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The source and sink potential model is used to predict the existence of omni-conductors (and omni-
insulators): molecular conjugated π systems that respectively support ballistic conduction or show
insulation at the Fermi level, irrespective of the centres chosen as connections. Distinct, ipso, and
strong omni-conductors/omni-insulators show Fermi-level conduction/insulation for all distinct pairs
of connections, for all connections via a single centre, and for both, respectively. The class of con-
duction behaviour depends critically on the number of non-bonding orbitals (NBO) of the molecu-
lar system (corresponding to the nullity of the graph). Distinct omni-conductors have at most one
NBO; distinct omni-insulators have at least two NBO; strong omni-insulators do not exist for any
number of NBO. Distinct omni-conductors with a single NBO are all also strong and correspond
exactly to the class of graphs known as nut graphs. Families of conjugated hydrocarbons correspond-
ing to chemical graphs with predicted omni-conducting/insulating behaviour are identified. For ex-
ample, most fullerenes are predicted to be strong omni-conductors. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4863559]

I. INTRODUCTION

Ballistic conduction on nano and mesoscopic scales is at-
tracting ever increasing interest with the availability of new
materials such as graphene sheets and flakes1 (potentially in
kilogram amounts2). One starting point for theoretical ac-
counts of this type of conduction is the study of molecular
conjugated structures, where electron transmission is known
to be a sensitive function of, amongst others, three major fac-
tors, namely, electron energy, contact position, and underlying
molecular structure. The field has a long history, and methods
continue to be developed.3 Sophisticated ab initio methods
for obtaining detailed information on molecular conduction
in particular systems have been developed (e.g., Refs. 4–9).
An alternative approach,10–13 which we take here, is to use
qualitative models to focus on generic types of conduction
behaviour.

A simple approach which is capable of dealing with π

systems is the graph theoretical source and sink potential
(SSP) model.13–22 The present work is concerned with this
model and the information that it may give about the interac-
tion of the factors of contact position and molecular structure.
In particular, we explore the possibility that some molecu-
lar structures may display a much reduced dependence of the
predicted transmission on precise positioning of the contacts.
Given the difficulties of attaching “wires” with atomic resolu-
tion, such insensitivity may have some practical advantages.
This motivates our definitions of omni-conductors and omni-
insulators and the search for classes of chemical graphs that
conform to these definitions.
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A molecule will be modelled by its molecular graph G,
which represents the carbon skeleton of a conjugated π sys-
tem. Chemical graphs are defined as graphs that are connected
and have maximum degree at most three; their vertices repre-
sent unsaturated carbon centres and their edges represent the
σ -bond framework. If we set aside the dependence of trans-
mission on energy by considering conduction to take place
at the Fermi level (corresponding to the zero of energy in
the Hückel/SSP model) and consider the molecule to be con-
nected to similar left and right wires via its atoms L̄ and R̄,
a natural question arises: Do conjugated molecular structures
exist for which there is conduction (non-zero transmission) at
the Fermi level for all choices of connections L̄ and R̄? An
equivalent question can be asked about insulation (zero trans-
mission).

We can imagine two types of connection of the wires to
“terminal” vertices L̄ and R̄ in the molecular graph: either
the connecting vertices are distinct, which is the relevant case
for most applications, or they coincide, which is the so-called
“ipso” case. The fractional transmission of a ballistic electron
at the Fermi level for a given connection pair (L̄, R̄), which is
here calculated within the SSP model, will be denoted T(0).
The combination of a graph G and a pair of contact vertices,
not necessarily distinct, will be called here a device. Hence,
from this point of view, there are in principle six interesting
classes of molecular graphs and the devices related to them.

1. A molecular graph is said to be a distinct omni-
conductor if T (0) �= 0 for all distinct pairs of connecting
vertices, L̄ and R̄.

2. A molecular graph is said to be an ipso omni-conductor
if T (0) �= 0 for all choices of single-vertex connection,
L̄ = R̄.

3. A molecular graph is said to be a strong omni-conductor
if it is both a distinct and an ipso omni-conductor.
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4. A molecular graph is said to be a distinct omni-insulator
if T(0) = 0 for all distinct pairs of connecting vertices
(terminals), L̄ and R̄.

5. A molecular graph is said to be an ipso omni-insulator
if T(0) = 0 for all choices of single-vertex connection,
L̄ = R̄.

6. A molecular graph is said to be a strong omni-insulator
if it is both a distinct and an ipso omni-insulator.

In fact, the sixth class turns out to be empty, as we will
prove, but all other classes include molecular graphs of chem-
ical interest.

A molecule with non-bonding orbitals corresponds to a
singular graph, and the number of non-bonding orbitals is
equal to the nullity: the number of zero eigenvalues of the
adjacency matrix of the graph. It has already been shown that
the numbers of non-bonding levels of molecular graphs and
subgraphs are important in defining selection rules for Fermi-
level conduction of given connection pairs in general,18 and
for graphene-related molecular graphs in particular.19 Here,
it will be demonstrated that nullity is also a crucial factor in
characterising omni-conductors and omni-insulators. Specif-
ically, we will prove that all distinct omni-conductors have
at most one non-bonding orbital whereas all distinct omni-
insulators have at least two, and will give a complete charac-
terisation of the nullity-one distinct omni-conductors.

The paper is arranged as follows. After a brief summary
of the SSP model and graph theoretical background (Sec. II),
we give a unified treatment of the selection rules for Fermi-
level conduction/insulation of individual devices in terms of
characteristic polynomials, nullity of graphs, and vertex types
(Secs. III and IV). This leads to existence and characterisation
results for the six classes of omni-conductors and insulators
(Sec. V). In Sec. VI, explicit calculations for large numbers
of graphs in various chemically interesting classes and infinite
families are presented, with statistical information about the
distribution of the different classes, leading to the conclusion
(Sec. VII) that omni-conduction at the Fermi level could be a
widely occurring phenomenon.

II. BACKGROUND

A. The SSP model

The SSP Hamiltonian gives a simple model of
ballistic conduction of electrons through a conjugated
molecule.12, 14, 15 In the tight-binding approximation, calcula-
tion of the fractional transmission of an electron with given
energy reduces to the solution of the Hückel problem un-
der scattering boundary conditions, and hence to an es-
sentially graph theoretical question, as conduction is deter-
mined by functions of the characteristic polynomials of four
graphs.13, 16–19

In the SSP model, the transmission function for a
molecule that has a carbon skeleton with graph G connected
to similar left and right wires via molecular vertices L̄ and R̄

is given by13

T (E) = 4 sin2 q (ut − sv) β̃2

|e−2iqs − e−iq(u + t)β̃ + vβ̃2|2 , (1)

where E is the reduced electron energy, defined on a scale
where the unit is the molecular resonance integral |β|, and
the zero is the molecular coulomb integral α, which is taken
here as the Fermi level. Coulomb integrals are assumed to be
equal throughout the device, and the parameter β̃ is defined
by the values of resonance integrals within wires (βL = βR)
and between molecule and wire (βLL̄ = βRR̄), in units of the
molecular resonance integral β (which is the unit for all en-
ergies occurring in the model): β̃ = β2

LL̄
/βL = β2

RR̄
/βR . Typ-

ically, β̃2 � 1/2.13, 14 The 4 sin 2q factor in (1) acts to con-
fine transmission to the conduction band of the wires. In (1)
q is the wavenumber of the electron wave (defined by E
= 2cos q, with energy in units of |β|). The quanti-
ties s, t, u, v are the characteristic polynomials φ(G, E),
φ(G − L̄, E), φ(G − R̄, E), φ(G − L̄ − R̄, E) of the graphs
G, G − L̄, G − R̄, and G − L̄ − R̄, respectively, i.e., they are
the determinants

s(E) = |EI − A(G)|,
t(E) = |EI − A(G − L̄)| = |EI − A(G)|L̄,L̄,

(2)
u(E) = |EI − A(G − R̄)| = |EI − A(G)|R̄,R̄,

v(E) = |EI − A(G − L̄ − R̄)| = |EI − A(G)|L̄R̄,L̄R̄,

where I is the identity matrix of the appropriate dimension
and A(H) is the adjacency matrix of a graph H. Note that
G must be a connected graph if it is to represent a conju-
gated π system; deletion of vertices as in G − L̄, G − R̄,
and G − L̄ − R̄ may result in a disconnected graph. The su-
perscripts on the determinants indicate deletion of a set of
rows and columns, corresponding to the deletion of vertices
of G. Another quantity that is important in the determination
of transmission is the combination ut − sv, which is equal to
a squared polynomial23

j 2(E) = u(E)t(E) − s(E)v(E) = (|EI − A(G)|L̄,R̄)2. (3)

It can be shown that j(E) is the entry at position L̄, R̄ of
the adjugate matrix adj(EI−A) and, if the matrix (EI−A) is
invertible, then at any energy E, j(E) is proportional to the
L̄, R̄ entry in the inverse (EI−A)−1, with constant of propor-
tionality equal to the determinant of the matrix.24 The usual
distinct case for a molecular device has L̄ �= R̄. In the ipso
case, where both wires contact a single atom, L̄ = R̄, polyno-
mials t and u are identical, and v is deleted from the equations.

As E = 2cos q, the full energy dependence of the trans-
mission (1) is given by

T (E) = (4 − E2)j 2β̃2

[(s − vβ̃2)2 + (u + t)2β̃2] − E(s + vβ̃2)(u + t)β̃ + E2svβ̃2
, (4)
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and for transmission of electrons at the Fermi level, the limit
is taken according to

T (0) = lim
E→0

T (E).

In the analysis that follows, we assume that β̃2 is not a “spe-
cial value,” i.e., we assume that β̃ �= 0 and that (s − vβ̃2)2

�= 0 at the energy of interest. Thus, effectively, questions
about the vanishing of (s − vβ̃2)2 can be answered by inspec-
tion of s2 + v2. Physically, the claim is that even if β̃ hap-
pens to take one of the special values, there will always be a
“nearby” device where it does not, and to which our generic
conclusions will apply.

It is straightforward to show that the zero-energy limit of
(4) is equivalent to the simpler expression

T (0) = lim
E→0

4j 2β̃2

[(s − vβ̃2)2 + (u + t)2β̃2]
. (5)

The question for a qualitative treatment is whether T(0) is
zero, or not. It has been shown18 that the answer to this ques-
tion for a given connection pattern can be decided in almost
all cases simply by counting the zero eigenvalues of the graph
and of its vertex-deleted subgraphs, which leads to a set of
“selection-rules” for conduction. In order to exploit this in-
sight further, and make a systematic investigation of the ques-
tions of omni-conduction and insulation, it is necessary to un-
derstand how the outcome depends on the intrinsic properties
of the connecting vertices relative to the nullspace vectors. To
help with this task, we introduce some notation and results
from graph theory and linear algebra in Sec. II B. More detail
on the mathematical arguments can be found in Ref. 25.

B. Graph theoretical notation

The eigenvalue problem for the adjacency matrix A of a
graph is

Aci = Eici , (6)

where for some non-zero vector ci the matrix has an eigen-
value Ei. For a n-vertex graph G, the n values of Ei form
the spectrum of G. The eigenvectors ci of A correspond to π

molecular orbitals in the Hückel approximation and without
loss of generality the entries ci

r can be taken to be real. (Here
the subscript r denotes the vertex and the superscript i the
molecular orbital.) For conduction of a connected π -system G
at the Fermi level, (E = 0), it is critical to consider the number
of non-bonding orbitals. This number is the multiplicity gs of
the zero eigenvalue in the spectrum, also called the nullity of
the graph. A graph is singular if gs > 0. We shall organise
the eigenvectors ci of the adjacency matrix such that the gs

eigenvectors in the nullspace are placed first.
A vector c in the nullspace of the adjacency matrix A

is said to be a kernel eigenvector of G. For singular graphs
the vertices can be partitioned into core and core-forbidden
vertices. A core-forbidden vertex (CFV) corresponds to a zero
entry in every kernel eigenvector. A vertex corresponding to
a non-zero entry for some kernel eigenvector is a core vertex
(CV). Core graphs are defined as singular graphs in which
each vertex is a core vertex. A core graph of nullity one is

termed a nut graph. Nut graphs are connected, non-bipartite
and have no vertices of degree one.26

The Interlacing Theorem27 states that the eigenvalues
of a vertex-deleted subgraph interlace the eigenvalues of
the parent graph. As a consequence, the multiplicity (num-
ber of repetitions) of any one eigenvalue in the spectrum
changes by at most one on deletion of a vertex. A nec-
essary and sufficient condition for the nullity to decrease
on deletion of a vertex from a graph is that the deleted
vertex is a CV. Therefore, by interlacing, deletion of a
CFV either leaves the nullity unchanged or increases it by
one. We call a CFV upper where the nullity increases and
middle where the nullity remains unchanged. In this language,
a CV is said to be lower. Other terms are also used in the lit-
erature: the CFVs are referred to as peripheral vertices; up-
per vertices are variously termed maximal,28 Parter, or rank-
strong vertices;29 middle vertices are called intermediate28

or rank-neutral;29 and lower vertices are also called downer
or rank-weak vertices.29 Bipartite graphs do not have middle
vertices.

C. Characteristic polynomials

For a graph G of nullity gs, the characteristic polynomial
is

s(E) =
n∏

i=1

(E − Ei) = s0(E)Egs , (7)

where s0(E) is the product over the non-nullspace

s0(E) =
n∏

i=gs+1

(E − Ei). (8)

Note that s0(0) �= 0. We will write s0 for s0(E), s for s(E), etc.,
where there is no ambiguity.

The other polynomials t(E), u(E), j(E), and v(E) can be
expressed in terms of the eigenvector entries {ci

L̄
} and {ci

R̄
}

associated with the connecting vertices L̄ and R̄, as described
in Ref. 25. (As noted earlier, we are assuming that all eigen-
vector entries are real.) These polynomials are

t(E) =
n∑

i=1

(
ci
L̄

)2 ∏
j �=i

(E − Ej ) =
n∑

i=1

(
ci
L̄

)2

E − Ei

s0(E)Egs ,

(9)

u(E) =
n∑

i=1

(
ci
R̄

)2 ∏
j �=i

(E − Ej ) =
n∑

i=1

(
ci
R̄

)2

E − Ei

s0(E)Egs ,

(10)

j (E) =
n∑

i=1

(
ci
L̄
ci
R̄

)∏
j �=i

(E − Ej ) =
n∑

i=1

ci
L̄
ci
R̄

E − Ei

s0(E)Egs .

(11)
Since the first gs eigenvectors belong to the nullspace,

each polynomial can be split into two sums that differ in their
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explicit dependence on E:

t(E) =
gs∑

i=1

(
ci
L̄

)2
s0(E)Egs−1 +

n∑
i=gs+1

(
ci
L̄

)2

E − Ei

s0(E)Egs

= tbE
gs−1 + taE

gs , (12)

u(E) =
gs∑

i=1

(
ci
R̄

)2
s0(E)Egs−1 +

n∑
i=gs+1

(
ci
R̄

)2

E − Ei

s0(E)Egs

= ubE
gs−1 + uaE

gs , (13)

j (E) =
gs∑

i=1

ci
L̄
ci
R̄
s0(E)Egs−1 +

n∑
i=gs+1

ci
L̄
ci
R̄

E − Ei

s0(E)Egs

= jbE
gs−1 + jaE

gs . (14)

Hence, using (3), the characteristic polynomial for the
two-vertex deleted graph, v(E), splits into three:

v(E) = vcE
gs−2 + vbE

gs−1 + vaE
gs , (15)

where

va = 1

s0

(
uata − j 2

a

) = 1

2
s0

n∑
i=gs+1

n∑
j=gs+1

(
ci
L̄
c
j

R̄
− c

j

L̄
ci
R̄

)2

(E − Ei)(E − Ej )
,

(16)

vb = 1

s0
(uatb+ubta−2jajb)=s0

gs∑
i=1

n∑
j=gs+1

(
ci
L̄
c
j

R̄
−c

j

L̄
c
j

R̄

)2

E − Ej

,

(17)

vc = 1

s0

(
ubtb − j 2

b

) = 1

2
s0

gs∑
i=1

gs∑
j=1

(
ci
L̄
c
j

R̄
− c

j

L̄
ci
R̄

)2
, (18)

and in particular

j 2
a = uata − s0va, (19)

jajb = 1

2
(uatb + ubta − s0vb), (20)

j 2
b = ubtb − s0vc, (21)

so that va , vb, and vc can be derived directly from the seven
quantities s0, ta, . . . jb. All the above expressions apply to
cases with gs ≥ 2. For gs = 1, the term in vc is to be set to
zero, and, for gs = 0, only the terms in ta, ua, ja, and va are
present.

An expression for T(E) can now be assembled, and its
limit taken using the numerator and denominator terms from
(5). The numerator is

4β̃2j 2 = 4β̃2
(
j 2
a E2 + 2jajbE + j 2

b

)
E2gs−2, (22)

TABLE I. The seven conditions for insulation.

gs = 0 ja = 0

gs = 1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

jb = 0 and ja = 0

or

jb = 0 and ja �= 0

⎧⎪⎪⎨
⎪⎪⎩

ub + tb �= 0

or

vb �= 0

,

gs > 1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

vc �= 0

or

vc = 0

⎧⎪⎪⎨
⎪⎪⎩

jb = 0 and ja �= 0 and vb �= 0 and ub + tb �= 0

or

jb = 0 and ja = 0

.

and the denominator is

(s − β̃2v)2 + (u + t)2β̃2

= {
E4[(s0 − β̃2va)2 + (ua + ta)2β̃2]

+E3[−2vb(s0 − vaβ̃
2)β̃2 + 2(ua + ta)(ub + tb)β̃2]

+E2
[
v2

b − 2vc(s0 − vaβ̃
2) + (ub + tb)2

]
β̃2

+E[2vbvc]β̃4 + v2
c β̃

4
}
E2gs−4. (23)

As both numerator and denominator may vanish at
E = 0, it is not sufficient simply to examine whether j van-
ishes to determine the conduction or insulation behaviour of a
device with a given pair of contacts. In general, it is necessary
to delve more deeply into the cancellation behaviour of the
numerator and denominator as E approaches zero.

The advantage of the present formulation for T(E) is that
the conductive properties of all devices based on a given
molecular graph can be determined from a simple calcula-
tion of the eigenvectors and eigenvalues of G alone. No sepa-
rate calculations on the n vertex-deleted graphs G − w or the
n(n − 1)/2 double-deleted graphs G − w − z are required.
This gives the basis for an efficient computational scheme for
identifying omni-conductors and omni-insulators. Conditions
for insulation or conduction for a distinct pair of contact ver-
tices in a graph with a particular nullity are easily deduced
(Tables I and II); analogous conditions for ipso connections
are derived by setting va = vb = vc = 0, ua = ta, and ub = tb.

TABLE II. The seven conditions for conduction.

gs = 0 ja �= 0

gs = 1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

jb �= 0

⎧⎪⎪⎨
⎪⎪⎩

ub + tb �= 0

or

vb �= 0
or

jb = 0 and ja = 0 and ub + tb = 0 and vb = 0,

gs > 1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vc = 0 and jb �= 0

⎧⎪⎪⎨
⎪⎪⎩

ub + tb �= 0

or

vb �= 0
or

vc = 0 and jb = 0 and ja �= 0 and ub + tb = 0 and vb = 0.
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The reader interested only in the results could now skip
to Sec. V, where the global deductions about classes of con-
ductors are summarised, and then to Sec. VI where results for
specific families of chemical graphs are described.

III. DEVICES AND VARIETIES

The various contributions ua to vc have different limiting
behaviour, depending on the types of the contact vertices. In
particular, if the characteristic polynomial of a vertex-deleted
subgraph G − w of a graph G (with w a generic vertex) is cast
in the form

φ(G − w,E) = fb(E)Egs−1 + fa(E)Egs , (24)

then the values of fa and fb at E = 0 distinguish the three types
of vertex and their effect on the nullity as follows:

Vertex w nullity of G − w

Lower (CV) is reduced by one to gs − 1 fb(0) �= 0
Middle (CFV) remains unchanged at gs fb(0) = 0 and fa(0) �= 0
Upper (CFV) is increased by one to gs + 1 fb(0) = 0 and fa(0) = 0

In principle, there are 64 types of devices, depending on
which of the six parameters ub, tb, vb, vc, ja, and jb vanish
at E = 0, but not all combinations are possible, because of
the interlacing theorem, and not all are independent, as L̄ and
R̄ play symmetrical roles. A device with distinct connections
(L̄ �= R̄) falls under one of three categories:

Category (1), both L̄ and R̄ are CV;
Category (2), exactly one of L̄ and R̄ is a CV, and the other

is a CFV; and
Category (3), both L̄ and R̄ are CFV.

This leads us to define six main varieties of connection
pairs:

Variety 1: two CV connections,
Variety 2a: one CV connection and one CFV middle,
Variety 2b: one CV connection and one CFV upper,
Variety 3a: two CFV upper connections,
Variety 3b: one CFV middle connection and one CFV

upper,
Variety 3c: two CFV middle connections.

Varieties 1 and 2 are characterised by tb(0) �= 0 and/or
ub(0) �= 0. Recall that tb(0) �= 0 iff L̄ is a CV, and ub(0)
�= 0 iff R̄ is a CV. The varieties can be further subdivided into
types distinguished by the behaviour at E = 0 of t, u, v, or j.
A further subdivision of varieties can be based on the relative
nullities of G, G − L̄, G − R̄, and G − L̄ − R̄, which in turn
are restricted by the operation of the Interlacing Theorem.

The final set of 12 device varieties is summarised in
Table III, where details of the properties of the characteristic
polynomials at E = 0, and the conclusions that can be drawn
about their conduction/insulation behaviour, are also listed.

Every variety is realised in some chemical graph, and
a single molecular graph may have connection pairs of sev-
eral varieties. The table also gives the correspondence with
the 11 cases previously used to derive the nullity-based se-
lection rules for molecular conduction.18 Devices with dis-
tinct connections conduct or not, depending on four selection
rules based on the quantities gs, gt, gu, gv , which are the num-
bers of zero roots of the four characteristic polynomials s, t,
u, and v, respectively. We write s(0) = s0E

gs , t(0) = t0E
gt ,

u(0) = u0E
gu , and v(0) = v0E

gv , where s0, t0, u0, and v0 are
all non-zero. The selection rules are then as follows.18

Rule (i) For bipartite G, the system conducts at the Fermi
level iff

gs = gv and gt = gu. (25)

TABLE III. A characterization of devices (G, y, z). The nullity signature (gs, gt , gu, gv) lists the numbers of zero
eigenvalues of the graphs G, G − L̄, G − R̄, and G − L̄ − R̄. The 12 varieties defined from the nullity signature
in the present paper are correlated with the 11 cases defined in the earlier treatment of the nullity selection
rules;18 the variety/case marked 3c(iiB) and �7 corresponds to the so-called accidental situation, where all four
graphs have equal nullity and ja(0)2 = ua(0)ta(0) − s0(0)va(0) = 0, but the terms ua(0)ta(0) and s0(0)va(0) are
individually non-zero.

Kind (gs, gt , gu, gv) Variety Case18 Conduction?

Two CVs 1
(gs, gs − 1, gs − 1, gs − 2) 1(i) 11 Insulation
(gs, gs − 1, gs − 1, gs) 1(ii) 9 Conduction
(gs, gs − 1, gs − 1, gs − 1) 1(iii) 10 Conduction

CV and CFV 2
(gs, gs + 1, gs − 1, gs) 2a 5 Insulation
(gs, gs, gs − 1, gs − 1) 2b 8 Insulation

Two CFVs 3
(gs, gs + 1, gs + 1, gs) 3a(i) 2 Conduction
(gs, gs + 1, gs + 1, gs + 2) 3a(ii) 1 Insulation
(gs, gs + 1, gs, gs + 1) 3b(i) 3 Insulation
(gs, gs + 1, gs, gs) 3b(ii) 4 Conduction
(gs, gs, gs, gs + 1) 3c(i) 6 Conduction
(gs, gs, gs, gs) and ja(0) �= 0 3c(iiA) 7 Conduction
(gs, gs, gs, gs) and ja(0) = 0 3c(iiB) �7 Insulation
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Rule (ii) For non-bipartite G where the four graphs G,
G − L̄, G − R̄, and G − L̄ − R̄ do not all have the
same number of zero eigenvalues, the system conducts
at the Fermi level iff

min{(gs + gv)/2, (gt + gu)/2} = min{gs, gt , gu, gv}.
(26)

Rule (iii) For non-bipartite G with equal numbers of zero
eigenvalues for all of G, G − L̄, G − R̄, or G − L̄ − R̄,
i.e., g = gs = gt = gu = gv , the system conducts at the
Fermi level iff j2 is non-vanishing after factoring out the
2gs trivial zero roots.

Rule (iv) For the ipso device: if G has gs zero eigenvalues,
then T(0) = 0 for gt = gs + 1, 0 < T(0) < 1 for gt = gs,
and T(0) = 1 for gt = gs − 1, i.e., the system conducts
at the Fermi level iff

gt ≤ gs. (27)

(In fact, this condition is equivalent to requiring that the
connection vertex is not an upper CFV.)

The extra utility of thinking about classification of ver-
tices by CV and CFV types is that it gives a different way of
detecting when and why certain cases can occur. It also leads
to the possibility of deriving “super selection rules” for omni-
conductors and omni-insulators that deal simultaneously with
all devices based on given graphs, as will be demonstrated in
Sec. V. Some relationships that link the types of the connec-
tion vertices with the conduction behaviour of the device and
are easily proved include the following.

Proposition 3.1. A device with two core vertices as con-
nections (Variety 1) is an insulator at E = 0 iff it is of Variety
1(i), i.e., has gv = gs − 2.

Proposition 3.2. For Variety 2 connections, i.e., with one
CV and one CFV, there is no conduction at E = 0.

Connections of Variety 3, where both are CFV, yield
more mixed results. In Variety 3c(ii), gv = gs , va is non-zero
at E = 0, and two cases may occur: either ja �= 0 at E = 0,
or ja has more than one zero. The first case is Variety 3c(iiA),
and the device conducts. The second is Variety 3c(iiB), and
the device is an insulator. Both varieties are included under
a single “Case 7” in the classification by nullity signature
that was used in the previous treatment;18 in the present case,
3c(iiB) corresponds to the “accidental” subcase of Case 7,
where u0t0 − s0v0 vanishes.

IV. TRANSMISSION OF DEVICES

The considerations of Sec. III lead to some general con-
clusions based on the types of connection vertex.

A. Distinct connections

1. Graphs of nullity gs = 0

A simple criterion emerges for non-singular graphs,
namely, that Fermi insulation or conduction across L̄ and R̄

depends only on whether ja vanishes or not at E = 0, as the de-
nominator in (5) does not vanish for gs = 0. Furthermore, for
nullity gs = 0, the entry in position L̄, R̄ of (EI−A)−1 is equal
to ja(E) divided by the determinant |EI−A|.24 Therefore,

Theorem 4.1 A necessary and sufficient condition for
conduction at E = 0 of a non-singular graph with connection
vertices L̄, R̄ is that (A−1)L̄,R̄ �= 0.

Note that as the determinant |A| is non-zero for a non-
singular graph, we could equally well test the adjugate adj(A).

2. Graphs of nullity gs = 1

For graphs of nullity one, there is an analogous but
weaker condition for conductivity, based on the adjugate
matrix.

Theorem 4.2. A sufficient condition for conduction at E
= 0 of a device based on a graph of nullity one with connec-
tion vertices L̄ and R̄ is that L̄ and R̄ are core vertices and
adj (A)L̄,R̄ �= 0.

Note that as the entry in adj(A) is non-zero for every
core-core pair in a graph with nullity one, this implies that
all core-core-pairs are conducting for graphs with gs = 1.
Moreover, it is straightforward to show from Table III that,
for gs = 1, when the pair L̄, R̄ consists of one core and one
core-forbidden vertex (hence gt = gs − 1 and gv = gs or
gv = gs − 2), the device is insulating. This case can be recog-
nised from the adjugate, since for a CV/CFV pair the off-
diagonal entry adj(A)L̄R̄ is zero and exactly one of adj(A)L̄L̄

and adj(A)R̄R̄ is non-zero, with the non-zero entry corre-
sponding to the core vertex.30 Behaviour of devices where
both L̄ and R̄ are core-forbidden depends on the combina-
tions of upper and middle types, as detailed by the selection
rules (Table IV).

3. Graphs of nullity gs > 1

When the nullity is larger, the situation for core-core pairs
is more complicated, but we do have one useful statement.

Theorem 4.3. A device where both L̄ and R̄ are core ver-
tices and gs ≥ 2 is insulating if the nullity of G − L̄ − R̄ is gs

− 2, i.e., if L̄ is a core vertex of G − R̄ and R̄ is a core vertex
of G − L̄.

TABLE IV. Classification of omni-conductors and omni-insulators by class
and nullity. NONE indicates classes unrealisable by connected graphs. Of
the nine realisable classes, two are precisely the class of nut graphs (denoted
NUT). Other realisable classes are simply marked SOME.

Non-singular Nullity one Nullity ≥ two

Distinct omni-conductor SOME NUT NONE
Ipso omni-conductor SOME SOME SOME
Strong omni-conductor SOME NUT NONE
Distinct omni-insulator NONE NONE SOME
Ipso omni-insulator SOME NONE NONE
Strong omni-insulator NONE NONE NONE
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The significance of this apparently technical statement
derives from the fact that all graphs with gs ≥ 2 have at
least one such core-core pair. The existence of this pair is
easily proved using the idea of vertex representatives of the
nullspace of a graph.31, 32 The essential idea is that for gs ≥ 2
it is always possible to construct gs independent (not neces-
sarily orthogonal or normalised) kernel eigenvectors such that
when these vectors are written out as rows with core vertices
occurring first, the entries for the first gs vertices form a gs

× gs identity matrix. A consequence of taking this special
form of the vectors is that removal of any two of the chosen
core vertices leads to a graph with nullity gv = gs − 2. Hence,
every graph with gs ≥ 2 gives rise to at least one device with
distinct connections that is insulating at the Fermi level.

Note that it is possible to find graphs with gs ≥ 2 where
every vertex is a CV and hence every pair of connections L̄

and R̄ leads to insulation. Graphs of this type have been called
uniform-core graphs.25

B. Ipso connections

For ipso connections, the formula for transmission (5) re-
duces to a single form, irrespective of the nullity of the graph:

T (E) = 4β̃2t2

s0
2 + 4β̃2t2

. (28)

If tb �= 0 the device conducts. If tb = 0 then either ta(0)
�= 0, giving conduction, or ta(0) = 0, giving insulation. The
equivalents for ipso devices of the various statements made in
Sec. III A about distinct devices are as follows.

Theorem 4.4. A necessary and sufficient condition for
conduction at E = 0 of a non-singular graph with connection
vertices L̄ = R̄ is that (A−1)L̄,L̄ �= 0.

For non-singular graphs t = ta(E), and the device con-
ducts if and only if ta(0) �= 0. For singular graphs, the CVs and
CFVs are distinguished by the value of tb. Moreover, the value
of ta(0) distinguishes between ipso connections at middle and
upper vertices, for which there is conduction and insulation,
respectively.

Theorem 4.5. For an ipso connection in a singular
graph, there is conduction at E = 0 when the connecting ver-
tex v is a CV or a middle CFV, and conversely, insulation
when the connecting vertex is an upper CFV.

V. IMPLICATIONS FOR OMNI-CONDUCTORS
AND OMNI-INSULATORS

The results described in Sec. IV can be assembled to
give a global picture of the classes of omni-conductors and
omni-insulators. The existence of omni-conductors could be
expected, as the systems under study are conjugated, with
extensive delocalisation of electrons, but the fact that omni-
insulators also exist is more surprising, as an omni-insulator
has mobile, delocalised electrons, and yet by definition does
not conduct at the Fermi level, no matter which connection
vertices are chosen.

Our general deductions from combinations of the theo-
rems of Sec. IV will be grouped first by nullity and then by
class of omni-conductor/insulator.

A. Deductions by nullity

1. Nullity gs = 0

Deduction 5.1. A non-singular graph (gs = 0) is a strong
omni-conductor iff the inverse matrix A−1 is full (i.e., has no
zero elements).

The isolated-pentagon C60 is one of many fullerene ex-
amples of strong omni-conductors of this type.

Deduction 5.2. A non-singular graph (gs = 0) is a distinct
omni-conductor iff the off-diagonal part of the inverse matrix
A−1 is full.

Families of non-singular graphs that are distinct omni-
conductors include the complete graphs Kr, r ≥ 2 and the cy-
cles C2k + 1, k ≥ 1.

Deduction 5.3. A non-singular graph (gs = 0) is an ipso
omni-conductor iff the inverse matrix A−1 has a full diagonal.

Deductions 5.1 and 5.3 can be interpreted as saying that
for a non-singular graph to be an ipso omni-conductor, each
vertex must be a middle CFV.

Deduction 5.4. There are no non-singular distinct
omni-insulators (and hence no non-singular strong omni-
insulators).

(This is easy to see: if A−1 is diagonal, then so is A,
implying that the graph G has no edges and hence is not
connected.) Non-singular ipso omni-insulators do exist, how-
ever, and in fact all ipso omni-insulators are non-singular,
with each vertex being an upper CFV. For example, any
non-singular bipartite graph consists entirely of upper core-
forbidden vertices and hence is an ipso omni-insulator: this
class includes all Kekulean benzenoids. A curious observa-
tion is that a graph may be ipso omni-insulating but distinct
omni-conducting (a so-called nuciferous graph25), although it
must be said that we know of only one example of a graph
with this combination of properties. That example is K2, the
complete graph on two vertices.

2. Nullity gs = 1

From Theorem 4.3, we have the following deduction.

Deduction 5.5. The distinct omni-conductors with gs = 1
are exactly the nut graphs.

This follows easily from the fact that a singular graph has
core vertices. If the graph has any core-forbidden vertex, there
is at least one insulating device. Hence, any distinct omni-
conductor must contain only core vertices. A graph that has
only core vertices and nullity 1 is a nut graph by definition.
Nut graphs are also ipso omni-conductors.

Clearly, therefore,

Deduction 5.6. The strong omni-conductors with gs = 1
are exactly the nut graphs.
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Note that the nut graphs are only a subset of the ipso
omni-conductors with nullity 1. For example, the isolated-
pentagon fullerene C70 has gs = 1, is not a nut graph, but
is an ipso omni-conductor.33

Deduction 5.7. There are no omni-insulators with gs = 1.

This follows from the fact that any graph with gs = 1
has at least two core vertices, but clearly cannot have gv

= gs − 2; there is at least one conducting device with distinct
connections, and at least two with ipso connections, all based
on the same graph.

3. Nullity gs > 1

Again from Theorem 4.3:

Deduction 5.8. There are no distinct (and no strong)
omni-conductors of nullity gs > 1.

We can remark that ipso omni-conductors with gs ≥ 2
exist: they may contain core vertices only, or consist of a mix-
ture of core and middle vertices. An example is the “carbon
cylinder”34 isomer of fullerene C84, which has gs = 3.

Deduction 5.9. There are no ipso (and hence no strong)
omni-insulators of nullity gs > 1.

Equivalently, all ipso omni-insulators are non-singular.
(The proof is the same as for gs = 1.) However, singular
distinct omni-insulators exist. They must contain only core
vertices and each of the pairs of core vertices must give
gv = gs − 2, implying gs ≥ 2.

B. Deductions by conduction class

The results listed in this section so far show that nul-
lity one is an important dividing line between conducting
and insulating regimes. Four global statements emphasising
this special role of non-bonding orbitals in conduction, all of
which follow from the above, are as follows.

Deduction 5.10. All distinct and strong omni-conductors
have nullity gs ≤ 1.

Deduction 5.11. For nullity gs = 1, all distinct or strong
omni-conductors are nut graphs.

Deduction 5.12. All distinct omni-insulators have nullity
gs ≥ 2.

Deduction 5.13. There are no strong omni-insulators.

Table IV reports the main theoretical conclusions of the
paper as a summary of the distribution of conduction and
insulation behaviour across the six classes and three nullity
regimes. It can be seen that nine of the 18 combinations are
impossible and nine are realisable, of which two are charac-
terised exactly as the nut graphs. Significantly, we have ex-
amples of chemical graphs for all of the realisable combina-
tions. Conjugated π systems with the various predicted omni-
conduction or omni-insulation properties are in fact very com-
mon in chemistry.

VI. RESULTS

A. Statistics of conduction of molecular graphs

We have defined omni-conductors and omni-insulators.
It remains to check their abundance amongst graphs of
conjugated systems, and identify families that show these
properties. Calculations implementing the rules embodied in
Tables I and II were carried out for various sets of graphs.
Generators geng (part of the nauty software written by
B. D. McKay and available at http://cs.anu.edu.au/~bdm/),
plantri,35 CaGe,36 fullgen,37 and our own ad hoc programs
were used to construct general families of graphs.

The generated datasets include chemical graphs (con-
nected graphs with maximum degree ≤3), chemical trees
(acyclic chemical graphs), benzenoids (subgraphs of the
hexagonal tessellation of the plane with all internal faces
hexagonal and without holes or handles), cubic polyhedra
(planar, 3-connected graphs), fullerenes (cubic polyhedra
with face sizes restricted to 5 and 6), general graphs (con-
nected graphs without limitation of maximum degree), and
general trees (acyclic general graphs).

For all sets, conductors and insulators were enumerated.
Summaries of the results are given in Tables V–IX. In the ta-
bles, we count “pure” cases of each type. Pure ipso or distinct
omni-insulators/conductors are, respectively, ipso or distinct
but not strong.

If extrapolation from small numbers can be trusted, omni-
conductors and omni-insulators constitute only a small frac-
tion of chemical graphs and general graphs. In chemical
graphs, the proportion appears to oscillate around a gen-
eral decrease with increasing n. Subject to the caveat about
small numbers, pure ipso omni-conductors are more numer-
ous than strong omni-conductors, which in turn are more

TABLE V. Distribution of omni-insulators and omni-conductors amongst
chemical graphs with n ≤ 16. N(n) is the total number of chemical graphs,
Ni

ipso is the number of pure ipso omni-insulators, and Ni
distinct is the num-

ber of pure distinct omni-insulators. Nc
ipso is the number of pure ipso omni-

conductors, Nc
distinct is the number of pure distinct omni-conductors, and

Nc
strong is the number of strong (ipso + distinct) omni-conductors. Nnut counts

the chemical graphs that are also nut graphs.

Insulators Conductors

n N(n) Ni
ipso Ni

distinct Nc
ipso Nc

distinct Nc
strong Nnut

2 1 1 0 0 1 0 0
3 2 0 0 0 0 1 0
4 6 1 1 2 0 1 0
5 10 0 0 1 0 1 0
6 29 6 1 4 0 2 0
7 64 0 1 2 0 5 0
8 194 24 0 15 0 8 0
9 531 0 1 26 0 14 1

10 1733 132 2 88 5 48 0
11 5524 0 2 210 0 85 8
12 19 430 902 3 665 9 342 9
13 69 322 0 6 2034 0 885 27
14 262 044 7669 10 7055 151 3744 23
15 1 016 740 0 22 26 946 73 10 788 414
16 4 101 318 77 056 45 95 539 2311 50 770 389

http://cs.anu.edu.au/~bdm/
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TABLE VI. Distribution of omni-insulators and omni-conductors amongst
general graphs with n ≤ 10. N(n) is the total number of connected graphs,
Ni

ipso is the number of pure ipso omni-insulators, and Ni
distinct is the num-

ber of pure distinct omni-insulators. Nc
ipso is the number of pure ipso omni-

conductors, Nc
distinct is the number of pure distinct omni-conductors, and

Nc
strong is the number of strong (ipso + distinct) omni-conductors. Nnut counts

the general graphs that are also ut graphs.

Insulators Conductors

n N(n) Ni
ipso Ni

distinct Nc
ipso Nc

distinct Nc
strong Nnut

2 1 1 0 0 1 0 0
3 2 0 0 0 0 1 0
4 6 1 1 2 0 1 0
5 21 0 1 4 0 3 0
6 112 7 2 21 0 7 0
7 853 0 7 136 0 38 3
8 11 117 129 20 1352 0 496 13
9 261 080 0 107 32 575 31 10 002 560

10 11 989 762 15 356 938 1 429 875 406 783 562 12 551

TABLE VII. Distribution of omni-insulators amongst chemical trees with
n ≤ 25. N(n) is the total number of chemical trees with n vertices, Ni

ipso is

the number of pure ipso omni-insulators, Ni
distinct is the number of pure dis-

tinct omni-insulators, and η is the nullity of (all) the distinct omni-insulating
chemical trees on n vertices.

n N(n) Ni
ipso Ni

distinct (η) n N(n) Ni
ipso Ni

distinct (η)

2 1 1 0 14 552 96 0
3 1 0 0 15 1132 0 0
4 2 1 1 (2) 16 2410 319 6 (6)
5 2 0 0 17 5098 0 0
6 4 2 0 18 11 020 1135 0
7 6 0 1 (3) 19 23 846 0 13 (7)
8 11 4 0 20 52 233 4150 0
9 18 0 0 21 114 796 0 0

10 37 11 2 (4) 22 254 371 15 690 31 (8)
11 661 0 0 23 565 734 0 0
12 135 30 0 24 1 265 579 60 506 0
13 265 0 3 (5) 25 2 841 632 0 73 (9)

TABLE VIII. Distribution of omni-insulators amongst all trees with n ≤ 10.
N(n) is the total number of trees with n vertices, Ni

ipso is the number of pure

ipso omni-insulators, Ni
distinct is the number of pure distinct omni-insulators,

and η is the set of nullities achieved by distinct omni-insulating trees on n
vertices, e.g., nullities 8, 6, and 4 for the 7 distinct omni-insulators with 10
vertices.

n N(n) Ni
ipso Ni

distinct (η)

2 1 1 0
3 1 0 0
4 2 1 1 (2)
5 3 0 1 (3)
6 6 2 1 (4)
7 11 0 2 (5,3)
8 23 5 3 (6,4)
9 47 0 4 (7,5)

10 106 39 7 (8,6,4)

TABLE IX. Distribution of omni-insulators and omni-conductors amongst
the cubic polyhedra with n ≤ 20. N(n) is the total number of cubic polyhe-
dra, Ni

ipso is the number of pure ipso omni-insulators, Nc
ipso is the number of

pure ipso omni-conductors, Nc
strong is the number of strong omni-conductors,

and Nc
nut is the number of cubic polyhedra that are also nut graphs. In the

range, there are neither pure distinct omni-insulators nor pure distinct omni-
conductors, but the fullerenes provide examples of larger cubic polyhedra
that are pure distinct omni-conductors.33

n N(n) Ni
ipso Nc

ipso Nc
distinct Nc

nut

4 1 0 0 1 0
6 1 0 1 0 0
8 2 1 0 0 0

10 5 0 1 4 0
12 14 0 9 4 2
14 50 1 8 17 0
16 233 2 80 125 0
18 1249 0 327 708 285
20 7595 7 1343 3925 0

numerous than pure distinct omni-conductors. For insulators,
strong omni-insulators do not exist (Deduction 5.13), and
pure ipso omni-insulators appear to outnumber pure distinct
omni-insulators. All nut graphs are strong omni-conductors
(Deduction 5.6), but constitute only a small fraction of the to-
tal set of strong omni-conductors. Figure 1 shows the smallest
chemical nut graph.

Tables V and VI suggest that ipso omni-insulators with
odd n are either rare or do not exist. The question is open,
but, it is apparent (Deductions 5.7 and 5.9) that all ipso omni-
insulators are non-singular, with all vertices of CFV (upper)
type (Theorem 4.5). Thus, if ipso omni-insulators with odd
n exist, they are non-bipartite (odd bipartite graphs have odd
η ≥ 1) and must have at least two disjoint odd cycles, since
deletion of a vertex leaves a graph with even order but η = 1,
implying a non-bipartite graph. Furthermore, a construction
for reducing ipso omni-insulators38 (Algorithm 36 in that pa-
per) implies that the such smallest graph has no pendant edge.

Tables VII and VIII deal with chemical and general trees.
From the results, it appears that there are no ipso (and hence
no strong) omni-conducting trees, that there are no ipso omni-
insulating trees with odd numbers of vertices, and that K2 is
the only distinct omni-conducting tree. These three observa-
tions are all general, as shown by the following arguments.
For the first observation, note that every tree has at least one
CFV (upper) vertex. Hence by Theorems 4.4 and 4.5, there is
at least one ipso-insulating vertex in every tree. For the sec-
ond, note that an ipso omni-insulator is non-singular, but trees
with odd numbers of vertices are all singular. For the third

+1

−1
+1

−1

−1

+2
−1

+1

−1

FIG. 1. The smallest nut graph that is also a chemical graph. Relative values
of the entries in the unique nullspace eigenvector are shown in the diagram.
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observation the chain of reasoning is longer. Distinct omni-
conductors are either nut graphs or non-singular. No tree on
n > 1 vertices is a nut graph. For non-singular distinct omni-
conductors, off-diagonal entries in the inverse matrix A−1 are
all non-zero (Theorem 4.1). Hence each vertex-deleted sub-
graph arising from a putative distinct omni-conducting tree
would have to be a nut graph25 and also a tree, yielding a con-
tradiction unless the starting tree is K2. Hence, we have the
following theorem.

Theorem 6.1

(i) No tree is an ipso omni-conductor;
(ii) no tree with an odd number of vertices is an ipso omni-

insulator; and
(iii) the only tree that is a distinct omni-conductor is K2.

In the range 2 ≤ n ≤ 25 distinct omni-insulating chemical
trees are rare, appearing only at n = 3k + 4, and interestingly
these examples also have η = k + 2. We will see below that
there is a structural explanation for this observation, in terms
of vertex fusion of S3 graphs (stars with 3 peripheral vertices),
which in turn suggests an explanation for the counts for gen-
eral trees and a conjecture for all chemical graphs. Amongst
chemical trees, the trend appears to be towards a smaller frac-
tion of pure distinct omni-conductors with increasing n.

Benzenoid graphs give results that do not need a ta-
ble: Kekulean (non-singular) benzenoids are all ipso omni-
insulators (all vertices of a non-singular bipartite graph are
CFV upper). In the range 1 ≤ h ≤ 12, where h is the num-
ber of hexagonal faces, no Kekulean benzenoids belong to
any other class of omni-conductors or omni-insulators, and
no non-Kekulean benzenoids have any omni-conducting or
omni-insulating properties.

Cubic polyhedral graphs (candidates for carbon cages)
(Table IX) show a bias to strong omni-conduction: for exam-
ple, of the 7595 cubic polyhedra with n = 20 vertices, 3925
are strong omni-conductors. Interestingly, these graphs ap-
pear to include neither distinct omni-insulators nor pure dis-
tinct omni-conductors. Restriction to the fullerene subclass
of cubic polyhedra gives an even greater pre-dominance of
strong omni-conductors.33 The data for the small cases in
Table IX might be taken to suggest that no cubic polyhedra
are pure distinct omni-conductors, but this is disproved by the
counterexample of fullerenes on, e.g., n = 54 vertices.33

B. Some families of omni-conductors

Observations from constructions suggest several general
families of omni-conductors: all complete graphs Kn with n
> 2 are strong omni-conductors, as are all nut graphs, all cy-
cles C4N+1 and C4N+3, bi-cycles formed by fusion of an odd
cycle and an aromatic (4N + 2) cycle, bowtie graphs consist-
ing of two odd cycles linked by a chain of any length, and all
[p]prisms with odd p �= 0 mod 3 (see Figure 2).

Pure ipso omni-conductors include anti-aromatic cycles
C4N, bi-cycles formed by fusion of odd cycles Cp and Cq with
p − q �= 0 mod 4, and [p]prisms for all odd p and all p = 0
mod 6.

(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

[p]

[p][p] [p] [q]

[p] [q][p] [p]
[x] [x]

FIG. 2. Families of chemical graphs with interesting conduction and insula-
tion behaviour. Those illustrated are: (i) paths (n = p, m = p − 1, p ≥ 2);
(ii) cycles (n = m = p, p ≥ 3); (iii) complete graphs (n = p, m = p(p − 1)/2,
p ≥ 2); (iv) radialenes (n = p; m = 2p, p ≥ 3); (v) semi-radialenes (n = m
= 3p/2, p ≥ 4); (vi) bi-cycles (n = p + q − 2, m = p + q − 1, p, q ≥ 3);
(vii) tadpoles (n = m = p + x, p ≥ 3, x ≥ 1); (viii) bowties (n = p + q + x,
m = n + 1, p, q ≥ 3, x ≥ 0); and (ix) prisms (n = 2p, m = 3p, p ≥ 3).

The preceding observations can be proved using theo-
rems given earlier (e.g., Theorem 4.5). For example, the com-
plete graph Kn (n > 1) has all vertices of CFV (middle) type,
and hence the graph is an ipso omni-conductor. Also, for
n > 2, two deletions lead to a smaller complete graph, Kn − 2,
and we therefore have case 3c(iiA)/7 of Table III, with g
= 0 and j 2 = ut − sv = E + 1, and hence a strong omni-
conductor.

C. Some families of omni-insulators

Construction of families of graphs leads to a number of
observations about omni-insulators that can be proved from
the theorems in Secs. IV A and IV B. For example, ipso omni-
insulators are common.

Examples of families of ipso omni-insulators include
even paths P2N, aromatic cycles C4N+2, all radialenes, tad-
poles with an aromatic cycle and an even number of ver-
tices in the tail, bi-cycles formed by fusion of two even rings,
bowties with two aromatic rings and an even number of ver-
tices in the intervening chain, [p]prisms with p even and �= 0
mod 6 (Figure 2). As for the omni-conductors, all the above
observations about insulators can be proved straightforwardly.

Families of distinct omni-insulators are also found
amongst the chemical graphs: for example, all semi-
radialenes with more than 6 vertices, belong to this class, as
do the subset of chemical trees mentioned in Sec. VI A. A
common substructure appears in these and other examples. A
construction that often but not invariably leads from a parent
chemical graph to a chemical graph that is a distinct omni-
insulator is “starification.” In this construction each vertex of
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(i)

(ii)

(iii)

G Star(G)

FIG. 3. The star construction. Starting from a parent G, (i) each vertex is
replaced by a star graph S3; (ii) stars that are neighbours along an original
edge of G are fused at a peripheral vertex, leaving (3−d) pendent vertices per
star replacing the original vertex of degree d.

a parent graph G is replaced by a three-pointed star S3, and
pairs of stars corresponding to edges of G are fused by super-
position of a terminal vertex of each (see Figure 3). Given that
S3 has three peripheral vertices, as the starting graph is chem-
ical (i.e., connected and with maximum degree ≤3) with n
vertices and m edges, the derived graph Star(G) has 4n − m
vertices and 3n edges of which 3n − 2m are leaves, connect-
ing central vertices of stars to vertices of degree 1. If G has
adjacency eigenvalues {μi}, the graph Star(G) has 2n eigen-
values given by ±√

3 + μi , with all other eigenvalues zero.
Precisely in the case that G is cubic and bipartite, Star(G) has
two zero eigenvalues arising from μn = −3 of G. Hence, the
total number of zero eigenvalues of Star(G) is 2n − m + 2 for
cubic bipartite G and 2n − m for all chemical graphs.

Application of the starification operation to all chemical
graphs with 2 < n < 14 indicates that “nearly all” Star(G) for
chemical parents G are distinct omni-insulators. The “excep-
tions” (Star(G) that are not distinct omni-insulators) are com-
paratively rare: for parents with n = 2, . . . 14, there are only
0, 0, 1, 1, 4, 4, 14, 23, 73, 166, 533, 1504, 5061, . . . excep-
tions (to be compared with the much larger total numbers of
chemical graphs listed in Table VII). Features common to the
exceptions are under investigation. For example, some but not
all cubic graphs G lead to exceptions, whereas all chemical
trees G on n vertices lead to distinct omni-insulators Star(G)
with 3n + 1 vertices.

It is intriguing to ask exactly “why” the omni-insulating
chemical trees have their characteristic property, and “why”
in general insulation should be associated with high nullity.
A hint comes from observations on calculated transmission
in so-called cross-conjugated systems:11, 39, 40 a connection
across a cross-conjugated junction in model systems leads to
strong reduction in transmission40 at energies that are asso-
ciated with the eigenvalues of the intervening side chain.39

Within the graph-theoretical version of the SSP model,13 this
corresponds to a theorem that can be derived straightfor-
wardly from our previous work on composite systems.17

Theorem 6.2. Let three fragments A, B, and C be con-
nected via a single three-coordinate vertex D to form a Y-
shaped junction. The vertices adjacent to D in A, B, C are
wA, wB , and wC , respectively. If a device is constructed with
L̄ in A and R̄ in B, the opacity polynomial of the device,
j 2 = ut − sv, is

j 2(ABC) = j 2(A)j 2(B)φ2(C),

where j2(A) is the opacity polynomial for a device consist-
ing of A alone with connections L̄ and wA, j2(B) is the opac-
ity polynomial for a device consisting of B with connections
wB and R̄, and φ(C) is the characteristic polynomial of the
graph C.

Proof is by combination of Theorems 6 and 7 from our
earlier paper.17 Our omniconducting trees include multiple
copies of such Y-junctions, and the denominator of the trans-
mission T(E) will therefore contain zeroes at E = 0 arising
from the many leaves on these particular trees, as will the
characteristic polynomial of the tree itself. This is suggestive
of a more general connection between between nullity, cross-
conjugation, and omni-insulation.

VII. CONCLUSIONS

It has been shown here that the graph theoretical SSP
model leads naturally to the definition of omni-conductors
and omni-insulators, that membership of the various cate-
gories is crucially dependent on graph nullity (number of
non-bonding orbitals) and is governed by a number of gen-
eral theorems, and that many families of chemically relevant
molecular graphs omni-conduct. For example, many bicyclic
π -systems, and almost all fullerenes,33 are strong omnicon-
ductors.

It will be interesting to see the extent to which these prop-
erties are retained in more sophisticated models of molecular
conduction.
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