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ABSTRACT. Thin laterally continuous organic-rich dolomitic marlstones were depos-
ited in the extended Late Aptian - Early Albian epicontinental sea of northwestern
South America. These intervals are the proximal equivalents of thick hemipelagic
black shale-ammonitic floatstone couplets, deposited in the distally stepped, differen-
tially subsiding part of the Maracaibo Platform. The marlstones reflect the dynamic
conditions resulting from orbital forcing mechanisms and can be genetically related to
(1) minor sea-level changes, (2) proximal turnovers in marine productivity, and (3)
sudden climate shifts affecting mid-Cretaceous shoaling upward, shallow marine,
carbonate cyclicity. Therefore, the marlstones may well be linked to the multiple
environmental perturbations collectively referred to as Oceanic Anoxic Event 1. The
interstitial euhedral dolomite has a medium crystallinity, and exhibits unusual textural
relations with framboidal pyrite and gypsum. The authigenic mineral assemblage also
includes quartz, Ca-F apatite, and barite, which together with the chemical signals of
dolomite, point to an unsteady climate regime. Bulk-rock biomarker parameters, rare
earth element geochemistry, and iron speciation data point to widespread photic zone
anoxia and transient shallow marine euxinia by the time of deposition, with climatic
instability driving the delivery of oxidized detritus from the hinterlands. These
conditions led to a schizohaline redox stratified environment favorable to dolomite
precipitation. In such a depositional setting, the bio-utilization of Fe, Mn, and sulfur
for organic matter respiration sustained elevated pore-water alkalinity and pH, and
allowed for the pre-compactional growth of interstitial dolomite.
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introduction

The widespread deposition of black shale intervals during the mid-Cretaceous has
been linked to multiple paleoenvironmental perturbations, potentially resulting from
the emplacement of large igneous provinces (Arthur and others, 1985; Hay and others,
2006; Tejada and others, 2009; Monteiro and others, 2012, Naafs and others, 2016).
Such tectono-magmatic pulses augmented atmospheric concentrations of CO2, which
led to intensified rates of erosion and phosphate delivery to the oceans (Kump and
Arthur, 1999). The hydrothermal activity related to these pulses also increased the
concentrations of dissolved bioessential metals in seawater (Larson and Erba, 1999),
leading to transient nutrient-rich conditions that fostered greater organic productivity
in the upper water column (Kuypers and others, 2001; Leckie and others, 2002; Herrle
and others, 2003). In turn, this led to the development of anoxic bottom waters that
were ideal for the deposition of sediments exceptionally rich in organic matter. This
sequence of events led to what is generally referred to as an “Oceanic Anoxic Event
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(OAE) (Schlanger and Jenkyns, 1976; Arthur and Schlanger, 1979; Arthur and others,
1990; Jenkyns, 2010).

Several episodes of oceanic anoxia that occurred between the Aptian (�125 – 113
Ma) and Albian (�113 – 100.5 Ma) have been collectively grouped within OAE 1
(Arthur and others, 1990). The OEA 1 was a period marked by the beginning of a
greenhouse world, with rising sea level, warming global climate, and major turnovers
in marine planktonic communities (for example, Bralower and others, 1994; Erbacher
and others, 1996; Kuypers and others, 2002; Erba, 2004). Probably associated with this
general warming were rapid dry/cool to wet/warm climate shifts that included short
intervals of monsoonal precipitation which significantly augmented continental runoff
(Arthur and others, 1990; Erbacher and others, 2001; Kuypers and others, 2001, 2002;
Leckie and others, 2002; Herrle and others, 2003; Hay and others, 2006; Browning and
Watkins, 2008; Mutterlose and others, 2009; Tejada and others, 2009; Barclay and
others, 2010; Föllmi, 2012; Bottini and others, 2014; Bodin and others, 2015). The
lithofacies resulting from OAE 1 not only include thick hemipelagic black shale
intervals of economic importance due to their oil generation potential (Arthur and
others, 1990; Wignall, 1994; Leckie and others, 2002), but also relatively thin organic-
rich shales of striking stratigraphic persistence and lateral continuity, interbedded with
cyclic shallow marine carbonates (for example Ford and Houbolt, 1963; Fisher and
Rodda, 1969; Bishop, 1975; Sass and Katz, 1982; Peterson, 1983; Patton and others,
1984; Halley, 1985; Sass and Bein, 1988; Claps and others, 1991; Bellanca and others,
1996, 1997; Lehmann and others, 1999; Bachmann and Hirsch, 2006; Gaona-Narvaez
and others, 2013). Despite their widespread geographic distribution (see Westphal
and Munnecke, 2003 for details), the driving forces controlling the cyclicity and early
diagenesis of these intervals remains controversial. Theories range from orbital forcing
mechanisms to differential microbial zonation, that is zonation of energy availability in
the sediment pile (see Arthur and others, 1984; Hallam, 1986; Weedon, 1986; Weedon
and Hallam, 1987; Raiswell, 1988; Westphal and Munnecke, 2003).

Within the shallow marine black shales, the presence of dolomite cement is quite
common, and thus they have been referred to as dolomitic shales, argillaceous
dolomites, and in some cases, dolomitic marlstones. The available sedimentological
and geochemical evidence suggests that precipitation of interstitial dolomite could be
related to low amplitude (high frequency) relative sea level changes superimposed on
the generally transgressive state of the mid-Cretaceous seas (Given and Wilkinson,
1987; Sun, 1994; Erbacher and others, 1996, 2001; see also Haq and others, 1987).
Moreover, the stratabound geometry of these rocks, and the petrographic relations
between dolomite and other early diagenetic mineral phases, usually suggest that
dolomite occurred penecontemporaneously, or shortly after deposition (Lehmann
and others, 1999).

In this study, we explore the mechanisms that promoted dolomite precipitation in
laterally continuous transgressive black shales in the Maracaibo Platform, northwest-
ern South America (fig. 1). These Aptian to early Albian microfacies — now dolomitic
marlstones — represent deposition in a shallow-marine, low energy, inner to middle
ramp environment, affected by the episodic upwelling of O2-depleted, nutrient-rich
basinal waters (Bartok and others, 1981; Renz, 1981, 1982; Vahrenkamp and others,
1993), and are likely related to the paleoceanographic perturbations associated with
OAE 1 (Méndez-Dot and others, 2015). The almost continuous burial history of the
epicontinental succession (Yurewick and others, 1998; Pöppelreiter and others, 2005),
together with the differential compaction of argillaceous intervals comprising mixed
carbonate-siliciclastic sequences (Bathurst, 1987; Dewers and Ortoleva, 1994), pre-
vented the admixture of late diagenetic waters (see Bartok and others, 1981; Pöppelre-
iter and others, 2005), and thus allowed for the exceptional preservation of primary
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Fig. 1. Study area and location of the well cores. The contour intervals (isopach map) approximate the
paleobathymetry at the time of deposition of the Apón Formation. The lower part of this figure shows the
tropical paleogeographic location of the Maracaibo Platform during the Aptian to Albian transition
(Paleogeography from: Colorado Plateau Geosystems, http://www2.nau.edu/rcb7, accessed July 2014).
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textural and geochemical features. Therefore, such intervals provide a unique oppor-
tunity to evaluate the timing of, and controls on, dolomite formation in mixed shallow
marine depositional systems.

geological background
The Aptian to early Albian in the subsurface of the Maracaibo lake area consists of

a vertical succession of meter-scale, shallow marine carbonate deposits that exhibit
systematic stacking patterns that build into three complex stratigraphic sequences
(Vahrenkamp and others, 1993). Interbedded within shallow carbonates are laterally
continuous, organic-rich, often pyritic, fine-grained laminar intervals (Ford and
Houbolt, 1963; Bartok and others, 1981; Yurewicz and others, 1998). Lithostratigraphi-
cally, the Aptian to early Albian has been named as the Lower Cogollo Group, which in
the subsurface of the Maracaibo Basin has been subdivided into three units: the lower
(Tibú), middle (Machiques-Guáimaros) and upper (Piché) members of the Apón
Formation (Renz, 1958).

Deposition of the basal lagoonal Tibú Member was followed, in the Perijá Range
area, by a prominent interval (up to 120 m thick) of cyclic black shale - hemipelagic
nodular floatstone couplets, known as the Machiques Member of the Apón Formation
(see Alberdi-Genolet and Tocco, 1999). This member is areally restricted to the
Machiques trough (after Sutton, 1946), a differentially subsiding post-rift sub-basin
affected by Neogene inversion to form what is now the Perijá Range (fig. 1). The
Machiques Member has a well-preserved late Aptian ammonite fauna belonging to the
genus Deshayesites sp., and toward the top contains Engonoceras sp., which spans
the uppermost Aptian to the middle Albian interval (fig. 2; Renz, 1982).

Landwards, the Machiques Member encroaches onto a crinkled and laminar, 5 to
30-m-thick regional marker-bed referred to as the Guáimaros Member of the Apón
Formation (Renz, 1958; Ford and Houbolt, 1963). This lithofacies can be recognized
by being largely devoid of fauna, and by its dark gray to black color and laminar nature

Fig. 2. The mid-Cretaceous stratigraphic context of western Venezuela. Samples are from four oil
exploration drill cores. Ammonite zonation is as defined by Renz (1982) with data from a section
outcropping at Santo Rosita Creek in the Perijá Foothills. Also shown are two representative core sections
and the range of lithologies from dolomitic shale to argillaceous dolomite.
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(Renz, 1958; Ford and Houbolt, 1963; González de Juana and others, 1980). Consider-
ing the timespan of the ammonite biozones on its distal equivalent (fig. 2), this
member can be considered a condensed interval. The main mineralogical feature of
the Guáimaros Shale is the abundance of dolomite and framboidal pyrite (Ford and
Houbolt, 1963), and it may locally contain gypsum (González de Juana and others,
1980). The Guáimaros lithology is considered a regional marker bed, and has been
thought to resemble modern marl sediments found in the Doha Lagoon in the Persian
Gulf (Ford and Houbolt, 1963). Conversely, González de Juana and others (1980, p.
236) suggested that this interval may well represent deposition in an extended tidal
flat.

Overlying the Guáimaros-Machiques members is the Piché Member of the Apón
Formation, which also exhibits a mixed carbonate-siliciclastic peritidal to subtidal
stacking pattern, and contains the first appearance of the Albian foraminifera, Orbito-
lina texana concava (Sutton, 1946; Renz, 1958). Early Albian ammonites may be present
in the Piché Member (Renz, 1982), but most of its carbonate facies represent
deposition in peritidal to shallow subtidal settings (Bartok and others, 1981).

By the time of the deposition of the Apón Formation, the accommodation space
and facies architecture were largely controlled by the complex interplay between
thermal subsidence and orbital forcing mechanisms, with differential subsidence
controlling the development of paleobathymetric lows that were suitable for black
shale deposition (Bartok, 1993; figs. 1 and 2). By producing minor shifts in base sea
level and controlling paleoclimate, variations in the Earth’s eccentricity and precession
would have controlled the extension and distribution of shallow marine siliciclastic
facies within the mixed carbonate-dominated ramp (see Vahrenkamp and others,
1993), and the cyclic deposition of black shales-floatstone couplets infilling the
Machiques sub-basin (for example Alberdi-Genolet and Tocco, 1999). Additional
information on the sequential context and environmental aspects pertaining the
Lower Cogollo Group are available in the online supplementary material (http://
earth.geology.yale.edu/%7eajs/SupplementaryData/2016/Petrash.pdf).

On top of the Apón Formation is the 80 m thick Lisure Formation. The contact
between the Apón and Lisure formations is thought to represent a depositional hiatus
(Rod and Maync, 1954), and the unit is composed of a mixed carbonate-siliciclastic
lithology, with some lithic sandstones. Toward its base, the formation contains microfa-
cies similar to Guáimaros, but these are more limited in terms of their regional extent.
Toward the top, the Lisure Formation contains abundant skeletal-oolitic grainstones
that are often glauconitic (Renz, 1981), and are suggestive of an extended lagoonal
subtidal environment (Bartok and others, 1981).

Overlying the Lisure Formation is the Maraca Formation, which consists of
oncolithic floatstones that laterally grade to oolitic grainstones (Bartok and others,
1981).

samples
Our sampling focused on the laterally continuous dolomite-bearing Guáimaros

Member. We also sampled analogous microfacies in the overlying lithological units
(the early Albian Piché Mb. and the Lisure Fm.). Samples were retrieved from four
exploration wells, most of which reached depths �4 km in the subsurface of the
Maracaibo lake area (figs. 1 and 2). The lateral distance between the studied boreholes
ranges between 10 and 35 km (fig. 1). Borehole TOT-3 was drilled between 1928 and
1930. Borehole Z26D-2 was drilled in 1955, and boreholes UD-171 and SOL-6 were
drilled between 1982 and 1984.

The microfacies of interest are interbedded into peritidal cycles comprised of
thick pelecypod floatstones, benthic foraminiferal (miliolids) wackestones, and mud-
stones, which frequently show crinkled lamination. Prior to sampling, the intervals of
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interest were first identified by using gamma ray and resistivity well logs, followed by a
visual inspection of the cores and standard petrography of 235 thin sections. The
samples from the upper stratigraphic levels have less lateral extent than the Guáimaros
shale, which can be recognized across the study area (fig. 2). All of the representative
samples (n � 11; 9 dolomitic black shale, that is, the marlstone, and 2 non-dolomitic
black shale; fig. 2), were taken from the central part of drill cores (150 mm in
diameter). The sections of the cores sampled are not directly affected by faults and do
not show evidence of post-depositional recrystallization or oxidation during storage.

analytical methods

In order to investigate the early diagenetic conditions that governed mineral
authigenesis of these intervals we applied a multi-analytical approach that combined
an assessment of the microtextural relations between the solid phases, bulk geochemi-
cal characterization (biomarker signatures, minor and trace metals, and C-, O- and
Sr-isotopes), and in situ synchrotron-based X-ray fluorescence microanalyses of dolo-
mite. None of the parameters included in our comprehensive dataset follows a burial
depth profile. Biomarker analyses followed rigorous protocols to exclude anthropo-
genic hydrocarbon contaminants that commonly taint drill core material (Jarrett and
others, 2013). The robustness of our ‘biomarker-derived’ redox interpretations are
further supported by iron speciation (Poulton and Canfield, 2005, 2011) and transi-
tion metal analyses, with the goal of interpreting the redox state of the water column
and sediment pore water system at the time of deposition and during early diagenetic
authigenesis. Details of the combined analytical approach are described in the online
supplementary materials (http://earth.geology.yale.edu/%7eajs/SupplementaryData/
2016/Petrash.pdf).

results and discussion

Petrology
Standard petrography and weight dispersive spectrometric analyses revealed that

the authigenic fraction of the microfacies under examination is dominated by Ca-rich
dolomite, with minor framboidal pyrite and authigenic quartz (figs. 3A-3B). Scanning
Electron Microscopy coupled to Energy Dispersive Spectrometry (SEM-EDS) revealed
lesser amounts of gypsum, calcite, Ca-fluorapatite, and barite (figs. 3C-3G; Appendix
A). All of the minerals listed above are within an organic-rich, detrital, clayey matrix,
containing from 1.1 to 5.0 weight percent of total organic carbon (TOC). The
sedimentary organic matter, as measured in samples from UD-171, has a �13Corg of
�22.5 � 1.7 permil. Results of semi-quantitative XRD analysis of the �2 	m fraction
showed the following mineralogy (� 2%): illite (38%), kaolinite (27%), and disor-
dered illite/smectite clay (35%); with illite accounting for up to 60 percent of that
fraction. Further details on the mineral assemblage and its textural features are
available in Appendix A.

In crystalline carbonate rocks (for example limestone/dolostone), the effects of
late burial diagenesis often lead to multiple carbonate dissolution and re-precipitation
stages that obliterate most of the primary textural features and chemical signals.
However, in the late Aptian – early Albian dolomitic shale intervals studied here, the
flow of thermally active diagenetic fluids was largely prevented by differential compac-
tion, and thus the obliterating effects of carbonate recrystallization were greatly
diminished. Therefore, inferences regarding the elusive mechanisms of penecontem-
poraneous dolomite stabilization could be drawn from our samples.

Interstitial dolomite is invariably associated with framboidal pyrite, and the lateral
persistence of such textural relationship suggests that dolomite formed as a cement
shortly after pyrite precipitation. Considering the intrinsic low permeability of the
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targeted intervals (Bartok and others, 1981; Pöppelreiter and others, 2005) and the
average size of the predominantly euhedral (planer-e) dolomite crystals (�80 	m), it is
clear that most interstitial dolomite formation was completed prior to compaction. As
interstitial dolomite grew, the crystals developed distinctive textural relations with
pyrite, which may have been locally oxidized, leading to dissolution of metastable
dolomite precursors followed by oversaturation of the pore waters with regard to
Fe-dolomite that locally overgrew dolomite cortices. On the other hand, seasonality
also operated to oversaturate the interstices of the sediments with regard to gypsum
and/or silica, two minerals intimately associated with dolomite, thereby inhibiting
further dolomite growth (Appendix A).

Redox Conditions Governing Shallow Marine Black Shale Deposition
Biomarkers are useful for the characterization of organic-rich lithofacies. The

distribution of biomarkers may yield information about thermal maturity, biological
sources of organic matter, activity of specific microorganisms (such as methanogens
and methanotrophs), influx of terrestrial versus marine organic debris, and redox
conditions (Brocks and Summons, 2004; Peters and others, 2005). Relevant biomarker
ratios for Maracaibo samples are summarized in table 1, and the biological origins of

Fig. 3. Textural features: (A) Dolomite crystals interfaces range from planar-e to planar-s. Note the
abundance of framboidal pyrite. (B) Most dolomite is Ca-enriched. (C-D) The dolomite crystals are coated
by equant gypsum overlays that show planar interfaces caused by normal stress across the gypsum-clay
contacts. (E-F) Cryptocrystalline Ca-fluorapatite is quite common within the matrix material. (G) Subordi-
nate amounts of barite have been also observed.
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individual biomarkers, as well as a detailed interpretation of different parameters, are
given in the online supplementary material (http://earth.geology.yale.edu/%7eajs/
SupplementaryData/2016/Petrash.pdf).

Several inorganic redox proxies (see below) and the biomarker parameters listed
in table 1 show an unusual degree of intercorrelation. Furthermore, detailed analyses
of redox sensitive biomarkers, in particular the fossil pigments of anoxygenic pho-
totrophic bacteria and lipids of anaerobic ciliates (Appendix B), indicate that at the
time of deposition of the studied intervals the Maracaibo ramp was likely anoxic into
the photic zone of the water column. Possible correlations between geochemical
parameters were assessed by applying a Principal Component Analysis (PCA) of scored
data using XLStat 2014. The objective of PCA is to find unit-length linear combinations
of the variables with the greatest variance. Because this study focuses on a specific
microfacies, a stratigraphic analysis was not attempted. Instead, correlations of param-
eters between samples were assessed in order to determine environmental controls
during organic matter deposition. Included in the PCA were the redox proxies
FeHR/FeT, Pr/Pr* and Mn*, the terrestrial flux indicator Al/(Al
Fe
Mn), and the
concentrations of certain elements, such as Mo and Hf, that could offer support to our
interpretations. The biomarker parameters considered in the PCA are listed and
explained in table 1, while the elemental/isotopic concentrations and ratios are listed
in table 2.

Principal component analysis of redox proxies.—The first principal component, PC1,
has maximal overall variance and explains 45 percent of the variance within the
original data. The second principal component, PC2, has maximal variance amongst
all unit length linear combinations that are uncorrelated to the first principal compo-
nent, and explains 18 percent of the variance within the original data. Each subsequent
PC describes the variance in progressively limited detail (for example PC3 � 14%).
The PC1 clusters the biomarker ratios and some inorganic redox proxies in two
distinct categories, Categories I and II (fig. 4, see Appendix tables C1 and C2). Samples
in both categories do not follow a burial depth profile, and most of them exhibit a
normal distribution. None of the parameters are correlated with computed vitrinite
reflectance, Rc (table 1), ruling out maturity as a main component. Instead, Category I
cluster parameters that reflect high relative input of terrestrial and lacustrine organic
matter and soil, including Al/(Al
Fe
Mn), C29 steranes (%C29), plant waxes (CPI26-34 �
1) and freshwater-derived algal markers (tetracyclic polyprenoids, TPP). Category I is also
defined by a high oxidation level of organic matter, for example high aryl isoprenoid
cleavage (AIR-2), high pristane (Pr, C19) to phytane (Ph, C20) ratios (Pr/Ph), and by
clay-induced molecular rearrangements (diaC27-C30, C30 ��/��)(Appendix table C1).
All parameters in Category I point to a terrestrial organic matter and detrital source —
that is elevated biomarkers of terrestrial and lacustrine origin, significant oxidation of
organic matter as expected from redeposited soil, as well as abundant clay availability.
Among the 31-dimensions considered in our PCA are parameters that can be unequivo-
cally associated with detrital aluminosilicates, such as bulk-rock Hf concentrations, and
parameters that are known to be affected by the influx of detritus, such as La anomalies
(Ce/Ce*)SN and V/(V
Ni). These parameters fall within Category I (fig. 4).

In contrast, biomarker values in Category II (Appendix table C2) are typical for
organic matter of marine origin, such as high C27 and C30 sterane proportions (%C27,
%C30), high sterane versus hopane ratios (Ster/Hop), high relative gammacerane
abundances (high GI) and EOP15-23 (fig. 4; see also table 1). It is not clear whether
28,30BNH can be included in our Category II, although it exhibits significant correla-
tion with 2�-MHI (Rs � 0.74, 0.05 P � 0.01), which is likely to be produced by
nitrogen-fixing organisms thriving under low oxygen levels (Ricci and others, 2013).
Moreover, Category II also include the dibenzothiophene (DBT): phenanthrene
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(Phen) ratio, which can be used to gauge the availability of free sulfur in the
depositional environment, and thus offers possible evidence for anoxic depositional
conditions. The clustering of homohopane indices (HHI), manganese and molybde-
num enrichments, as well as an accumulation of highly reactive iron (FeHR/FeT)
indicate a stable anoxic water column. The latter parameters are considered as robust
redox indicators. In sediments deposited beneath anoxic waters, the FeHR/FeT ratios
are typically above 0.38 (Raiswell and Canfield, 1998; Raiswell and others, 2001;
Poulton and Raiswell, 2002; Poulton and Canfield, 2011). All of our FeHR/FeT ratios
are consistently greater than 0.50 (fig. 5A, table 2). Other inorganic parameters falling
into Category II include redox proxies such as U/Th and Mn* (Mn* � log [(Mnsample/
Mnshale)�(Fesample/Feshale)-1]; Machhour and others, 1994). In summary, the clustering
in our PCA is clearly controlled by varying influx of oxidized terrestrial and lacustrine
organic matter into a stratified and reducing marine depositional environment. The
results point to variations in terrestrial run-off as a control on the transport of oxidized
soil material into an anoxic shallow marine depositional setting.

Transient photic zone euxinia.—The redox chemistry during deposition of the
marlstones was also examined by determining the extent to which the FeHR pool was
pyritized (FePy/FeHR). This ratio distinguishes whether the ramp was euxinic (that is
sulfide-rich) or ferruginous (Fe-rich), with FePy/FeHR �0.70 differentiating euxinic
from ferruginous (� 0.70) conditions (Poulton and Canfield, 2011). The FePy/FeHR
values of the dolomitic marlstones are consistent with deposition under a predomi-
nantly ferruginous water column, with a couple of samples reflecting the development
of transient euxinic conditions (fig. 5A). The FePy/FeHR together with the ubiquity of
relatively large pyrite framboids in the microfacies targeted here (see Appendix A)
indicates that most pyrite precipitated in a transient euxinic-ferruginous chemocline
located at or below the sediment–water interface as compared with a chemocline in the

Fig. 4. PCA of environmental proxies determined for samples from the Maracaibo ramp. Filled markers
exhibit a normal distribution. The risk of considering unfilled markers as normally distributed is in all cases
less than 3.8% (� �0.05%), and the incorporation of these parameters in the n-dimensional dataset does not
significantly alter the clustering.
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water column, which is thought to produce framboids of less than 6 	m in diameter
(Wilkin and others, 1996; Wignall and Newton, 1998). Thus, in the studied intervals —
now dolomitic marlstones — most pyrite crystal growth occurred in the sediments and
was likely limited by the supply of HS- near the sediment-water interface (see Berner, 1984;
Butler and Rickard, 2000; Rickard, 2012 for details). A bimodal size distribution of pyrite in
our samples (Appendix A) could be explained by the transport of small pyrite aggregates
formed in the outer ramp to the inner ramp setting represented by our samples.

Timing and Conditions of Dolomite Precipitation
Timing of precipitation.—The bulk strontium concentrations of the dolomitic

marlstones range from 143 to 744 ppm (table 2). The samples exhibit 87Sr/86Sr values
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Fig. 5. Iron speciation data and Mo concentration data: (A) Highly reactive iron to total iron ratios
(FeHR/FeT) vs. the extent to which the Fe pool has been pyritized (FePy/FeHR). Our data shows that the
Guáimaros Member and its upper analogues were dominantly deposited under anoxic (ferruginous) water
columns, but the upwelling of euxinic mid-depth waters would have readily titrated Fe(II) as pyrite. (B) An
alteration test (see text for details) suggests that samples exhibiting a Fepy* above 0.7 may be reflective of
subaerial alteration. This indicates that the formation of FeOx from the oxidation of pyrite would have
affected the original FePy/FeHR to make appear initially euxinic samples as ferruginous (C). Only samples
exhibiting relatively high [Mo] are considered as altered by pyrite oxidation, and potentially deposited
under euxinic conditions.
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from 0.70751 to 0.70812 (fig. 6A; table 2), and are thus enriched in 87Sr with respect to
the signatures typically observed in biogenic allochems formed in equilibrium with late
Aptian to early Albian seawater (�0.70735; see McArthur and others, 2007).

The ratio of bulk rock heavy vs. light rare earths contents (Er/Nd) and the
measured 87Sr/86Sr values were found to be correlated (fig. 6B) with the bulk
concentrations of Zr (RS � 1.00, 0.01 � P � 0.005) and K (RS � 0.90, 0.050 � P �
0.025). The high degree of correlation indicates that the observed shift of 87Sr/86Sr
isotope ratio toward more heavy values probably reflect variable rates of interaction of
early diagenetic pore fluids with seawater containing a radiogenic Sr signature. Such a
radiogenic signature was likely derived from the Triassic granitic and Jurassic arkosic
sources in the hinterlands, which had initial values between 0.715 and 0.708, respec-
tively (Maze, 1984).

Fig. 6. Strontium 87Sr/86Sr values range from 0.70751 to 0.70812, with higher values observed toward
the Perijá Range: (A) There is a strong correlation between bulk rock [Zr] and the Sr-isotope signatures of
the samples. The open circles represent samples studied by Pöppelreiter and others (2005); the filled circles
represent the dolomitic shales targeted in this study. (B) The HREE/ LREE ratio of the samples (estimated
by using their PAAS-normalized Er/Nd ratio) and the bulk concentrations of elements such, as Zr, and K
(not shown), were found to be strongly correlated with the measured 87Sr/86SrN values. The inset shows that
there is also a strong correlation between REEs and Zr, which account for the detrital nature of the
observed Sr-isotope trends. (C) Binary plots of Rb vs. Zr and (D) 87Sr/86SrN vs. Rb. A: Rb vs. Zr content. This
test of isotopic integrity is to establish whether initial isotope ratios correlate with trace element systematics
(see Kamber and others, 2004 for details).
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Following Kamber and others (2004), we further evaluated the correlation of
87Sr/86Sr ratios and the bulk-Rb concentrations of the samples (RS � 0.90, 0.050 � P �
0.025). The significant correlation between Rb and Zr contents makes it possible to
estimate the Rb content of a hypothetical sample uncontaminated with radiogenic Sr
(that is Zr � D.L), in this case yielding approximately 13 ppm Rb (fig. 6B). Again,
following the reasoning of Kamber and others (2004), this [Rb] can be extrapolated
along a Sr-isotope vs. Rb concentration plot to yield an initial 87Sr/86Sr ratio of
�0.70738 (fig. 6C). This value corresponds to the late Aptian-early Albian 87Sr/86Sr
seawater curve (Bralower and others, 1997; McArthur and others, 2001, Bodin and
others, 2015). The time of precipitation deduced from combining the radiogenic Sr
isotope and trace metal results are consistent with the measured �13C of our samples,
which range from 
1.2 to 
4.0‰ (median 
2.5; mean 
2.4‰), and thus seems to
reflect a significant seawater-derived dissolved inorganic carbon source, which by the time
of precipitation was approximately 
2.5 � 1.0‰ (Menegatti and others, 1998).

Figure 7 shows a compilation of previously reported bulk 13C values of dolostones
in the Apón Formation together with values determined in this study. While published
data for the �13C of dolomites in the Apón Formation ranges from �5.2 to 
 4.0‰
(V-PDB), within our dolomitic marlstones the �13C values fall within the positive range.
More negative �13C values were observed by Pöppelreiter and others (2005) in fabric
destructive dolostones with good reservoir properties, but such microfacies were not
considered in this study because we focused on dolomitic black shales. When calcite is
present (see Appendix A), its �13C ranges from �0.1 to 
2.3‰ (fig. 7B). The
sedimentary organic matter as measured in samples from UD-171 has a �13Corg of
�22.5 � 1‰.

The oxygen isotopes of the samples averaged �1.2 permil, and largely follow the
trend in carbon isotopes (table 2; fig. 7B). This correlation is suggestive of a primary
kinetic fractionation, and would have resulted from the influence of sporadic wet
periods (Craig and others, 1963; Marshall, 1992; Zeebe and Wolf-Gladrow, 2001).
However, interpretations resulting from correlated �13C and �18O values are often
ambiguous (for example Knauth and Kennedy, 2009). Interestingly, calcite, when
present (see Appendix A), reaches �18O values as low as �10.1‰ V-PDB (average
�5‰) and is uncorrelated with the measured C-isotope values. For all of the available

Fig. 7. Stable C and O isotope signatures of the carbonate cements: (A) Compiled carbonate C-isotope
data from the Apón Formation (open bars) show a wider dispersion of �13C isotope values than values
measured in our samples. Carbonates in the microfacies studied here (filled bars) reflect a more significant
contribution of marine-derived DIC. (B) The binary plot shows �13C vs. �18O values of in the Apón
Formation. Calcite coexisting with dolomite in calcified dolostones (triangles) and dolomitic shales (circles)
shows 18O depletion (about 5‰). Filled data points are data from the Guáimaros Shale.
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oxygen isotope data, the magnitude of the 18O depletion on calcite is about 5.6 permil
lower than dolomite. This difference compares fairly well with values expected for
equilibrium paired phases (O’Neil and Epstein, 1966).

Redox precipitation environment.—The iron speciation data and other redox sensi-
tive parameters for Category II in the PCA provide good evidence for anoxic (largely
ferruginous) and redox stratified depositional conditions. The combined dataset
indicates that the shallow water column in the ramp at the time of deposition remained
permanently redox stratified and there was no regular flux of oxygenated waters to the
sediment-water interface. The bulk and intracrystalline Mo concentrations of the
samples (table 2 and Appendix table A1) are consistent with our iron speciation
dataset, and point to alternating ferruginous and euxinic early diagenetic redox
conditions during the deposition and alteration of the black shales to dolomitic
marlstones.

From the correlation of the elemental ratios described above, it is clear that
samples characterized by a larger terrigenous supply also exhibit more negative Mn*
values, pointing to increased redox potentials at times of increased terrigenous fluxes
to the ramp (for example Bellanca and others, 1997). In this regard, the intracrystal-
line correlation between Mn* and the Er/Nd is also significant (Rs � 0.80, 0.01 � P �
0.005). Such a correlation trend, first observed by Bellanca and others (1996), would
have resulted from the characteristic complexation behavior of REEs and metal
(oxy)hydroxides (Davranche and others, 2008; Schijf and Marshall, 2011).

To summarize, the analysis of the covariance of organic and inorganic redox
parameters showed that Mn(IV) and Fe(III) reduction were important processes at the
time of dolomite precipitation. Our spatially resolved semi-quantitative XRF analysis,
on the other hand, shows a limited range of intracrystalline variability in the iron and
manganese signals (see below), which we interpret as the result of interstitial dolomite
precipitation under a relatively constant Eh regime. Locally, post-depositional pyrite
oxidation may have affected the original FePy content of those samples that exhibit
iron enriched dolomite overgrowths (Appendix A).

Terrigenous influx and changes in salinity.—As observed in other tropical and
subtropical mid-Cretaceous sequences (Lehmann, and others, 1999; Herrle and
others, 2004; Browning and Watkins, 2008), monsoonal forcing mechanisms would
have led to a transient influx of freshwater and finer-grained detritus to the inner
ramp. This caused the development of a schizohaline environment (Folk and Siedlecka,
1974). Such environmental conditions, considered to be favorable to dolomite precipi-
tation (Mazzullo and Friedman, 1977), are supported by the intracrystalline La
anomaly (Ce/Ce*) of dolomite, which ranges from 0.5 to 1.0 (mean: 0.7; median: 0.8;
table 2) and points to a precipitation environment in which the influx of freshwater
tended to dissolve the marine-derived La signal. This interpretation is confirmed by
the bulk rock correlation between Y/Ho and Ce/Ce* (Rs � �0.89, P � 0.001), which
indicates some dilution of the marine Y/Ho signal (for example Bolhar and Van
Kranendonk, 2007).

Despite strong geochemical evidence supporting salinity changes at the time of
dolomite precipitation, most of our redox and detritus sensitive parameters support
that the schizohaline precipitation environment remained redox stratified, and the
oxygen isotope content (table 2) and intracrystalline sodium concentrations of the
samples (Appendix table A1) point to predominantly hypersaline conditions (for
example Major and others, 1992; Staudt and others, 1993, respectively). The presence
of gypsum as a minor authigenic component (Appendix A), and as small lenses in
outcrops of the Guáimaros Shale in the foothills of the Mérida Andes (González de
Juana and others, 1980), would appear to reflect an evaporitic condition locally
prevailing in the inner ramp early after the onset of dolomite precipitation. To explain
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the textural relation between dolomite and microcrystalline equant gypsum (figs.
3C-3D) two non-mutually exclusive scenarios are envisioned: (1) washover events that
led to dissolution of subaerial exposures of gypsum precipitated within supratidal
sediments, and/or (2) the oxidation of abundant framboidal pyrite within exposed
fine-grained sediments. The local presence of jarosite and cobaltarhurite within a
non-dolomitic shale level — analyzed for comparison purposes (SOL-6 18 082’) —
might best be explained by local subaerial exposure conditions of the fine-grained
pyritic sediments.

The inorganic observations are consistent with our biomarker dataset, which
include a diverse range of concentrations of n-alkanes, acyclic isoprenoids, hopane and
sterane ratios (table 1) that point to a predominance of evaporitic conditions (see
Schinteie and Brocks, 2014). Additional information on these biomarkers is available
in the online supplementary materials (http://earth.geology.yale.edu/%7eajs/
SupplementaryData/2016/Petrash.pdf).

Sensitivity of Results to Diagenetic Modification
The biomarker ratios DBT/Phen, Pr/Ph, HHI and AIR-2 (table 1), as well as the

iron speciation parameters FeHR/FeT and FePy/FeHR provide a measure of the Eh
regime. In principle, each of these parameters may be affected by late diagenetic or
maturity-related processes, or even oxidation and contamination during storage of the
drill core material. However, AIR-2 correlates positively with Ce/Ce* (RS � 0.80,
0.05 � P � 0.01) and negatively with HHI (RS � �0.83, P � 0.01) and FeHR/FeT (RS �
�0.40, 0.5 � P � 0.1), suggesting that the redox signals are largely primary. Interest-
ingly, the extent of pyritization of highly reactive iron (FePy/FeT) does not correlate
significantly with any parameter clustering in our PCA Category I, suggesting that
pyritization was not influenced by the influx of terrestrial debris (see below).

Pyrite oxidation may have affected the original Fe speciation values, such that
initially euxinic sediments now produce a ferruginous signal (that is they now exhibit
relatively low FePy/FeHR). To address this potential alteration issue, we applied a test
that assumes — as an end member scenario — that all of the oxidized FeHR phases
(that is FeOx) were derived from pyrite oxidation. Since iron is conservative through
transformation of FePy to FeOx, and pyrite oxidation should not result in any significant
change in FeHR/FeT, we recalculated the extent of pyritization by producing a
FePy*/FeHR ratio, where FePy* � FePy 
 FeOx. Accordingly, when a sample exhibiting
relatively low FePy/FeHR has FePy*/FeHR � 0.70, then that sample may have been
oxidized, whereas if the FePy*/FeHR ratio remains below the 0.70 threshold, then the
sample was indisputably deposited under a ferruginous water column. As shown in
figure 5B, our alteration test indicates that some samples may have been deposited
under the influence of euxinic waters. However, since this test assumes the extreme
case that all FeOx derives from pyrite oxidation (when, in fact, there was likely some
FeOx in the pre-oxidized sample), and oxidation of Fe(II) in carbonate minerals would
also generate FeOx, additional evidence must be sought.

To evaluate the potential for more prevalent euxinic depositional conditions
across the ramp, we assessed the concentrations of the redox-sensitive element
molybdenum, which is specifically drawn down into the sediment under euxinic water
column conditions (Helz and others, 1996; Zheng and others, 2000; Barling and
others, 2001; Nägler and others, 2005) (fig. 5B; see also table 2). In addition to two
samples that have original FePy/FeHR ratios indicative of euxinia (that is UD-171 16 249
and SOL-6 18 051), two other samples with relatively low FePy/FeHR ratios, from the
Lisure Formation (SOL-6 17 464 and Z26D-2 11 280), also show a significantly high
(aluminum-normalized) Mo enrichment factor (fig. 5C; normalization values from
Wedepohl, 1978). Thus, our sample set represents a mixture of anoxic ferruginous and
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euxinic depositional conditions, and syngenetic pyrite oxidation may have altered
some of the original FePy/FeHR ratios.

All samples show V/(V 
 Ni) ratio values � 0.55 (mean: 0.67, median: 0.69; table
2), corresponding to anoxic conditions (Morford and Emerson, 1999). Interestingly,
V/(V
Ni) correlates with other parameters of our PCA that are interpreted here as
soil-derived terrigenous sources, and thus probably delivered to the depositional
setting by monsoonal episodes. Such climatic perturbations were seemingly common
in mid-Cretaceous tropical zones (Lehmann and others, 1999; Herrle and others,
2003; Browning and Watkins, 2008; Föllmi, 2012; Wagner and others, 2013), and
would have delivered soil-sourced vanadium to the shallow anoxic ramp at the time of
transgressive black shales alteration to marlstones. Due to the general redox condi-
tions governing early diagenesis of the ramp, vanadium was not largely released from
the organic-rich sediments. Yet, some variability observed on the V/(V
Ni) proportion-
ality (table 2) may well be linked to variable rates of Mn- and Fe-cycling in the
mixed-sourced sediments (for example Thomazo and others, 2016).

The iron-normalized Mn concentration (Mn*) parameter shows negative correla-
tion (RS � �0.88, 0.01 � P � 0.005) with the terrigenous influx as determined by the
proportionality Al/(Al
Fe
Mn), whereas it correlates positively with Er/Nd (figs.
8A-8B). The measured intracrystalline Ce anomaly (Pr/Pr*, Appendix table A1) has
some degree of correlation with the concentration of Mn in dolomite. This element
has concentrations ranging from 34 to 202 ppm, but seems homogeneously distributed
in the euhedral crystals subjected to 	XRF analyses (figs. 8C-8D). The Pr/Pr* parame-
ter seems to produce conflicting data when compared with the bulk rock Ce-REE
decoupling (fig. 8E), and most of the crystals show depletion in Ce, as measured by
their Canom values (de Baar and others, 1988; fig. 8F). Such results might as well suggest
a diagenetic control exerted by Mn- and Fe-cycling (for example Schijf and Marshall,
2011). In this regard, both the bulk-rock and intracrystalline Pr/Pr* ratios (as a
measure of the Ce anomaly of the samples), show some degree of negative correlation
with the Mn concentrations (RS � �0.67, P � 0.0001). However, the detection of the
true intracrystalline Ce anomaly, and the actual correlation of such a signal with the
intracrystalline Mn* values, would be affected by the co-occurrence of La anomalies
(fig. 8H, Appendix table A1).

To explore if the variability of Mn* as a function Al/(Al
Fe
Mn) corresponds to
an autocorrelation effect, we further evaluated the covariance of bulk rock Mn*, Hf
and Ta (table 2), that is the covariance of Mn* and elements whose concentrations in
these marlstones can be unequivocally associated with detrital aluminosilicates (Bau
and Alexander, 2009). There is significant negative correlation between Mn* and Hf
and Ta (Rs � 0.89 and 0.87, respectively, P � 0.001). This result points to more
negative Mn* values at time of increased siliciclastic input. A similar behavior of this
parameter was reported by Bellanca and others (1997).

The potential decoupling of U and Th was also investigated. Uranium can be
moderately influenced by redox cycling, and is considered a useful redox proxy when
normalized to detrital Th (see Thomazo and others, 2016). Decoupling of U and Th is
commonly attributed to variable rates of oxidation of immobile U(IV) to mobile U(VI)
during weathering and diagenesis, which results in values that depart from unity (Bau
and Alexander, 2009). Therefore, this ratio has been used to quantitatively constrain
oxygen levels in sediments potentially affected by mid-Cretaceous anoxic events (for
example Sauvage and others, 2013). In the bulk marlstones, the U/Th ranges from
0.22 to 1.09 (mean � median: 0.57; table 2), while the intracrystalline U/Th averaged
0.32 (median: 0.28; Appendix table A1). The non–dolomitic black shale exhibits a
higher U/Th value than its counterpart with an altered FePy/FeHR ratio (table 2).
However, it should be pointed out that the U/Th of the marlstones are below the
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Fig. 8. Mn* redox parameter and its relation to indicators of terrigenous influx and cerium and
lanthanum anomalies in the studied black shales: (A) The samples characterized by a larger terrigenous
supply [high Al/(Al 
 Fe 
 Mn) ratios], exhibit more negative Mn* values indicating strongly reducing
conditions during deposition. (B)The relation between the Mn* parameter and the HREE/LREE ratio may
be due to the ability of detrital organic material and (oxy)hydroxide mineral phases to concentrate Nd
(LREE) with respect to Er (HREE). As such the longer the sediment-water interface was under geochemical
conditions involving utilization of these biologically reactive phases, the higher the proportion of LREE into
authigenic dolomite. (C) There is some correlation between the Ce anomaly and the [Mn]. (D)The
distribution of Mn vs. Fe as observed in sample UD-171 16 249’. (E) A variable degree of detrital
contamination can be also inferred from the correlated variations between Y/Ho and La anomalies. (F) A
binary plot helps discriminate between apparent La and real Ce anomalies. Most of the laser ablated
dolomite phases reflect a positive La anomalies. (G) It is possible to normalize the Ce abundances to those of
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range reported by Sauvage and others (2013) for anoxic sediments, which indicates
that the sensitivity of this redox proxy is linked to: (1) local environmental conditions
(Bau and Alexander, 2009), (2) variable rates of Fe- and/or Mn-redox cycling
(Thomazo and others 2016), and (3) burial diagenetic alteration (Maher and others,
2006; Fantle and others, 2010). Interestingly, U/Th falls within the Category II of our
PCA, and is sub-orthogonal to Mn* in the PC1 vs PC2 plot (fig. 4), meaning that
variations on this ratio were more likely controlled by the upwelling of reducing
basinal waters from the outer ramp, and not by Mn-cycling. Thus, the transport of
U(VI)-depleted waters from the Machiques though to the inner ramp setting would
had been a more important control over the U/Th values recorded by our samples
than the delivery of coupled U(IV) and Th from the catchment area.

paragenetic model
Our integrated analyses point to the lagoonal setting of the Maracaibo ramp as the

episodic locus for shallow marine black shale deposition. This occur in association with
the development of ferruginous and transient euxinic conditions in the photic zone.
These were caused by the expansion of oxygen-depleted nutrient-rich waters from the
Machiques trough to the middle to inner ramp settings, and were likely related to
minor sea level changes (figs. 9A-9B). In this scenario, relative sea-level lows led to
restriction of the differentially subsiding Machiques sub-basin and bottom water
anoxia. As sea-level rose, upwelling of anoxic basinal waters to the adjacent shallow
ramp caused pervasive reducing conditions and widespread deposition of laminar,
organic-rich fine-grained sediments (see Arthur and Sageman, 1994).

The restriction of the ramp allowed for the development of a transiently euxinic-
ferruginous chemocline favorable for framboidal pyrite precipitation. This chemo-
cline was more persistent toward the outer ramp (figs. 9B-9C). However, as the
upwelling of oxygen-depleted and nutrient-rich waters from outer to shallow ramp
occurred shortly after relative sea level drops (that is the early transgressive stage;
see James and others, 2001), the chemocline also develops across the middle to
inner ramp lagoonal setting. The shoaling of the oxygen-minimum zone in a
general condition of restricted circulation would have been maintained for only
short time-scales (for example the time scale represented by our samples), but
caused a devastating effect on the carbonate-producing biota and was followed by a
complete shutdown of the carbonate factory concomitant with transgressive black
shale deposition (figs. 9C-9D).

The Maracaibo ramp had depositional surfaces that remained near sea level
during the late Aptian and early Albian (fig. 9), when it shows no evidence of major
changes in relative sea level (Renz, 1982; Yurewick and others, 1998; Pöppelreiter and
others, 2005; Castillo and Mann, 2006). This allowed repeated replenishment of pore
waters by fluids favorable for interstitial dolomite formation in the extended peritidal
to shallow subtidal depositional surface. There the organic-rich, fine-grained sedi-
ments were deposited only latter to be buried by coastal progradation of cyclic shallow
marine carbonates. Our dataset points to interstitial dolomite forming shortly after the
onset of pyrite precipitation. The iron speciation data provides good evidence for
largely ferruginous, anoxic depositional conditions. The bulk geochemical and bio-

Fig. 8 (continued). its neighboring REE (Ce anomaly � 3 Ce/CeSN/ (2La/LaSN 
 Nd/NdSN)), yet it is
important to point out that these are likely to be biased toward lower values due to the presence of the
positive La anomaly. (H) The arrow shows the direction of Ce depletion in seawater (that is complexation to
particulate matter. There is some degree of correlation between Ce and Mn contents of dolomite. Note: The
open circles represent samples analyzed via LA-ICPQ-MS; the filled circles represent solution-based
ICPQ-MS measurements (see online supplementary materials for details; http://earth.geology.yale.edu/
%7eajs/SupplementaryData/2016/Petrash.pdf).
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marker analyses point to oxidized organics and reactive Fe(III)- and Mn(IV)-
(oxy)hydroxides being transported to the shallow restricted environment by episodic
terrigenous fluxes, probably by mid-Cretaceous equatorial monsoon events (see Föllmi,
2012). Then, the rapid reductive dissolution of detrital Fe(III)-(oxy)hydroxides pro-
duced ferrous iron, which due to the presence of free biologically produced sulfide was
promptly fixed into pyrite framboids, leading to Fe(II)-depleted pore waters (Berner,

Fig. 9. A model for the depositional environment of black shales in the mid-Cretaceous Maracaibo
ramp throughout a single depositional cycle (modified from Mendez-Dot and others, 2015): (A) A
pre-anoxic condition and normal oxygenation of the ocean waters in the Machiques sub-basin and
Maracaibo ramp allowed for deposition of normal shallow marine carbonates. (B-C) Initiation of anoxia is
due to restriction of the basin followed by transgression, with oxygen-exhausted and potentially euxinic
waters transported from the sub-basin to the ramp by upwelling currents. This led to transgressive black shale
deposition in middle to inner ramp settings. (D) As relative sea level drop during coastal progradation, the
organic rich fine-grained sediments were affected by extensive evaporation and transport of terrigenous and
continental organic matter during monsoonal events. The development of schizohaline conditions in the
lagoonal setting favoured interstitial microbial dolomite formation; D.I.: input of oxidized detrital material
from the hinterlands, E: evaporation and subaerial oxidative processes.
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1984; Coleman and others 1993; Raiswell and Canfield, 1998). Sulfide, a limiting
reactant under the conditions described above, was made available either by diffusion
from adjoining organic-rich levels supporting microbial sulfate reduction, or as
supported by the FePy/FeHR of the samples, by sporadic transport of basinal waters to
the shallow ramp.

The rapid abiotic reduction of Fe(III) favored the biological utilization of Mn,
which in the presence of native and evolved forms of intermediate sulfur allowed for
enhanced alkalinity and elevated pH for geologically significant periods of time (for
example Petrash and others, 2015). Thus conditions for dolomite stabilization were
met (Mazzullo, 2000). This scenario is supported by presence of biomarkers suggestive
of an active anoxygenic photosynthetic community at the time of deposition (Appen-
dix B). Some of these microorganisms are well-known for their ability to use sulfide as
electron donor. During the anoxygenic oxidation process, intermediate forms of
sulfur are accumulated (for example Sander and Dahl, 2009). The Mn-(oxy)hydrox-
ides that reacted with elemental sulfur originally scavenged an important fraction of
REE. Hence, their reduction is thought responsible for the correlation between bulk
Mn* and Er/Nd. Manganese would have been recycled a number of times via Mn(II)
reoxidation by the extracellular sulfur stocks and Mn(IV) reduction with sedimentary
organic matter (Petrash and others, 2015). This led to incorporation of Mn into
euhedral, chemically homogenous dolomite crystals growing in equilibrium with the
iron-depleted pore waters, and produced intracrystalline Ceanom and Pr/Pr* that
exhibit some degree of correlation with the [Mn] and Mn* of the dolomite crystals.

As coastal progradation occurred (fig. 9D) some areas of the extended peritidal
zone of the ramp would have been subjected to subaerial exposure and localized
oxidation of pyrite. This caused a secondary influx of sulfate to the pore water system
that prevented the reductive dissolution of barite during shallow burial (for example
Von Breymann and others, 1992; Torres and others, 1996). The rocks in which barite
was found also show low DBT/Phen ratios � 0.30 (table 1, see also Appendix table C2),
which points to a sulfate-deprived environment of deposition (Hughes and others,
1995). The aluminosilicates comprising up to 56 percent of these rocks are considered
major Ba carriers, and barite can be only preserved in sediments deposited under high
productivity conditions and with sulfate availability (Dymond and others, 1992; Gin-
gele and Dahmke, 1994; Paytan and others, 1996; Bellanca and others, 1996). Hence,
low DBT/Phen ratios and the presence of barite imply that a secondary influx of
sulfate occurred in a shallow burial diagenetic realm shortly after the deposition of the
mixed-sourced organic-rich fine sediments investigated here. This condition also
allowed for the precipitation of equant gypsum in an intimate textural association with
early formed dolomite. The precipitation of gypsum inhibited further dolomite
growth.

A Competing Dolomite Precipitation Scenario
Our diagenetic model favors iron and manganese coupled to intermediate sulfur

utilization because of the capacity of these mechanisms to serve as effective pH buffers
while simultaneously promoting high alkalinity (see Loyd and others, 2012, their table
4). Nonetheless, an alternative scenario must be also explored, that being the precipi-
tation of dolomite under relatively shallow burial methanogenic conditions (Irwin,
1980; Raiswell, 1988). This mechanism is plausible since all of the marlstones studied
here contain 3�-methylhopanes (3�-MHI; table 1). Elevated concentrations of these
biomarkers, expressed as the methyl hopane index (C31 3�-MHI), are often attributed
to the activity of microaerophilic methanotrophs and, by inference, methanogens
(Brocks and others, 2003). The biological production of methane in the form of
Corg3 CH4 
 CO2 can drastically lower the pH of the precipitation environment, and
are expected to be corrosive for dolomite previously formed at shallower depth (for
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example Rodriguez and others, 2000). Yet, methanogens employ a number of meta-
bolic pathways, and several of these pathways are capable of promoting carbonate
saturation (Roberts and others, 2004; Madigan and Martinko 2005), whereas a pH
buffering effect could be exerted by the alteration of silicate, and/or by calcite
dissolution and methane oxidative process, which increase alkalinity (Meister and
others, 2011).

The ancient presence of methanogens can certainly explain the textural relation
of dolomite and pyrite (for example Irwin and others, 1977), and as suggested by Fe
and Mn correlations described in methanogenesis-sourced dolomites, it might also
explain some of the inorganic chemical signals observed in our samples (for example
Burns and Baker, 1987; Burns and others, 1988; Loyd and others, 2012). In this
alternative scenario, exhaustion of sulfate — following microbial sulfate reduction —
would have favored methanogenesis as the likely fate for most carbon dioxide
produced during biodegradation of the sedimentary organic matter (for example
Irwin and others, 1977). However, diagenetic dolomite formed in equilibrium with
methanogenic waters usually exhibit much heavier �13C values — usually above 
8.5
permil (Kelts and McKenzie 1982; Burns and Baker, 1987; Roberts and others 2004),
and those observed in our dolomitic marlstones averaged 
2.5 permil; median 
2.4
permil (table 1).

The characteristic positive signature of methanogenic-sourced dolomites results
from the fact that methanogenic archaea discriminate against 13C to generate an
isotopically depleted methane, leaving the remaining dissolved inorganic carbon
(DIC) enriched in 13C (Claypool and Kaplan, 1974). The isotopically heavy carbonates
produced by methanogenesis contrast with the light signatures that should be ex-
pected in carbonates formed from either Mn(IV), Fe(III) or sulfate reduction (Cole-
man and others, 1993), and none of these isotopic carbon signatures are recorded in
our samples. In this regard, previous experimental work by Coleman (1985) reported
that dilution of the organic isotopic signature with a modern seawater-derived DIC
(�13C � 0‰) can shift the 13C content of carbonates formed under Mn(IV) and
Fe(III) reduction toward heavier values (for example �13C � �10 and �5‰, respec-
tively), while Irwin (1980) reported that the admixture of methanogenic- and seawater-
derived DIC can lead to Fe-dolomite with �13C values ranging from 
1.7 to 
8.9‰
(mean: 
6.1‰, median: 
7.3‰; n � 21).

The �13C carbonate values are relevant for interpretations on dolomite formation
mechanisms, yet for determining the involvement of specific metabolism these must be
linked to insights offered by the full range of authigenic mineralogies and supported
by the geochemistry of the samples. For example, the observation of equant microcrys-
talline gypsum crystals that are texturally related to dolomite, and the presence of
barite in some samples also exhibiting low DBT/Phen ratios (see above), argue against
a predominant methanogenic control over interstitial dolomite saturation. This is
because in a methanogenic pore water system, the secondary oversaturation of the
interstices of the dolomitic marls with sulfate would have led to the anoxygenic
oxidation of methane and the precipitation of a distinctively 13C depleted secondary
carbonate phase (for example Ritger and others, 1987), but not gypsum and/or barite.
Yet, neither methanotrophic nor unambiguous methanogenic carbon isotope signals
were recorded by our dolomite crystals, which, except for punctual overgrowths
(Appendix A), are generally low in iron as compared with the methanogenic-sourced
Jurassic and Neogene dolomites reported by Irwin (1980) and Burns and others
(1988), respectively.

Bearing in mind that late Aptian – early Albian seawater was likely enriched in 13C
(Menegatti and others, 1998; Naafs and others, 2016), we believe that the �13C of our
samples fall within the range that could be expected from dilution of the isotopic
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signature derived from Mn(IV) and Fe(III) reduction coupled to the oxidation of
sedimentary organic matter by isotopically heavier seawater-derived DIC (for example
Coleman, 1985). This interpretation, however, does not exclude some contribution of
methanogenically derived 13CO2 to the pore-water DIC pool, but points to the
problems in using bulk-rock carbon isotope signatures to recognize specific microbial
processes (see Raiswell and Fisher, 2000).

The picture that emerges is a mid-Cretaceous Maracaibo ramp being affected,
over the time span represented by the dolomitic marlstone intervals targeted here, by
the complex interplay between high-frequency sea level changes, climatically driven
drying and wetting events, and intrabasinal circulation patterns (fig. 9). These forcing
mechanisms induced high rates of subsurface microbial activity, with a substantial
environmental control exerted by the episodic expansion of ferruginous/euxinic
basinal waters from the adjacent Machiques trough to the restricted lagoonal ramp
settings. The evidence points to dolomite forming shortly after the onset of framboidal
pyrite precipitation in a shallow burial diagenetic realm affected by episodic mon-
soonal fluxes of oxidized terrigenous material into an anoxic epicontinental sea, which
remained redox stratified. This sequence of events ultimately favored the diagenetic
formation of the dolomitic marlstones.

We believe that the complexity of OAE 1-related conditions was recorded by the
authigenic mineral assemblage of the marlstones, and particularly by the intricate
chemical signals of the dolomite crystals interrogated here. Decoding such signals is
not a straight forward process because dolomite is a multigenic mineral sensitive to
evolving pore-water chemistries largely driven by the activity of subsurface microbial
consortiums. In this regard, our interpretation involving Fe(III) reduction and Mn
(IV) recycling represents a modest attempt to decode such signals, but there is
mounting evidence for unanticipated symbiotic relations in the dark biosphere that
could alter our current views on the mechanism of diagenetic dolomite stabilization
(for example Beal and others, 2009; Scheller and others, 2016).

conclusions

In the mid Cretaceous Maracaibo ramp, environmental shifts associated with
Milankovitch-scale cyclicity, led to the development of temporarily and spatially
restricted microenvironments favorable to early diagenetic dolomite formation. In our
paragenetic model, minor modifications in the redox equilibrium conditions caused
intense elemental recycling processes that involved microbial Mn(IV) and Fe(III)
reduction coupled to organic matter remineralization, and resulted in high pore-water
alkalinity and interstitial dolomite formation. Orbital perturbations that occurred a
few times over periods of 105 to 104 years, and climatic instability, such as tropical and
subtropical mid-Cretaceous monsoons, are believed instrumental for widespread early
diagenetic dolomite cementation into the laminar pyritic organic-rich intervals be-
cause they allowed the transport of thermodynamically favorable electron acceptors to
the organic-rich depositional setting. In this scenario, interstitial dolomite oversatura-
tion resulted from the complex interplay between climatically driven drying and
wetting events, high-frequency sea level changes, upwelling, and subsurface microbial
activity that produced specific trace metal enrichment trends recorded by our samples
and the individual dolomite crystals within them. Finally, similarity in the mineral
assemblage, geochemical signatures, and textural features of the microfacies studied
here to other OAE-affected successions suggests that the allocyclic controls and
general paragenetic mechanism proposed here were important in determining the
lateral and vertical distribution of organic-rich dolomitic marlstones in ancient epicon-
tinental basins.
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Appendices

Appendix A

authigenic minerals

Standard petrography reveals that the authigenic fraction of the microfacies studied here is dominated
by dolomite (42 – 48%), with minor pyrite, and quartz. SEM-EDS show lesser amounts of gypsum, calcite,
Ca-fluorapatite, and barite. All of the minerals listed above are within a detrital clayey matrix.

Dolomite

Dolomite occurs as fine- to medium-crystalline (40-120 	m) interstitial cement. The mineral is euhedral
to subhedral, and the samples contain no mimically replaced allochems. The contacts between fine dolomite
and the clayey matrix are typically planar-e, but medium size dolomite crystals, typically exhibiting secondary
overgrowths, may also have planar-s crystal boundaries (figs. 3A, C-D). After a mild etching treatment with
10% HCl (10 s), the partial dissolution of these Ca-enriched crystal cores reveal spheroidal features similar to
those observed on modern Ca-dolomite formed within mucilage sheaths (fig. A1A). Crystal cortices, on the
other hand, are relatively enriched in Mg, and do not exhibit spheroidal features after acid etching. In some
samples, the cortices were also found to be chemically zoned, with some degree of Fe-enrichment and near
stoichiometric Mg:Ca ratios (fig. A1B). Intracrystalline minor and trace element analysis measured in
dolomite from 4 representative samples via LA-ICP-MS are available in Appendix table A1.

Pyrite

Framboidal pyrite is a common mineral phase in the dolomitic shales from the Apón Formation �
(5–8%). The framboids are often embedded in dolomite cement (figs. A1C-A1D), and sometimes with Ca-F
apatite (see below). Most of the individual framboids exhibit sizes averaging 8 to 12 	m, but small framboids
(� 6 	m in diameter) were also observed. The crystals comprising the framboids are normally between 0.8
and 2 	m in size, but there are also aggregates of equant pyrite nanocrystals that are organized in an
irregular non-spheroidal texture (fig. A1E). The crystallites comprising these aggregates and the smaller
framboids can be as small as �300 nm. The small aggregates are more typically observed within the
argillaceous matrix (fig. A1E).

Quartz

Euhedral equant microquartz (15–20 	m in size) is commonly observed within the argillaceous matrix
(for example figs. 3E and A1E). Some samples also have chalcedony cement. Chalcedony did not develops as
a mineral replacement fabric, but as void filling rims within dolomite and clay (figs. A1F-A1G). Associated
with the chalcedonic rims are nanometer-scale features such a globules and fine-scale lamination that
suggest that they are silicified endolithic biofilms that grew over dolomite crystal surfaces (see fig. A1G).

Calcite

Partial calcification of dolomite was observed in the sample from borehole Z26D-2. The calcite is low in
Mg (� 4 wt. % MgCO3), and occurs as sub-micrometer scale patches within the core of the crystals. The
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mineral also occurs as overgrowths adjoining multigenic dolomite that show corroded crystal faces (figs.
A1H-A1I); in this sample, gypsum (see below) is notably absent.

Gypsum

In samples from wells TOT-3 (14 210’) and SOL-6 (18 008’), as well as in one sample from well UD-171
(16 245.8’), the dolomite crystals are not coated by silica but rather by equant gypsum microcrystals. The

Fig. A1. Additional textural features: (A) After partial leaching with 10% HCl, the crystals exhibit
features that are suggestive of multigenic origin. In the crystal cores it is possible to observe features that look
quite similar to modern Ca-dolomite; (B) the crystal cortices, on the other hand, are less soluble (Mg
enriched) and do not exhibit such features. Some cortices are also compositional heterogeneous, and might
be Fe enriched. (C-D) Pyrite framboids are often embedded within dolomite. (E) Pyrite is also present in the
matrix, where it can also form aggregates of equant pyrite, which are shown here within authigenic quartz
(F). Chalcedony can form thin micrometer scale veneers (arrow) around dolomite crystals (G). Within these
veneers, there are microtextural features suggestive of an early silicification process of a biofilm. (H-I)
Calcite overgrowths might be associated with corroded dolomite crystals.
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Table A1

In situ elemental concentration data of dolomite

Notes: Values shown are as follow: Maximum, Mean, and Minimum.
†n�11; §n�13; #n�10; ††n�11 (LA-ICPQ-MS analyses per sample); §§Averaged detection limits.
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mineral was only observed as a cement infilling pre-compaction voids between euhedral dolomite crystals
and their argillaceous matrix and is typically associated with fine (40-50 	m) dolomite crystals. (figs. 3C-3D).
The microcrystals show evidence of compaction (that is planar clay-gypsum interfaces) likely due to the
pressure exerted by the crystallization force of gypsum growing against its surrounding. This chemical
compaction caused planar intercrystalline boundaries of gypsum and produced local compaction with the
clayey matrix forced aside. The textural features of gypsum indicates that this phase can be considered
indigenous to these rocks, and not an artifact of pyrite oxidation or from the precipitation of evaporating
pore waters after recovery of the cores as interpreted by Patton and others (1984). The microcrystalline
gypsum rims do not show textural features that can be interpreted as mineralized biofilms, such as those
observed on the chalcedonic rims described above.

Other Accessory Mineral Phases

Ca-fluorapatite occurs as a pore-lining cryptocrystalline spheroidal phase, typically associated with the
organic-rich clayey matrix. It also has a textural association with submicron-scale pyrite (fig. A1E). SEM- EDS
analysis also revealed the presence of subhedral micron-sized (10-30 	m) barite (BaSO4) crystals (fig. 3G).

clay minerals

Illite was identified by its characteristic d001 spacing at circa 10.0 Å. Kaolinite was identified by its
characteristic air-dry basal spacing peaks at 7.1 and 3.6 Å, which remains invariant after glycol-solvation
(Kirsimäe and others, 1999). When the diffractograms of ethylene glycol-treated and air-dried aliquots of the
carbonate-removed samples are compared, the full widths at half-maximum of the 5.0 Å peak changed from
0.150 to 0.240 Å (fig. A2A). Such a feature is indicative of the presence of discrete smectite layers (Battaglia
and others, 2004). The illite-smectite mixed layers (I/S) gives a 001 peak at a d-value of �12.9 Å, which
expands to 16.7 Å after ethylene glycol treatment. The asymmetrical broadening of the air-dried aliquots is
significantly diminished after ethylene-glycol treatment (fig. A2A). When considered in terms of a broad
peak at ca. 10.0 Å that has a tail toward lower angles, the clay matrix seems dominated by disordered I/S.
Semi-quantitative XRD analysis of the �2 	m fraction revealed the following proportions (�2%): illite
(38%), kaolinite (27%), and disordered I/S clay (35%); with illite accounting for up to 60% of that fraction
(fig. A2A). Figure A2B shows the morphological features of the fine matrix material as observed in a
representative freshly broken sample. A peak at 1,040.98 eV, attributed to Na, is frequently observed via EDS
within the clay minerals (fig. A2C). The presence of both Na and Cl suggests that the sodium peak probably
represents halite impurities.

Appendix B

further details on carotenoid derivatives

The saturated hydrocarbon fraction contains the intact C40 carotenoid derivatives lycopane, �-carotane
and �-carotane. The aromatic fractions contain aryl isoprenoids with a 2,3,6-trimethyl substitution pattern in
the range C13 to C31, and the C40 parent compound isorenieratane (III), as well as traces of chlorobactane
(I) and �-isorenieratane (II) (fig. B1). Aryl isoprenoids with a 2,3,6-trimethyl substitution pattern may be the
cleavage products of aromatic carotenoids with the same substitution pattern, but may also form by
aromatization of acyclic carotenoids such as �-carotane (Koopmans and others, 1997; Brocks and Schaeffer,
2008). The distribution of 2,3,6 breakdown products in the range C30 – C31 can give clues about the
precursor molecules. A linear correlation between C30 and C31 aryl isoprenoid abundances (R2 � 0.99) is
evidence for an almost quantitative common biological origin for these two carotenoid breakdown products.
The following paragraphs discuss the origins of these compounds and their implications for water column
redox conditions.

The biogenic precursor of isorenieratane (III), isorenieratene, has two known biological sources:
species of the bacterial phylum Actinobacteria and brown-pigmented strains of Chlorobiaceae (green sulfur
bacteria) (Krügel and others, 1999; Ventura and others, 2007; Maresca and others, 2008). Actinobacteria
show a wide variety of physiological and metabolic properties and are widely distributed in terrestrial and
marine ecosystems (Ventura and others, 2007). Chlorobiaceae are strictly anaerobic, phototrophic bacteria
that mainly use sulfide as electron donor, although some species can use ferrous iron (Heising and others,
1999; Frigaard and Bryant, 2006). Populations occur in stratified holomictic and meromictic water bodies,
where their density is largest beneath the chemocline, but they also occur in shallow lagoons, stagnant
seawater pools, and salt marshes (Overmann and others, 1992; Trüper and Pfennig, 1992 and references
within; Manske and others, 2005). Chlorobiaceae also grow in microbial mats (Visscher and Stolz, 2005). In
mats as well as in the water column Chlorobiaceae usually thrive below purple sulfur bacteria (Chromati-
aceae), which have higher light requirements (Biebl and Pfennig, 1978).
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The cleavage products of isorenieratane (III) are aryl isoprenoids with a 2,3,6 trimethyl substitution
pattern. The loss of a terminal phenyl group through �-cleavage leads to fragments with 10 to 30 carbon
atoms. Therefore, a homologue with 31 carbon atoms should not form, as this would require an energetically
highly unfavourable cleavage in �-position to the aromatic ring. However, in the Maracaibo samples,
2,3,6-aryl isoprenoids include the C31 homologue, which is not produced by isorenieratane cleavage.
Moreover, as shown in table 2, C30 and C31 homologues are about equally abundant while higher
homologues (� C32) are not detected. The similar abundances indicate that the degradation of isoreni-

Fig. A2. Clay X-ray powder diffraction analyses: (A) the calculated X-ray powder diffraction profiles
illustrate the identification procedures for illite, illite/smectite, and kaolinite; the d-spacing values from 2�
Cu_K� radiation diffraction angles are labeled. The representative sample (TOT-3 14 210’) has 40%
smectite within disordered I/S layers (GE: ethylene glycol spectrum; AD: air dried spectrum). (B-D) Slightly
crenulated sodium-bearing clay minerals, as shown via EDS, (D) is a zoom over the area analyzed via EDS
(Gy: Gypsum, Dol: dolomite). (E) Pore-filling clays are often packed within dolomite overgrowths.
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eratene and its derivatives does not account for the bulk of the observed 2,3,6-trimethylated aryl isoprenoids.
The pattern can also not be explained by the cleavage of chlorobactane (I), as this would also produce
homologues with � 31 carbon atoms, which are lacking in the samples. Therefore, the source of the bulk
of � C31 aryl isoprenoids is neither isorenieratene nor chlorobactene but must be a carotenoid that readily
loses a C9 unit. One option is �-isorenieratene. However, its abundance is so low that it can be discounted as a
plausible major source.

C13 to C31 2,3,6-trimethylated aryl isoprenoid may also form by aromatization and cleavage of
carotenoids with a �-carotene skeleton (Koopmans and others, 1996). The aromatization of one ring and
cleavage of the second alicyclic ring can account for the observed aryl isoprenoid series, including the
presence of abundant C31 and absence of higher pseudohomologues. 13C of values of aryl isoprenoids can, in
principle, help differentiating between the two major sources of 2,3,6-aryl isoprenoids: aromatic carotenoids
or �-carotane derivatives (Koopmans and others, 1997). However, aryl isoprenoid concentrations were too
low in the shale samples to perform isotopic measurements.

As discussed above, cleavage of isorenieratene did not contribute significantly to the 2,3,6-AI pool,
demonstrating that isorenieratene was never significantly exposed to oxygen. Consequently, the bottom
waters remained anoxic throughout deposition of the analysed intervals, suggesting permanent and stable
stratification with little to no oxygen availability except for perhaps the shallowest waters. This result is
consistent with interpretations based on Fe speciation parameters, which suggest a stable anoxic environ-
ment with a dominantly ferruginous water column and transitory sulfidic conditions.

Appendix C

multivariable correlation of biomarker parameters

For PCA, the largest point scatter in multidimensional variable space coincides with the direction of the
first principal component (PC1). The direction of the second vector (PC2) is second largest point scatter
that is at orthogonal to the PC1 direction. Thus, a plot of PCl versus PC2 represents the best two-dimensional
separation of the variables into groups from n-dimensional space, and the plane for the first and second
principal component vectors has higher information content than any other two-dimensional projection of
the data. Further details are available in the online supplementary material (http://earth.geology.yale.edu/
%7eajs/SupplementaryData/2016/Petrash.pdf). The PC1 clusters the biomarker ratios and some inorganic
redox proxies in two distinct categories, Categories I and II. The environmental biomarker parameters
comprising both categories are listed in tables C1 and C2, respectively.

Fig. B1. Aromatic carotenoids derivatives and 2,3,6 aryl isoprenoids (AI) in a representative sample and
iron speciation data: (A) In the Maracaibo ramp, the C31 homologue is presumably derived from oxidation
and cleavage of a carotenoid with a �-carotene skeleton. C# identifies the carbon number of AIs.
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