate for errors
such as scale, offset, and nonorthogonality. They have also been
used for obviate magnetic errors due to soft and hard iron.
However, in order to combine the magnetometer with inertial
sensor for attitude reconstruction, alignment difference between
the magnetometer and the axes of the inertial sensor must
be determined as well. This paper proposes a practical means
of sensor error correction by simultaneous consideration of
sensor errors, magnetic errors and alignment difference. We
take the summation of the offset and hard iron error as the
combined bias, and then amalgamate the alignment difference
and all the other errors as a transformation matrix. A two-
step approach is presented to determine the combined bias
and transformation matrix separately. In the first step, the
combined bias is determined by finding a optimal ellipsoid
that can best fit the sensor readings. In the second step, the
intrinsic relationships of the raw sensor readings are explored
to estimate the transformation matrix as a homogeneous linear
least squares problem. Singular value decomposition is then
applied to estimate both the transformation matrix and magnetic
vector. The proposed method is then applied to calibrate our
sensor node. Although there is no ground-truth for the combined
bias and transformation matrix for our node, the consistency
of calibration results among different trials and less than 3

◦

root mean square error (RMSE) for orientation estimation have
been achieved, which illustrates the effectiveness of the proposed
sensor calibration method for practical applications.

Index Terms—Magnetometer, Calibration, System Identifica-
tion, Ellipsoid fitting, Homogeneous linear least-squares

I. INTRODUCTION

In conjunction with inertial sensors, micro-magnetometers

have been widely used to determine attitude information,

which can be applied for a variety of applications, from

delivering realistic animation in filming and entertainment to

assessing the performance of professional athletes [1] [2].

Clinically, it can also be used to analyse the biomechanics

of patients. The analysis provides an objective measure of

physical function to aid interventional planning, evaluate the

outcomes of surgical procedures, which are exceptionally
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beneficial for many biomedical applications, such as rehabil-

itation [3] [4], fall detection [5] [6] and gait analysis [7] [8].

Thus far, extensive research has been performed in order to

accurately estimate attitude information from micro inertial

and magnetic sensor measurements [9] [10]. In practice, the

achievable accuracy of attitude estimation is highly depen-

dent on the quality of the sensor measurements. Therefore,

appropriate sensor calibration, as the important prerequisite

step for attitude estimation, must be performed in advance to

compensate for errors in sensor readings.

Recently, many magnetometer calibration methods have

been proposed to compensate for sensor errors (such as scale

factor, offset, nonorthogonality) and magnetic errors (soft and

hard iron) [11] [12]. For instance, Gambhir [13] proposed

to use centering approximation to formulate the bias cali-

bration problem in the linear least-squares form. Alonso et

al. [14] [15] further improved Gambhir’s approach in terms

of robustness and efficiency. These two methods are easy to

implement in practice, but they only consider the bias error

with all the other error sources ignored. In recent papers,

more advanced magnetometer calibration algorithms have

been proposed. They not only consider the bias error but also

tackle sensitivity, nonorthogonality and magnetic errors in the

sensor space. For example, both Elkaim et al. [16] and Gebre-

Egziabher et al. [17] have formulated the calibration problem

in a pseudo-linear least-squares form. Batch linearized least-

squares algorithms were derived to obtain the calibration

parameters including non-orthogonality, magnetic, sensitivity

and bias. Renaudin et al. [18] proposed a complete model

to compensate for sensor and magnetic errors. An adaptive

least-squares estimator, which provided a consistent solution

to the ellipsoid fitting problem has been derived. Based on the

similar sensor error model, Vasconcelos et al. [19] proposed

an iterative Maximum Likelihood Estimator (MLE) which

allowed for the formulation of the calibration problem as

an optimization process in terms of the likelihood of sensor

readings. Such method, however, is influenced by the initial

approximation, which may make the MLE converge to a

local maximum. To overcome this drawback, Wu et al. [20]

proposed to use a particle swarm optimization (PSO) strategy

combined with a stretching technique, which could help to

eliminate the local maxima. Springmann et al. [21] and Pang

et al [22] presented similar work for magnetometer calibration.

However, all the aforementioned calibration methods only

considered the magnetometer calibration in its sensor frame.

In order to integrate the magnetometer with inertial sensor

for attitude estimation, the alignment difference between the

magnetometer and the inertial sensor axes should also be
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considered during the calibration process.

In fact, there are also several studies estimating the align-

ment difference by simultaneous calibration of inertial and

magnetic sensors. For instance, Bonnet et al. [11] proposed

to estimate the difference by finding three vectors in magne-

tometer sensor frame and their corresponding vectors in the

reference inertial frame, but it is difficult to find such vectors

in practice. Kow et al [12] derived an easy-to-use calibration

algorithm that could be used to calibrate a combination

of a magnetometer and inertial sensors. They made use of

probabilistic models and obtained the calibration algorithm

as the solution to a maximum likelihood problem. In [23],

they further extended this work and proposed to use grey-box

system identification approach to simplify the computation of

the maximum likelihood estimates. The method can be used

to estimate the alignment difference between the axes of the

magnetometer and the inertial sensor, albeit being complex to

implement in practice. In our previous study [24], similar work

has been conducted but we ignored such alignment difference

in our calibration process.

The motivation of the paper is to further extend our previous

paper in [24] and tackle the sensor errors, magnetic errors

and also the alignment difference between the axes of the

magnetometer and the inertial sensor. With the proposed

approach, we take the summation of the offset and hard iron

error as the combined bias, and then amalgamate the alignment

difference and all the other errors as a transformation matrix.

A two-step approach is adopted to determine the combined

bias and transformation matrix separately. In the first step,

the combined bias is determined by finding the optimal ellip-

soid that can best fit the sensor readings. Subsequently, the

intrinsic relationships of the sensor readings are explored to

determine the transformation matrix by using a homogeneous

linear least-squares method. Singular value decomposition is

used to estimate both the transformation matrix and magnetic

vector. The rest of the paper is organized as follows. Section

II presents the proposed approach for micro magnetometers

calibration, including the sensor error model, combined bias

estimation and transformation matrix determination. Detailed

simulation and experimental results are described in Section

III and the conclusion derived from the studies is presented in

Section IV.

II. OUR METHOD

A. Sensor error model

For the description of micro-magnetometers, all sensor read-

ings should be first converted to physical quantities in metric

units. To this end, there are mainly three types of errors that

need to be distinguished: sensor errors, magnetic errors and

alignment difference between the axes of the magnetometer

and the inertial sensor.

1) Sensor errors: A triaxial sensor has three sensitivity axes

x, y and z, spanning a three dimensional space. Ideally, the

sensor sensitivity axes should be orthogonal to each other, but

due to inevitable imperfection during the fabrication process,

this is not guaranteed. Therefore, orthogonalization of the axes

is necessary. Denote T as the Gram-Schmidt orthogonalization

matrix, so T can be written as:

T =





1 0 0
α 1 0
β γ 1



 . (1)

The offset of the sensor readings is modelled as a constant bias

vector b = [bx, by, bz]
T . The raw senor reading is directly

proportional to the voltage level, which should be converted

to physical quantities through a scale factor matrix S as

S =





sx 0 0
0 sy 0
0 0 sz



 (2)

2) Magnetic errors: In practice, the external magnetic field

can introduce both hard iron and soft iron errors. The hard

iron effect is due to remanence of magnetized iron materials,

which is constant and can be represented by a bias vector

bhi = [bxhi, b
y
hi, b

z
hi]

T . Soft iron errors are generated by the

interaction of the external magnetic field with the ferromag-

netic materials in the vicinity of the sensor. This changes the

intensity, as well as the direction of the sensed magnetic field.

The soft iron effect is usually modelled by a 3×3 matrix

Asi =





a11si a12si a13si
a21si a22si a23si
a31si a32si a33si



 . (3)

3) Alignment difference: For orientation estimation, the

magnetometer is usually mounted together with the inertial

sensors. The geometrical relationship of the axes of different

sensors’ orthogonal sensitivity is important, especially with re-

spect to the overall system accuracy. In practice, the orthogonal

sensitivity axes are aligned to the inertial coordinate through

a rotation matrix R as:

R = Rz(ψ)Ry(θ)Rx(φ) (4)

where

Rx(φ) =





1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)



 , (5)

Ry(θ) =





cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)



 (6)

and

Rz(ψ) =





cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1



 . (7)

4) Error Parameterization: After combing the sensor er-

rors, magnetic errors and alignment difference, the three-axis

magnetometer measurement can be represented by using the

following error model [12] [18]:

u = RTSAsi(g − b− bhi), (8)

where u is the measured physical quantities in metric unit in

the inertial coordinate, and the g is sensor voltage readings in

the non-orthogonal magnetometer coordinate frame.
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The purpose of sensor calibration is to estimate the value

of the parameter vector

ζ=
[

α, β, γ, φ, ψ, θ, sx, sy, sz, bx, by, bz, b
x
hi, b

y
hi, b

z
hi, a

11
si ,· · ·,a33si

]T

given J sensor raw readings gj , where j = 1, 2, · · · , J and

the magnitude of the local magnetic field M . The estimation

of ζ can be written as:

ζ̂ = argmin
ζ

{L(ζ)} (9)

subject to

|uj | =M (10)

where

L(ζ) =
J
∑

j=1

∥

∥

∥
uj −RTSAsi(gj − b− bhi)

∥

∥

∥

2

(11)

uj is the measured physical quantity for the sensor reading gj ,

|·| and ‖ · ‖ are the magnitude and Frobenius norm operators,

respectively. Here, j is the index of different orientation or

rotation that the sensor node is set to. In (10), we implicitly

assume that all the magnetic distortion and local magnetic

field are constant. This is a reasonable assumption as long

as the sensor node is placed at the same position in different

orientations during the calibration process.

In practice, it is difficult to find a globally optimized solution

for ζ due to the difficulty of acquiring uj . Since the main

purpose of the sensor calibration is to find an accurate u

for any sensor reading g, there is no need to estimate the

24 parameters individually. Therefore, we propose a two-

step parameter estimation scheme to simplify the optimization

process, i.e., 1) estimate the combined bias B = b + bhi
2) estimate the transformation matrix H = RTSAsi. The

advantage of combining the different parameters together is

not only to reduce the unknown parameters from 24 to 12,

but also to take the other unmodelled linear time invariant

errors and distortions into account.

B. Combined bias estimation

After defining the combined bias B and the transformation

matrix H , the new sensor error model can be written as

u = H(g −B). (12)

For any sensor reading gj , we can have

|H · (gj −B)| =M. (13)

By expanding the above equation, we can get:

(gj −B)
T · (H)

T ·H · (gj −B) =M2. (14)

Thus we can normalize the above equation as:

(gj −B)
T ·

(

H

M

)T

· H
M

· (gj −B) = 1. (15)

Expanding this equation we obtain

(gj)
T · Σ · gj − (gj)

T · Γ + Υ = 0 (16)

where

Σ =

(

H

M

)T
H

M

Γ = 2Σ ·B
Υ = (B)

T · Σ ·B − 1

(17)

This equation is the algebraic equation of an ellipsoid [19]

[24], and the calibration problem now becomes finding an ar-

bitrarily oriented ellipsoid which fits the J points g1, g2 · · · gJ
best. There is abundant literature addressing this problem [25]

[26] [27]. For this study, the least squares ellipsoid fitting

method proposed in [27] is used, and the value of Σ, Γ and Υ
can be then obtained. Denote the estimates for Σ and Γ as Σ̂,

Γ̂, we can then have the following properties for H and B:

(H)
T ·H =M2Σ̂

B =
1

2

(

Σ̂
)

−1

Γ̂.
(18)

Since Σ̂ is a positive definite matrix, an eigen-decomposition

can be applied:

Σ̂ = ΛDΛT (19)

where Λ corresponds to the eigenvectors of Σ̂, and D is the

diagonal matrix containing the eigenvalues, so we can define

another matrix K as

K =MΛ
√
DΛT (20)

satisfying

KTK =MΛ
√
DΛTMS

√
DΛT

=M2ΛDΛT

=M2Σ̂.

(21)

However, given any rotational matrix Ω, we can also have

(ΩK)
T
ΩK =MS

√
DΛTΩTΩMΛ

√
DΛT

=M2ΛDΛT

=M2Σ̂.

(22)

Therefore, the factorization (H)
T
H = M2Σ̂ is not unique,

and H can be any matrix in the form of ΩK, so it is

impossible to acquire the exact transformation matrix H

through the ellipsoid fitting, while the combined bias B can

be estimated accurately. In the next section, we will discuss

how to determine the transformation matrix by exploring the

intrinsic relationships among the sensor readings.

C. Estimation of transformation matrix

In the previous section, any two sensor readings gi and

gj(i = 1, 2 · · · J and i 6= j) are used independently. However,

both indexes i and j indicate the orientations or rotations that

the sensor node is set to; therefore, we can also get the rotation

difference Ri
j between the ith orientation and jth orientation.

Therefore, we have:

ui = H · (gi −B) (23)

and

uj = H · (gj −B) (24)
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where uj = Ri
jui. Then uj − ui can be written as

uj − ui =
(

Ri
j − I3

)

ui = H(gj − gi) (25)

where I3 is the 3× 3 identity matrix. The above equation can

then be expanded as:










(

Ri
j − I3

)

uxi − (gj − gi)H
T
1 = 0

(

Ri
j − I3

)

u
y
i − (gj − gi)H

T
2 = 0

(

Ri
j − I3

)

uzi − (gj − gi)H
T
3 = 0

(26)

where

H =





H1

H2

H3





and ui = [uxi , u
y
i , u

z
i ]. Define

Ai
j =

[

Ri
j − I3, ∆i

j

]T
(27)

and

X =
[

uTi H1 H2 H3

]T
(28)

we can have the matrix representation for (26):

Ai
jX = 0 (29)

where

∆i
j =





−(gj − gi)
T 0 0

0 −(gj − gi)
T 0

0 0 −(gj − gi)
T



 .

However, it is necessary to have at least 12 equations to find

the non-zero solution for X . Since any pair of gi and gj leads

to three equations as shown in (26), at least 5 sensor readings

are required. Given J >> 5 in the calibration process, we can

define

A =





















Ai
1

...

Ai
i−1

Ai
i+1

...

Ai
J





















and we can then derive the following homogeneous linear

least-squares problem:

AX = 0 subject to X 6= 0. (30)

The vector X can be recovered from the singularity value

decomposition (SVD) related techniques [28] [29]. The SVD

of the matrix A is calculated as:

A = UΣV T (31)

where the columns of U contain the eigenvectors of AAT ,

the columns of V contain the eigenvectors of ATA, and the

diagonal of Σ indicates the singular values of A. The last

column of matrix V corresponding to the smallest singular

value of A, is taken as the non-zero solution of the vector

X . However, if the last column vector vX is the solution for

AX = 0, then κvX , where κ is a arbitrary scale, will also be

a solution; therefore, the next step is to determine the value of

κ. According to the definition of vector X in (28), the vector

κvX can be easily reshaped into the magnetic vector κvuX and

the transformation matrix κvHX . Since the magnitude of the

local magnetic field is M , we can then have

κ2‖vuX‖ =M2 (32)

so κ can be calculated as:

κ = ±
√

M2

‖vuX‖ . (33)

Since the sign of κ will not affect the performance of a

magnetometer for orientation estimation in practice, we always

chose the positive κ in our implementation.

III. SIMULATION AND EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed magne-

tometer calibration method, detailed simulation and laboratory

experiments were conducted. The simulation study was based

on Monte Carlo simulation to illustrate the performance of

the proposed calibration method. For the experimental results

presented in this paper, we used the Body Sensor Network

(BSN) platform [30] [31] developed by our lab, which consists

of three stackable daughter boards: the sensor board, the main

processor board, and the battery board. They are connected

via a stackable connector design as shown in Fig. 1(a). Each

BSN node is equipped with an Analog Devices ADXL330

(8 bits ADC used) [32] for 3D acceleration measurement,

an InvenSense ITG-3200 digital gyroscope (12 bits ADC

used) [33] for 3D angular velocity measurement, and a Honey-

well HMC5843 (12 bits ADC used) [34] for 3D magnetic field

measurement. In order to calibrate the BSN node, a bespoke

housing for the BSN node is designed as shown in Fig. 1(b).

Figure 1. The BSN hardware platform used for this study. (a) BSN Sensor
Node and its stackable sensor daughter boards. (b) The bespoke housing for
the BSN Sensor Node.

Table I
MODEL PARAMETERS USED FOR MAGNETOMETER CALIBRATION

Nonorthogonality α = 0.1 β = 0.1 γ = 0.1

Mounting φ = 0.1 θ = 0.1 ψ = 0.1

Scaling (mg) sx = 1/1.2 sy = 1/1.383 sz = 1/1.12

Bias bx = 32000 by = 32000 bz = 32000

Hard Iron bx
hi

= 268 by
hi

= −123 bz
hi

= −109

Soft Iron

a11si = 1 a12si = 0.1 a13si = 0.1

a21si = 0.1 a22si = 1 a32si = 0.1

a31si = 0.1 a32si = 0.1 a33si = 1
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(a) Combined bias

(b) Transformation Matrix

(c) Magnetic vector

Figure 2. Statistical results for combined bias B, transformation matrix H
and magnetic vector ui over the 1000 simulations, demonstrating the small
estimation errors involved.

A. Sensor Calibration Simulation Results

In the simulation experiment, we evaluated the estimation

results of the magnetometer sensor model parameters when

we randomly position the sensor in 30 different orientations.

A zero mean Gaussian distributed error with variance 0.1 mg

was added to the voltage readings y to simulate sensor noise.

In Table I, the settings used in the simulation are summarized.

The simulation was repeated for 1000 times, and statistical

results for B and H are given in Fig 2. As we can see

from Fig 2(a), over 92% of the estimated combined bias

has smaller error than 0.005%. It can also be noted that the

maximum estimation error for the combined bias is 0.012%,

which is small and imperceptible. Fig 2(b) shows the error

histogram for the nine elements of the transformation matrix.

It is evident that the majority of the estimated errors are

located between 0 and 0.15%. Although the transformation

matrix estimation error has a slight increase over that of the

combined bias estimation, it is still very small and negligible.

The SVD described in section II.C can not only estimate the

transformation matrix, but also provide the reference magnetic

vector, which is given in the Fig. 2(c). Similarly, the errors

of the estimated magnetic vector are also small (0.05%). In

conclusion, the above analysis has shown that the proposed

ellipsoid fitting method can estimate the combined bias values

accurately. By exploring the relationships among raw sensor

readings, it is also possible to determine the transformation

matrix without the need of extra devices to measure the

magnetic information in advance.

B. Calibration Results

We then applied the proposed magnetometer calibration

method to our BSN node. The sensor node was rotated to

different orientations to evaluate the reproducibility of the

proposed method. To make sure the magnetic distortion and

local magnetic field are constant for different orientations,

the sensor node was kept in a small area with ignorable

translational movement when rotating the sensor node. Nine

data sets have been acquired with a sampling frequency of

33 Hz. In each data set, the sensor node was randomly placed

at 20-30 different orientations, and at least 5s of data were

collected for each orientation. Instead of using all the raw

sensor readings for each orientation, only the mean value of

these readings was used to increase the signal-to-noise ratio

(SNR) for sensor model parameter determination. Since the

proposed method involves many matrix operations, all the data

was sent back to a PC with 3.40 GHz Intel Core i5 processor

and 8G RAM for processing. Once the transformation matrix

H and combined bias B are determined, we can then set the

values of H and B permanently for each BSN node.

The combined bias and the transformation matrix estimation

results obtained from these nine independent data sets are

shown in Fig. 3(a) and Fig. 3(b). As we can see from the

figures, both the combined bias and transformation matrix

estimation results are similar for all the trials performed,

and the deviations are small compared to the mean values.

The consistency among all the nine trials indicates the good

repeatability of the proposed method. It is also worth nothing

that although there is no ground-truth for the combined bias

and transformation matrix, the consistency of the data illus-

trates the robustness of our proposed method.

The main purpose of the magnetometer calibration is to

accurately convert the raw sensor readings into physical quan-

tities in metric unit, we therefore randomly chose 20 raw
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(a) Combined bias

(b) Transformation Matrix

Figure 3. The calibration results for the BSN sensor node. During the
experiments, the same calibration method was repeated 9 times on the same
sensor node. Although there is no ground-truth for the combined bias and
transformation matrix, the estimation results have shown good consistency,
which illustrates the robustness of our proposed method.

sensor readings and then converted them into meaningful

quantities in gauss in our second experiment. Fig. 4(a) shows

the converted sensor measurements using the 9 sets of the

estimated combined bias and the transformation matrix. It is

evident that for any sensor readings, all the nine conversions

are close to each other, which again illustrates the effective-

ness and robustness of the proposed calibration method. The

quantitative results for these conversions are provided in the

Fig. 4(b). In the figure, the mean and the standard deviation

of the 9 conversions for each raw sensor reading are provided.

The maximum standard deviation is less than 0.01, resulting

the variance smaller than 0.0001 [35]. However, for orientation

estimation, the variance for the magnetometer measurement

is normally set to be larger than 0.01. This means that the

small variations of the different conversions can be taken as

the measurement noise, which can be well modeled by the

measurement covariance matrix in the orientation estimation

applications.

(a) The converted sensor measurements in gauss

(b) Mean and standard deviation

Figure 4. The conversion of the 20 randomly chosen raw sensor readings
into the metric unit (gauss) using the 9 sets of estimated combined bias and
transformation matrix. Small deviations were achieved for all the data points
using the 9 sets of the conversion parameters.

Figure 5. The orientation estimation results in quaternion compared to the
BTS measurements after the magnetometer calibration.
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Table II
THE RMS, MEAN, SD AND CORRELATION COEFFICIENTS OF THE

ESTIMATED ATTITUDE COMPARED TO THE BTS OPTICAL SYSTEM.

H+B Calibration B Calibration only

RMS (unit: rad) Correlation RMS (unit: rad) Correlation
(Mean,SD) Coefficient (Mean,SD) Coefficient

Roll
0.0397

0.9970
0.0548

0.9763
(0.0014± 0.0397) (-0.0252±0.0487)

Pitch
0.0698

0.9930
0.0854

0.9720
(-0.0431±0.0549) (-0.0171±0.0836)

Yaw
0.0507

0.9981
0.0744

0.9873
(0.0060±0.0503) (0.0095±0.0738)

C. Attitude estimation using calibrated sensors

As mentioned earlier, the magnetometer and the inertial

sensors are widely used for attitude estimation in biomed-

ical applications. Since the magnetometer is calibrated and

aligned to the inertial sensor axes, we then used these three

sensors together for biomotion analysis. In our experiment,

the sensor node was placed on a human forearm to track

its movement. The subject then rotated the arm arbitrarily

and smoothly to make sure there is no linear acceleration

interference or magnetic disturbance. We then used algorithm

presented in [36] to determine the orientation of the arm. Fig. 5

shows the estimated orientation using the proposed method,

and the ground-truth measurements from the optical motion

tracking system BTS SMART-D [37] are also shown in the

figure. It is evident that there is significant improvement after

taking the transformation matrix into consideration. Since the

gyroscope integration drift cannot be compensated if only the

combined bias was considered; therefore, there were some

errors in the estimated attitude if the transformation matrix

was ignored. The quantitative comparison results between the

BTS system and BSN sensor platform are shown in Table II.

From the results derived, it is evident that the proposed method

significantly reduces the root mean square (RMS) errors. There

is also an excellent correlation between the calibrated result

with that of the BTS system.

The above analyses have shown that the proposed mag-

netometer calibration method can significantly improve the

attitude estimation accuracy for bio-motion analysis applica-

tions. This suggests that the calibration method can recover the

underlying sensor model parameters accurately. Based on the

derived sensor model, the sensor readings can be converted

to physical quantities in metric units for accurate attitude

estimation.

IV. CONCLUSIONS

In this paper, a two-step approach has been presented

to tackle all the parameters involved in the sensor errors,

magnetic errors and also the alignment difference between the

magnetometer and the inertial sensor axes. The summation

of the offset and hard iron error was taken as a combined

bias, while all the other errors were combined together as the

transformation matrix. In our method, the combined bias was

determined by elliptical fitting. The relationship of the raw

sensor readings was then explored to extract the transformation

matrix. Singular value decomposition was then applied to esti-

mate both the transformation matrix and the magnetic vector.

Detailed validation results demonstrate the effectiveness of the

proposed sensor calibration method.

It should be noted that for the current method, it does not

take temperature related drift into consideration. Although this

can be addressed by periodic recalibration, it may present

difficulties for practical applications. Further work is therefore

required for continuous self-calibration with consideration of

different temporal characteristics of the sensors combined with

the use of temperature controlled casing designs to minimise

these errors.
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