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Abstract

This paper is concerned with the Bayesian estimation of a Multivariate Probit

model. In particular, this paper provides a method to sample the restricted variance-

covariance matrix directly from its conditional posterior density. The method allows

the application of a standard Gibbs sampling algorithm to sample from the posterior

density of the parameters, and hence it avoids the use of a Metropolis step. The method

uses a decomposition of the Inverted Wishart density and alternative identification

restrictions.

∗This paper was circulated before as part of the discussion paper 09/02 of the Department of Economics

at the University of York
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1 Introduction

A common feature in qualitative-dependent variable models is that the scale of the

latent variable is not identified. As a normalization, restrictions are usually placed

upon the variance parameters. In the context of the Bayesian multinomial probit,

just one of the elements in the variance-covariance matrix is restricted to be one,

and several algorithms to sample the variance-covariance matrix directly are available

(Cowles 1996, McCulloch et al. 2000 and Nobile 2000).

In the multivariate probit model, a larger number of normalization restrictions are

necessary in order to make the model identifiable. In a Bayesian context, Chib and

Greenberg (1998) propose to restrict the diagonal elements of the variance-covariance

matrix (Σ) to be equal to one. However, there is not any method to obtain a draw

from the posterior conditional density of Σ subject to such restriction. In order to

overcome this difficulty, Chib and Greenberg (1998) use a Metropolis step (Metropolis

et al. 1953). However, a Metropolis step requires a proposal density that is a

good approximation of the posterior density. For this reason, Chib and Greenberg

(1998) proposed to incorporate a maximization algorithm within the MCMC algorithm

in order to calculate the mode and hessian of the conditional posterior density of

Σ. However, even with this additional computational and programming burden, a

Metropolis step will probably not work well when the number of variables is large.

Lui (2001) proposes an algorithm to sample Σ directly from its conditional posterior.

However, the algorithm relies on the specification of an improper prior for the

covariance matrix and restricts each equation to contain the same set of regressors.

Unfortunately, there are no results that ensure that the posterior density would exist

if an improper prior is specified, and hence the specification of a proper prior seems to

be necessary. In addition, proper priors are often required for Bayes factors to be well

defined, specially when testing hypothesis about model specific parameters.

This paper proposes a simple method to sample Σ directly from its conditional

posterior density, using a proper prior. The method relies on an alternative

normalization and on a decomposition of the inverted Wishart density. Despite of

the use of an alternative normalization, the method can also yield results according to
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the normalization used by Chib and Greenberg (1998).

The plan of the paper is as follows. Section 2 describes the notation for the model,

and for simplicity in the exposition concentrates on the bivariate probit model (i.e.

two equations). Section 3 looks at the more general case. Section 4 describes how the

algorithm can be adapted when the normalization of Chib and Greenberg (1998) is

used. Section 5 summarizes the paper.

2 Sampling the Variance-Covariance Matrix in

the Bivariate Probit Model

Let Yi be a (T × 1) vector of zeros and ones. In the multivariate probit model,

each component yit of Yi is determined by a continuous unobserved latent variable

y∗it generated according to the following process,

y∗it = Xitβt + eit i = 1, ..., N t = 1, ..., T (1)

the vector ei = (ei1, ..., eiT )T is normally distributed with zero mean and covariance

matrix Σ = (σjk). The binary variable yit is equal to one if and only if y∗it ≥ 0, and

is equal to zero otherwise. Xit is a 1 × kt vector of regressors and βt is a vector of

parameters.

2.1 Identification in the Bivariate Probit Model

The likelihood contribution of an observation (0, 1) is,

Pr {yi1 = 0, yi2 = 1} = Pr











Xi1β1 + ei1 ≤ 0

Xi2β2 + ei2 > 0











(2)

Let ∆ = (δjk) be the lower triangular Cholesky decomposition of Σ, so that

Σ = ∆∆T .

∆ =







√
σ11 0

σ12/
√

σ11

√

σ22 − (σ12)
2 /σ11






(3)

Then the vector ei can be seen as a transformation of a random vector εi that contains

independent standard normal variables. That is, ei = ∆εi, where εi follows a N(0, I).

3



The probability in (2) can be rewritten as,

Pr {yi1 = 0, yi2 = 1} = Pr











Xi1β1 +
√

σ11εi1 ≤ 0,

Xi2β2 + σ12√
σ11

εi1 +
√

σ22 − (σ12)
2 /σ11εi2 > 0











(4)

From expression (4), different values for (β,Σ) give the same value for the

probability. In particular, for two arbitrary positive constants (c, d), the value of

the parameters {c (β1, δ11) , d (β2, δ21, δ22)} give the same value for the probability as

{β1, δ11, β2, δ21, δ22}. Hence, the model is not identified.

The most common normalization in the literature is to fix σ11 = σ22 = 1

(e.g. Chib and Greenberg 1998). However, the following section shows that it

is more convenient from the point of view of computational tractability to choose

σ11 = σ22 − (σ12)
2 /σ11 = 1. From expression (4), both normalizations make the model

identified without imposing any unnecessary restrictions upon the parameters.

2.2 The Sampling Method

In the Bayesian approach, model specification is completed by providing a prior

distribution for the parameters. Let the prior for Σ be an Inverted Wishart

IW2 (df0,K0) distribution conditional to the restriction that σ11 = σ22 − (σ12)
2 /σ11 =

1. That is, given a matrix Σ that satisfies the restriction, the kernel of the prior is:

|Σ|−df0/2 exp
(

−1/2tr
(

Σ−1K0

))

(5)

The expected value of the unrestricted prior is 1
df0−2T−2K0, where T is the dimension

of Σ. The definition of inverted Wishart distribution used here is the one described in

Press (1986, pp. 117).

The conditional posterior of Σ given parameters β and latent data {y∗it : t =

1, ... , T}T
i=1 is an inverted Wishart IW2 (df, K) with the restriction that σ11 =

σ22 − (σ12)
2 /σ11 = 1. The parameters of this inverted Wishart are df = df0 + N

and K = K0 +
∑N

i=1 eie
T
i .

The following Theorem is useful to sample Σ conditional on the normalisation

δ11 = δ22 = 1. Cowles et al (1996) sample from an Inverted Wishart distribution with
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the restriction that one element in the diagonal is equal to one. They made use of the

following theorem, which can be found in Bauwens et al. (1999, pages 305-306).

Theorem 1 Let Σ be distributed as an IWd (n, G), and be partitioned as Σ = (Σij) ,

i,j=1,2, where Σ11 is a q × q matrix. Define Σ22·1 = Σ22 − Σ21Σ
−1
11 Σ12, then

1) Σ22·1|Σ11 ∼ IWd−q (n − q, G22·1)

2) Σ12| (Σ22·1,Σ11) ∼ MN
(

Σ11 (G11)
−1 G12,Σ11 (G11)

−1 Σ22·1Σ
T
11

)

where MN refers to a matrix normal distribution.

Theorem 1 states that the conditional posterior of σ12 given β and all latent data

y∗it is a normal distribution and hence it can be sampled directly.

3 Dimension larger than 2

The proposed normalization in the bivariate probit is to set the variance of ei1 (σ11)

and the conditional variance of ei2 given ei1

(

σ22 − (σ12)
2 /σe11

)

both equal to one. Or

in other words, to fix the elements in the diagonal of the cholesky decomposition equal

to one. Similarly, in the case of T ≥ 2 the proposed normalization is

V ar (ei1) = V ar (ei2|ei1) = V ar (ei3|ei2, ei1) = ... = V ar
(

eiT |ei(T−1), ..., ei1

)

= 1 (6)

This normalization can also be shown to be the same as fixing the elements in the

diagonal of the Cholesky decomposition equal to one. The following lemma gives an

statistical interpretation to each of the elements of the Cholesky decomposition.

Lemma 1 If ei follows a N (0,Σ), and ∆ is the lower triangular cholesky

decomposition, then

∆ =

































√
σ11 0 0 0 0

σ12√
σ11

√
σ22·1 0 0 0

σ13√
σ11

σ23·1√
σ22·1

√
σ33·12 0 0

σ14√
σ11

σ24·1√
σ22·1

σ34·12√
σ33·12

√
σ44·123 0

...

σ1T√
σ11

σ2T ·1√
σ22·1

σ3T ·12√
σ33·12

σ4T ·123√
σ44·123

...
√

σTT ·123...(T−1)

































where σtt·vwz = V ar (eit|eiv, eiw, eiz) and σth·vwz = Cov (eit, eih|eiv, eiw, eiz).
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Proof. If εi follows a N (0, I), then the linear combination ∆εi also follows a

normal N (0,Σ). Hence, ei can be expressed as ei = ∆εi, that is:

ei1 = δ11εi1

ei2 = δ21εi1 + δ22εi2

ei3 = δ31εi1 + δ32εi2 + δ33εi3

ei4 = δ41εi1 + δ42εi2 + δ43εi3 + δ44εi4

...

eiT = δT1εi1 + δT2εi2 + δT3εi3 + δT4εi4 + ... + δTT εiT

(7)

Using these equations, Σ can be related to ∆:

V ar (ei1) = σ11 = V ar (δ11εi1) = (δ11)
2

Cov (ei1, ei2) = σ12 = Cov (δ11εi1, δ21εi1 + δ22εi2) = δ11δ21

V ar (ei2|ei1) = σ22·1 = V ar (δ21εi1 + δ22εi2|δ11εi1) = (δ22)
2

Cov (ei3, ei1) = δ31δ11,Cov (ei3, ei2|ei1) = δ32δ22,V ar (ei3|ei1, ei2) = (δ33)
2

Cov (ei4, ei1) = δ41δ11,Cov (ei4, ei2|ei1) = δ42δ22,

Cov (ei4, ei3|ei1, ei2) = δ43δ33,V ar (ei4|ei1, ei2, ei3) = (δ44)
2

Cov (eiT |ei1) = δT1δ11,Cov (eiT , ei2|ei1) = δT2δ22,

Cov (eiT , ei3|ei1, ei2) = δT3δ33, ...,V ar
(

eiT |ei1, ei2, ei3, ..., ei(T−1)

)

= (δTT )2

Hence, restriction (6) is equivalent to fixing the diagonal elements of the Cholesky

decomposition equal to one. In addition, from (7) this restriction identifies the model,

not imposing any unnecessary restrictions upon the parameters.

Let the prior for the elements out of the diagonal of Σ have a kernel equal to

expression (5). The elements in the diagonal are fixed by normalisation (6), which

ensures that Σ is positive definite. Note that since normalization (6) ensures that Σ

is positive definite, the non-diagonal elements of Σ are not subject to any restrictions.

From the Appendix, the prior variance of the free elements in Σ can be made arbitrarily

large by choosing small values in the diagonal of K0.

Let Σjj be the sub-matrix of Σ containing the first j rows and the first j columns of

Σ and Kjj the corresponding sub-matrix of K. Let Σj be the vertical vector containing
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the first (j − 1) rows in the jth column and let Kj be the corresponding sub-matrix of

K. Following Theorem 1, if Σ follows an unrestricted IWT (df, K), then

• ΣT conditional on Σ(T−1)(T−1) and σTT ·12...(T−1) follows a normal distribution

• σTT ·12...(T−1) is independent of Σ(T−1)(T−1) and follows an inverted Wishart

distribution.

• Σ(T−1)(T−1) follows an inverted Wishart distribution.

The third property holds because the marginal distribution of sub-matrices centered

in the diagonal is also an inverted Wishart distribution (Press 1986, pp. 118-119). Since

σTT ·12...(T−1) is independent of Σ(T−1)(T−1), conditioning on σTT ·12...(T−1) = 1 does not

change the marginal distribution of Σ(T−1)(T−1).

Consider now that Σ follows an IWT (df,K) with the restriction that σ11 =

σ22·1 = ... = σTT ·12...(T−1) = 1. By applying the above argument recursively, the

marginal distribution of Σ2 given the restriction is a normal distribution. In addition,

the distribution of Σn conditional on Σ(n−1)(n−1) and σnn·12...(n−1) is also a normal

distribution, for 2 ≤ n ≤ T . The appendix gives full detail of the distributions involved

in this decomposition of the inverted Wishart density.

The following algorithm describes how Σ can be sampled from its conditional

posterior distribution:

Algorithm 1 Step 0: Fix

σ11 = σ22·1 = σ33·12 = ... = σTT ·12...(T−1) = 1

Step 1: Sample σ12 conditional on σ11 and σ22·1 from a

N
(

σ11K
−1
11 K2, (σ11)

2 K−1
11 σ22·1

)

Step 2: Fix σ22 = σ22·1 + (σ12)
2 σ−1

11

Step 3: Sample Σ3 conditional on Σ22 and σ33·12 from a

N
(

Σ22K
−1
22 K3, σ33·12Σ22K

−1
22 Σ22

)

Step 4: Fix σ33 = σ33·12+ ΣT
3 Σ−1

22 Σ3.
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Step 2(n–1)-1: Sample Σn conditional on Σ(n−1)(n−1) and σnn·12...(n−1) from a

N
(

Σ(n−1)(n−1)K
−1
(n−1)(n−1)Kn, σnn·12...(n−1)Σ(n−1)(n−1)K

−1
(n−1)(n−1)Σ(n−1)(n−1)

)

Step 2(n-1): Fix σnn = σTT ·12...(T−1)+ ΣT
nΣ−1

(n−1)(n−1)Σn.

4 An alternative normalization.

This section describes how to transform the estimated values for (β,Σ) if another

normalization is chosen. In particular, instead of normalization (6), one might be

interested in choosing the more widely used normalization:

σ11 = σ22 = ... = σTT = 1 (8)

A sample from the posterior of (β,Σ) given normalization (8) can be obtained by

simply transforming the values sampled using Algorithm 1. Let C1 be the diagonal

matrix of dimension T with diagonal equal to (1/
√

σ11, 1/
√

σ22·1, 1/
√

σ33·12 , ...,

1/
√

σTT ·12...(T−1)) and let C2 be the diagonal matrix of dimension T with diagonal

equal to (1/
√

σ11, 1/
√

σ22, 1/
√

σ33 , ..., 1/
√

σTT ). The parameters that are identified

with normalization (6) are

(

1/
√

σ11β1, ..., 1/
√

σTT ·12...(T−1)βT , C1ΣC1

)

(9)

When normalization (8) is used, the identified parameters are

(1/
√

σ11β1, ..., 1/
√

σTT βT , C2ΣC2) (10)

Let
(

βk,Σk
)

1
be the kth value in the chain when normalization (6) is used. And let

(

βk,Σk
)

2
be the kth value in a chain in which normalization (8) is chosen. To obtain

a sample from the posterior when normalization (8) is used, transform
(

βk,Σk
)

1
in

the following way:

• Construct Ck
2 as the diagonal matrix with diagonal equal to

(

1/
√

σk
11, 1/

√

σk
22, 1/

√

σk
33, ..., 1/

√

σk
TT

)

• Fix
(

βk, Σk
)

2
=

(

1/
√

σk
11β1, ..., 1/

√

σk
TT βT , , Ck

2 ΣkCk
2

)
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5 Conclusion

This paper has described a simple method (Algorithm 1) to sample Σ directly from its

posterior conditional density. This method makes it possible to use a standard Gibbs

Sampling algorithm (e.g. Gelfand and Smith 1990 ) and hence avoids the use of a

Metropolis step.
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Appendix: Decomposition of an inverted

Wishart

Let fN (x;µ,Φ) denote the density function of a N (µ,Φ), evaluated at x. And let

fIW (x; p, df, K) denote the density function of an inverted Wishart of dimension p,

degrees of freedom df , and expected value K 1
df−2p−2 .

Proposition 1 If Σ follows an unrestricted inverted Wishart IWT (df, K), then the

density function of
(

σ11, σ22·1, σ12, σ33·12,Σ3, ..., σTT ·12...(T−1),ΣT

)

can be expressed as:

fIW (σ11; 1, df − 2T + 2, k11) ×

fIW (σ22·1; 1, df − 2T + 3, k22·1) ×

fN

(

σ12;σ11 (k11)
−1 K2, σ11 (k11)

−1 σ11σ22·1

)

×

fIW (σ33·12; 1, df − 2T + 4, k33·12) ×

fN

(

Σ3; Σ22 (K22)
−1 K3,Σ22 (K22)

−1 Σ22σ33·12

)

×

... ×

... ×

fIW

(

σTT ·12...(T−1); 1, df − 2T + (T + 1) , kTT ·12...(T−1)

)

×

fN (ΣT ; Σ(T−1)(T−1)

(

K(T−1)(T−1)

)−1
KT ,Σ(T−1)(T−1)

(

K(T−1)(T−1)

)−1

Σ(T−1)(T−1)σTT ·12...(T−1))

Proof. This decomposition results from applying recursively Theorem 1, in the

way described in Section 3.
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