This is a repository copy of *Multiple repair sequences in everyday conversations involving people with Parkinson’s disease*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/98634/

Version: Accepted Version

Article:
https://doi.org/10.1111/1460-6984.12178

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Multiple repair sequences in everyday conversations involving people with Parkinson’s Disease

<table>
<thead>
<tr>
<th>Journal:</th>
<th>International Journal of Language & Communication Disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>TLCD-2014-0089</td>
</tr>
<tr>
<td>Wiley - Manuscript type:</td>
<td>Research Report</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Parkinson’s disease, conversation analysis, dysarthria, Multiple repair</td>
</tr>
</tbody>
</table>
The hypokinetic dysarthria associated with Parkinson’s Disease (PD) causes speech intelligibility problems, which people with PD (PwPD) report, impact negatively on their experiences of everyday interactional participation. There is a lack of knowledge regarding the specific nature of these difficulties. Previous conversation analytic (CA) studies, focussing on other types of dysarthria, have revealed valuable information about what happens when everyday conversations are disrupted by the need for repair and have also touched on the phenomenon of multiple repair, where more than one attempt is made by a conversation partner to resolve a trouble source.

What this paper adds

What is already known on this subject?

This CA study examines instances of multiple repair in everyday conversations between PwPD and their conversation partner (CPs), shedding light on the methods used by CPs to initiate repair and the ordering of the repair initiators used. This leads to a proposal for an intervention, which, following further development, could enable SLTs to target the use of participation focussed communication strategies.
Abstract

Background

Features of dysarthria associated with Parkinson’s Disease (PD), such as low volume, variable rate of speech and increased pauses, impact speaker intelligibility. Those affected report restricted interactional participation, although this area is under explored.

Aims

The aim of this study was to examine naturally-occurring instances of problems with intelligibility that resulted in multiple attempts at repair in order to consider repair initiation strategies that might restrict or enhance participation.

Methods and procedures

Thirteen people with PD video-recorded over 10 hours of informal conversation data, in the home setting, involving familiar conversation partners (CPs). Using a conversation analytic approach, and drawing on an existing typology of repair initiators (RIs) for everyday talk-in-interaction, and their relative power to locate a turn’s repairable element, the design and ordering of RIs used by CPs was addressed, alongside their local consequences.

Outcomes and results

CPs tended to increase the specificity of their RIs in line with the existing typology, progressing from open class forms (e.g. ‘mm?’) to more specific forms (e.g. questions/partial repeats). Repeated open class RIs (OCRIs) were used where PD speakers’ self-repair attempts provided limited information. Sometimes however, specificity was increased too soon, before enough syntactic knowledge was gleaned, which resulted in an extended repair sequence.
Where one OCRI followed another, the second always took a different form; lexically or in terms of prosodic/non-verbal features. RI forms not described in the existing typology were also identified, such as ‘prompts to modify speech’ (e.g. ‘Speak louder’) and repeating/rephrasing the original First pair part (FPP, e.g. question), and their effectiveness examined.

Conclusions and implications

First steps are presented towards the design of a communication intervention promoting the efficient resolution of repair to moderate social withdrawal and increase participation for this client group. Future research will need to explore the feasibility and acceptability of such a resource.
Background

Parkinson’s Disease and communication

Around 70% of people with Parkinson’s Disease (PD) experience ‘hypokinetic’ dysarthria (Hartelius and Svensson, 1994) the clinical features of which include reduced vocal volume and intonation, imprecise articulation, speech initiation difficulties and variable rate (Duffy, 2005). This can greatly impact on speech intelligibility.

People with PD (PwPD) report that participation in everyday conversations is restricted (Miller et al., 2006), yet research into everyday ‘outside the clinic’ communication is limited and speech and language therapists (SLTs) lack resources to help improve participation for this client group (Griffiths et al., 2011). Moreover, the psychological and social impact of dysarthria, irrespective of the underlying neurological condition, has remained under researched despite a growing awareness amongst researchers and practitioners in the field that such issues have a core relevance to theoretical and clinical frameworks, clinical resources and outcome measures (Bloch et al., 2011). Future research on developing and evaluating assessments and interventions therefore needs to address barriers to social participation (Bloch et al., 2011). This research should focus on what happens for people outside the clinical setting, and should not focus purely on the person with dysarthria – as Walshe and Miller have argued, ‘there is much to be done on listener education’ (2011:202).

There has been a recent emergence of a social interaction research approach to dysarthria associated with conditions other than PD. Everyday communication outside the clinical setting has been explored, notably in the conversation analytic
work of Bloch and Wilkinson (e.g. 2004, 2011) on Motor Neurone Disease (MND), leading to speculation by some that this approach might provide a step towards extending an understanding of participation (O’Halloran and Larkins, 2008; Hartelius and Miller, 2011).

Repair in conversation and dysarthria

Studies of everyday interaction in dysarthria to date have revealed important information about what happens when progression in conversation is impeded by the need for ‘repair’. Repair is described as the range of practices available to speakers for resolving troubles with speaking hearing, understanding (Schegloff et al., 1977) or acceptability (Schegloff, 2007). Researchers often refer to a problematic segment of talk as the ‘trouble source’ or the ‘repairable’. Studies of ordinary conversation have revealed that when a potential trouble source arises, unless passed over, a repair sequence typically unfolds in two stages. First, repair initiation occurs, whereby the need for repair is initiated by the speaker of the trouble source (self-initiation of repair) or another speaker (other-initiation (OI) of repair). Second, the repair outcome - a ‘solution or abandonment of the problem’ (Schegloff, 2000) - the solution being carried out by ‘self’ or ‘other’.

Repair plays an important role in maintaining ‘intersubjectivity’, or shared understanding, between co-participants in conversation. Every turn at talk displays understanding of the previous turn (Heritage, 1984). When understanding is potentially at stake, the ‘machinery’ of repair can operate to restore, as quickly as possible, the intersubjectivity that is the basis of collaborative action (Schegloff, 1992).

Studies examining repair in dysarthria, have so far mainly involved participants with MND (e.g. Bloch, 2005, 2011; Bloch and Wilkinson, 2004, 2009) and Multiple
Sclerosis (e.g. Rutter 2009; Bloch and Wilkinson, 2011). These neurological conditions are associated with 'mixed' dysarthria, which is qualitatively different from hypokinetic dysarthria and can have a variety of features depending where in the motor system the depletion of motor neurones (MND) or the demylination of nerves (MS) has occurred. For example, the speech of a person with advanced MND, where there is damage throughout the motor system, might be effortful and slow, with vocal straining and hypernasality. When speech is affected in MS there can be a combination of features caused by excess muscle tone and incoordination (e.g. excess and equal stress on syllables).

In addition, Clarke and Wilkinson (2008) have examined repair patterns in conversations involving children with cerebral palsy (CP) and severe dysarthria, who use augmentative and alternative communication (AAC) systems as their primary mode of communication. In this type of research the focus is on how the use of a communication system, rather than the speech impairment, impacts on conversation. Alternatively, some studies have examined interaction for dysarthric speakers with MND who use AAC as an adjunct to speech (e.g. Bloch and Wilkinson, 2004, 2009). Amongst the findings of such studies, conversationalists have been shown to collaborate to resolve a trouble source or avoid trouble. For example, in order to avoid the need for repair, an utterance may be collaboratively produced by two or more speakers, sometimes in idiosyncratic ways. Bloch (2005) identified a naturally developed strategy reducing the need for too much repair:

- a. The dysarthric speaker produces an incomplete turn of talk, then pauses
- b. The recipient repeats back the utterance with flat intonation (i.e. not to initiate repair but as a checking/display of understanding device)
- c. The dysarthric speaker completes the turn
This efficient system is also seen when the dysarthric speaker self-repairs using spelling aloud.

This steadily expanding research into the effects on interaction in different types of dysarthria has made a unique contribution to knowledge by revealing patterns of repair that differ from those found in ordinary conversation and indeed other types of communication disability. Exploring the success or otherwise of repair practices in communication disability can be useful in providing therapy targeted at the problems people encounter on a daily basis.

These benefits have now begun to extend to the study of repair in conversations disrupted by a speaker’s hypokinetic dysarthria. Griffiths et al (2012) found that speakers with PD often find their turns at talk being subject to overlap by other parties, which can lead to the need for repair, or alternately, to the PwPD’s turns being effectively deleted from the interaction. The authors suggest that characteristic features of PD communication, such as speech initiation difficulty, low vocal volume and cognitive impairment result in a potential vulnerability to being ‘talked over’.

Multiple repair

Some of this previous work on repair in dysarthria has touched on the issue of ‘multiple repair’, whereby more than one repair initiator (RI) is needed to resolve a single trouble source (Schegloff et al.,1977). Bloch and Wilkinson (2004, 2009, 2011), have already described some specific ways in which ‘extended repair sequences’ can arise and how they get resolved. As multiple repair sequences present an intensified threat to participation in conversation, however, it would be valuable to understand yet further how these unfold in relation to what might be expected in ordinary conversation.
Based on studies of everyday talk between non-communication impaired speakers, (Schegloff et al., 1977) developed a typology showing how OI can be more or less helpful to the speaker of the repairable utterance in locating which element of that utterance is problematic. This is important for ensuring that repair is achieved as quickly as possible. Types of RIs have a ‘natural ordering’ based on their relative power to enable the ‘repairee’ in this respect (Schegloff et al., 1977).

Figure 1: Typology of OI forms (Schegloff et al., 1977)

Weaker

At the weak end of the spectrum are open class repair initiators (OCRIs) such as ‘pardon?’ and ‘mm?’, which indicate some kind of trouble, but do not locate a specific repairable element of the utterance. More powerful would be a closed class RI using a question word like ‘who?’ (indicating trouble with a person referent); ‘where?’, (indicating trouble with a place referent) and so on. ‘What?’, can be either an open class or closed class RI depending on whether used to display a general problem with hearing, or to locate a problematic noun phrase (‘the what?’). Moving along the continuum, framing a question word with a repeat of an element of the repairable utterance (‘You went to the what?’) provides more power. Repair can also be initiated by repeating an element without a question word (‘You went to the lido?’) and finally by using a direct understanding check: ‘Do you mean the outdoor
swimming pool?’ RIs often perform this type of check by offering a candidate solution to the trouble, either in combination with another RI or alone: ‘What? The pool?’ (Sidnell, 2010). Along with the initiation form, intonation plays a crucial part in alerting the repairee to the precise nature of the trouble.

Schegloff et al (1977) acknowledge that the typology is not an exhaustive list of RI types and their use is not simply a matter of choice (Schegloff, 1987), but is based on a range of interactional circumstances. It is often the case that OCRIs indicate a general problem with hearing; a recipient being unable to hear enough of the repairable turn to provide a stronger form. However, they can also indicate problems in interpreting the action a speaker means to accomplish; a serious question versus a joke for instance (Sidnell, 2010). It is important also to recognise that the use of a RI does not necessarily provide an insight into cognitive state, including the user’s motivations for selecting specific forms (Drew, 1997).

As well as looking at multiple repair sequences in terms of the specificity of RIs, some authors have described an ordering of RIs based on how they present the type of trouble source to its speaker. For instance, where there is a problem with the acceptability of a turn, recipients tend to start by indicating a problem of hearing or understanding, as this is less socially complicated and gives the speaker the opportunity to address what was unacceptable within the next turn (Pomerantz, 1984; Schegloff, 2007). Whilst this provides some insight, in conversations involving people with PD, recent research suggests that open class is by far the most frequent type of repair initiation used (Griffiths, 2013). This suggests that in conversations involving people with dysarthria, recipients of disordered speech do not exhibit the same order of preference organisation. Where intelligibility of speech is a problem,
recipients often have limited information from which to construct anything other than an OCRI.

Multiple repair sequences have also been addressed in the aphasia literature. For example, Perkins et al (1999) observed that the strength of RIs used initially, determined the length of the resulting repair sequence in conversations between speakers with aphasia and their conversation partners (CPs). Weak, open class RIs resulted in more protracted repair sequences. The authors demonstrated that how and when repair initiation is used is significant in shaping the repair sequence overall, but after the first RI, did not address the ordering of subsequent forms. Despite this interest in multiple repair and communication disability, to the authors’ knowledge, there have been no studies addressing the ordering of RIs by CPs in such sequences, or consideration of whether these operate hierarchically. This kind of information could inform CPs about ‘what to try and in what order’ to resolve a repair situation most efficiently.

Aims

This study was part of a wider research project aiming to identify threats to participation and strategies used to manage participation in conversations. The focus of the current paper is to examine instances of speech intelligibility problems resulting in multiple attempts at repair and to identify strategies for managing this kind of heightened threat to participation. A further aim is to generate ideas for the development of clinical interventions targeting participation for this client group.

Methods and procedures

Data Collection

Following NHS ethical approval, speech and language therapists (SLTs) and PD Nurse Specialists across four NHS Health Trusts, recruited 13 participants with PD.
Background information for each of the 13 participants is presented in Table 1. Pseudonyms have been used to protect participant confidentiality.

In order to better describe the sample, during a home visit, the first author (who is a SLT) carried out several clinical assessments. These included a measure of overall disease severity; the Hoehn and Yahr (1967) disability rating scale. This allocates stages from 1 to 5 to indicate the relative level of disability, with stage one representing mild symptoms and stage five indicating that the patient may need constant nursing care. The Frenchay Dysarthria Assessment Edition 2 (FDA-2) (Enderby and Palmer, 2008) was also used.

Participants were then given training in how to video-record everyday conversation with their familiar conversation partners (CPs) in the home setting over a period of two weeks.

Analytic Process

The video data was transcribed and analysed according to the principles of Conversation Analysis (CA). The first stage of analysis involved becoming familiar with the video data through repeated viewings and initial verbatim transcription of the entire data set. Next, a full CA transcription of sections of the data took place, using the Jefferson (2004) system of transcription, taking account of prosodic features, simultaneous talk and (where of interest) non-verbal features.

Data transcription and analysis took place using Transana software version 2.30 (Woods and Fassnacht, 2008). This allows a researcher to work with large amounts of video data, use CA transcription conventions, measure pause durations and organize clips into meaningful categories and collections as analysis proceeds.

Transcription acts as a major ‘noticing device’, making it possible to attend to details of the interaction that would not be apparent to the ordinary listener (Ten Have,
During the data-driven analytic process, which relies on close and minute scrutiny of sequences of dialogue, across-case instances of multiple repair, defined as a sequence in which more than one repair initiator (RI) is used to attempt to resolve that single trouble source were identified. These were examined in the manner of a comprehensive data treatment (Ten Have, 2007), with distinctive and shared features extrapolated. Instances that appeared to differ from the emerging pattern in terms of their design or positioning (deviant cases) were examined for what they could reveal about the integrity of the on-going analysis or the interactional consequences for the participants of deviation from a rule.

‘Data sessions’ (Sidnell 2010: 29) were held, whereby data extracts and emerging insights were presented to a local group of independent CA researchers for critical inspection, thus enhancing the reliability of the analysis.

Outcomes and results

This section will cover participant data along with the conversation analytic findings. Table 1 presents some background information regarding the participants. Pseudonyms are used throughout. The FDA-2 intelligibility in word and sentence reading aloud totals were combined to form a percentage score for each participant. The FDA-2 ‘Intelligibility in conversation’ ratings range from a: ‘No abnormality’ to e: ‘Totally unintelligible’. A rating of ‘b-c’ represents intelligibility falling between the descriptors b: ‘Speech abnormal but intelligible – occasionally has to repeat’ and c: ‘Speech severely distorted, can be understood half the time. Very often has to repeat’.
Table 1: Background participant information

<table>
<thead>
<tr>
<th>Participant</th>
<th>Age</th>
<th>Years since diagnosis</th>
<th>Main conversation partner in recordings</th>
<th>Hoehn and Yahr rating</th>
<th>FDA-2 'Intelligibility in reading aloud' (%)</th>
<th>FDA-2 'Intelligibility in conversation' rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>David</td>
<td>65</td>
<td>7</td>
<td>Fiona (daughter)</td>
<td>3</td>
<td>40</td>
<td>b-c</td>
</tr>
<tr>
<td>Peter</td>
<td>75</td>
<td>9.5</td>
<td>Jenny (wife)</td>
<td>3</td>
<td>80</td>
<td>a-b</td>
</tr>
<tr>
<td>Sally</td>
<td>72</td>
<td>19</td>
<td>John (husband)</td>
<td>4</td>
<td>80</td>
<td>b</td>
</tr>
<tr>
<td>Harry</td>
<td>84</td>
<td>7</td>
<td>Joan (wife)</td>
<td>4</td>
<td>60</td>
<td>b-c</td>
</tr>
<tr>
<td>Arnie</td>
<td>79</td>
<td>3.5</td>
<td>Betty (wife)</td>
<td>3</td>
<td>80</td>
<td>a-b</td>
</tr>
<tr>
<td>Will</td>
<td>64</td>
<td>20</td>
<td>Julie (wife)</td>
<td>3</td>
<td>80</td>
<td>b-c</td>
</tr>
<tr>
<td>Tom</td>
<td>86</td>
<td>6</td>
<td>James (son)</td>
<td>3</td>
<td>80</td>
<td>b</td>
</tr>
<tr>
<td>Doug</td>
<td>76</td>
<td>5</td>
<td>Lottie (wife)</td>
<td>3</td>
<td>80</td>
<td>a</td>
</tr>
<tr>
<td>Greg</td>
<td>65</td>
<td>14</td>
<td>Rosie (wife)</td>
<td>4</td>
<td>Not available#</td>
<td>c</td>
</tr>
<tr>
<td>Graham</td>
<td>77</td>
<td>5</td>
<td>Anne (wife)</td>
<td>2</td>
<td>80</td>
<td>a-b</td>
</tr>
<tr>
<td>Jack</td>
<td>72</td>
<td>13</td>
<td>Molly (wife)</td>
<td>3</td>
<td>60</td>
<td>b-c</td>
</tr>
<tr>
<td>Clive</td>
<td>70</td>
<td>8</td>
<td>Irene (wife)</td>
<td>2</td>
<td>60</td>
<td>b-c</td>
</tr>
<tr>
<td>Lily</td>
<td>82</td>
<td>18</td>
<td>Sahir (husband)</td>
<td>5</td>
<td>Not available#</td>
<td>b-c</td>
</tr>
</tbody>
</table>

In total, the participants collected 635 minutes (10 and a half hours) of video data. 29 multiple repair sequences were identified. 18 of these were found in Harry’s data. Interestingly, Harry’s conversation partner, Joan, has a hearing impairment, exacerbating the difficulties caused by his reduced speech intelligibility. Of these 18, 15 sequences included 2 RIs and 3 sequences included 3 RIs. Most other multiple repair sequences identified contained 2 or 3 RIs.

There were 3 notably longer sequences: 2 in Greg’s data and one in Sally’s, consisting of 5, 10 and 13 RIs. Of the 29 multiple repair sequences identified, 22 started with the initial use of an OCRI. This would be expected both as a tendency in ordinary conversation to start with the least socially challenging type of RI and also because the problem is frequently due to reduced intelligibility. Quite often the listener has little to go on in order to base a more specific RI. The shorter sequences involving two and three RIs will be examined first to look for patterns.
Consideration will then be given to one of three extended multiple repair sequences with analysis of the features that contribute to its increased length.

Sequences involving two or three RIs

Table 2 shows how the 23 multiple repair sequences involving two or three RIs were structured.

Table 2: Structure of the multiple repair sequences involving two or three repair initiators (RIs)

<table>
<thead>
<tr>
<th>Number of RIs used</th>
<th>Structure (number of sequences with this structure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two RIs</td>
<td></td>
</tr>
<tr>
<td>OCRI → Repeat + 'wh'-word (8)</td>
<td></td>
</tr>
<tr>
<td>OCRI → OCRI (5)</td>
<td></td>
</tr>
<tr>
<td>OCRI → Direct prompt to modify speech (2)</td>
<td></td>
</tr>
<tr>
<td>OCRI → Understanding check (1)</td>
<td></td>
</tr>
<tr>
<td>Closed class → Understanding check (1)</td>
<td></td>
</tr>
<tr>
<td>Repeat + 'wh'-word → Closed class (1)</td>
<td></td>
</tr>
<tr>
<td>DEVIANT CASE</td>
<td></td>
</tr>
<tr>
<td>Repeat + 'wh' word → Repeat (1)</td>
<td></td>
</tr>
<tr>
<td>Three RIs</td>
<td></td>
</tr>
<tr>
<td>Understanding check → Understanding check → Understanding check (1)</td>
<td></td>
</tr>
<tr>
<td>OCRI → Repeat + 'wh'-word → Repeat + 'wh'-word (1)</td>
<td></td>
</tr>
<tr>
<td>OCRI → Repeat + 'wh-word' → Repeat (1)</td>
<td></td>
</tr>
<tr>
<td>OCRI → Understanding check → Understanding check (1)</td>
<td></td>
</tr>
<tr>
<td>Repeat → Understanding check → Understanding check (1)</td>
<td></td>
</tr>
</tbody>
</table>
Overall, where multiple repair occurred, CPs used RIs in order of increasing specificity and strength, from left to right, as set out in the model proposed by Schegloff et al (1977). There is one deviant case, which will be examined shortly, in which specificity was decreased rather than increased. It was also observed that once CPs have enough information to attempt an understanding check, this form may be repeated until repair is resolved.

The most common type of multiple-stage repair initiation in the data is open class moving to a repetition of part of the repairable with a question word, as shown in Extract 1. A glossary of CA transcription conventions (based on Jefferson, 2004) is provided in Appendix A, Table 3, and a sketch showing the positioning of the participants will accompany each extract. For ease of reading, the PD speaker’s name will be marked with an asterisk in each extract introduction.

Extract 1

Harry: Christmas cake

01:16 – 01:36

![Figure 2: Harry* is on the left](image)

1. Joan: I hope ↑it be alright in that oven, becos I’ve not- I’ve done not
Joan has been telling Harry* about her plans to make a Christmas cake. In lines 1-2 she expresses concern that she hasn’t made one before using their current oven. At line 4 Harry’s utterance is unclear which leads to Joan using an OCRI ‘mm’, at line 5. Harry’s utterance at line 6 is delivered at a fast rate but Joan now has enough information to increase the strength of her repair initiation. Her ‘I what’ (line 8) displays to Harry that she understands he is commenting on something to do with her. The ‘I’ is a repeat of Harry’s ‘you’ and her ‘what’ requests a repeat of the verb phrase. Harry then produces a phonetically modified repeat (marked pitch change on ‘usually’) with shortened linguistic structure (‘anything’ becomes ‘em’) and the sequence progresses with no further repair initiation.

Sometimes, following open class repair initiation, a self-repair attempt by the PD speaker does not provide the CP with enough information to increase the strength of RI, and further, non-specific repair initiation ensues. In all cases, the second OCRI takes a different form from the first. This may constitute a lexical difference (‘mm?’ then ‘pardon?’ for example) or the use of a non-verbal RI the second time. It might also take the form of repeating the lexical item but upgrading its delivery, either by
increasing gaze or intensifying intonation. An example encompassing both these
types of upgrade is illustrated in Extract 2.

Extract 2

Tom: Golf

04:16 – 04:2

1. James: watch the golf to night
2. Tom: (1.3) (I don’t know if I shall)
3. James: =mm, *(sound of engine starts up)*
4. Tom: (watched it last night)
5. James: mm? *(juts head forward and raises eyebrows)*
6. Tom: watched it la:st ↓night,
7. James: *(releases gesture)* yeah
James is having trouble hearing/understanding Tom’s response to his question at line 1. Just after he initiates repair at line 3, some background noise starts up which appears to affect his understanding of Tom’s self-repair turn (line 4). It is unusual for repair to involve more than one attempt for this participant pair. When James initiates repair for the second time at line 5, he accompanies this with a gesture, jutting his head forward and raising his eyebrows as well as increasing the pitch rise on this utterance. He maintains this gesture until the end of Tom’s successful self-repair turn at line 6. Intensifying gaze both enables James to pick up nonverbal clues that may help him to better understand Tom and also contributes to mobilising a response from Tom.

In two multiple repair sequences, OCRIs are also upgraded to using a prompt to modify speech. In the following example, Harry is telling Joan about the route he was asked to take in his recent driving test.
Extract 3
Harry: Driving Test
00:58-01:26

Figure 5: Harry* is on the left

1 Joan: Did you ↓do anything in the (.) car ↓park out there?
2 Harry: ↓No (1.1) >(when we were ↑in the car park 'e said ↑back)
3 Joan: → you what,
4 Harry: >(when we were ↑in the ↓car park 'e said,)<
5 Joan: → will you talk a bit ↑louder please.
6 Harry: went ↑out (in) the ↓car park, (1.3) ↓went down ('e said) ↑turn left. (1.0)
7 Keep goin ↑straight as I ↓tell yer, (0.9) (when I got to) ↑top (0.8) ↓there
8 (was) ↑two (roundabouts) to go rou:nd (0.8) take ye ↑take ye ↑take ye
9 (third exit)
10 Joan: now ↑where's all this taking you

Harry’s response, at line 2 is unclear and delivered at a fast rate. Elsewhere in the data, as at line 3, Joan often uses ‘you what,’ as an OCRI, as opposed to a repeat + ‘wh ‘word form. In this case, however, its use does not yield a successful self-repair attempt by Harry. At line 5, Joan issues a request for Harry to modify his speech by
raising the volume. This kind of request also acts as a RI and, in SLT terms, might be described as a ‘prompt’. At lines 6-9, Harry does not necessarily increase his volume, but he does slow his rate of speech. Interestingly in another example or repair that did not lead to a multiple repair sequence, orienting to the video camera, a CP demonstrated her sensitivity to the issues of implied incompetence wound up in using this type of RI. She whispered her prompt and could only just be heard to say ‘speak up will you?’, suggesting that this type of practice, being outside the rules of normal conversation, should be avoided. Despite this, prompting in the context of everyday conversation can be an effective strategy. As part of the larger study (see Griffiths, 2013) these kinds of self-repair turns were examined informally, using Praat software (Boersma and Weenink, 2014) to look at their phonetic properties. It was observed that when asked to speak up or slow down, PD speakers could modify their speech in some way to result in a successful self-repair, although not always in the exact manner suggested by the CP. It might just be the prompting action itself that cues the PD speaker to draw on whatever residual phonetic resources are available to him/her as an individual. Prompts to modify speech are not on the Schegloff et al (1977) spectrum as RIs but constitute a form that is more specific than an OCRI in focussing PD speakers on not just the need for a repeat but the need to produce that repeat in a markedly different manner compared to the first attempt. By highlighting the manner in which the next repair attempt should be done, prompts differ from the other ‘stronger than OCRI’ forms on the spectrum, which all offer to the speaker more information about what content the recipient has understood of the speaker’s trouble source turn. At the same time it is not as specific as a closed class RI as it doesn’t locate a specific repairable element of the repairable turn.
Repair on separate elements of the repairable turn in stages

As well as offering RIs in order of increasing specificity CPs are seen on occasion to initiate repair on first one element of the repairable turn then another, partitioning it out for attention. In Extract 3, Peter raises the possibility of Karen renting out her house. At line 4 Peter makes a first attempt to convey that Steven reckons Karen could make one thousand two hundred pounds a month by renting her property.

Extract 4
Peter: a one point two
53:15 – 53:38

Figure 6: Peter* is on the on the left

1 Peter: .hh >whad about< renting ↑you:r ↑house, >for a period.
2 Karen: (2.4) ((raises both hands and smooths her hair)) u:m (1.1) I think in a
3 house that si:ze =I ↑don't know. (1.4) ptk u:m
4 Peter: Steven. reng you may get- (1.0) a one point ↑two.
5
6 Karen: → a wha:t
7 Peter: one point thousand two hundred. a month.
8 Karen: → Steven:
9 Peter: yeah
Karen: mmm.

Karen’s first repair initiation, a ‘repeat + ‘wh-word’ form (line 6), aims to elicit a repeat of the noun phrase, establishing what it was Steven said she could get. This achieved, at line 8, she then concentrates on repairing the person referent, the ‘who’ element of the repairable turn using a repeat in order to check her hearing of ‘Steven’.

This illustrates how repair initiation can progress in stages, with the CP first initiating repair on one element of the repairable turn then another, in a ‘I’ve got that bit, now I want to understand that bit’ fashion.

Deviant case

There is one sequence for which this hierarchy of ordering RIs according to increasing strength does not fit. In Extract 5, a later segment of the ‘driving test’ sequence introduced earlier, Harry* has just described and had recognised, a road he drove along during his driving test. Now at line 1 he conveys more information to Joan about the road in question: the Griffins live there.

Extract 5

Harry: Griffins

02:27 – 02:39
Figure 7: Harry* is on the on the left

1 Harry: that's where the: er- Griffins< ↓ live up there,
2 Joan: → where the ↑what
3 Harry: Griffins< ↓ live up there, Griffins<
4 (0.9)
5 Joan: → who?
6 Harry: Griffins.
7 (1.0)
8 Joan: the Griffins. o:h the Griffins. ye:s. the Griffins live up there, yeah.

At line 2 Joan initiates repair using a ‘repeat + wh-word’ form, however the structure does not fit the repairable turn. She has only understood ‘that’s where the’ and, assuming that the missing noun phrase identifies an object, tries to locate the ‘what’ when the appropriate form in this case would be to locate the ‘who’. Harry, responding to Joan’s cue that it is not the start of his turn that was problematic, repeats the troublesome part, and as if anticipating further repair initiation, repeats again the collective person referent ‘Griffins’. Perhaps this second repeat of the name is also done to emphasise to Joan that it is a name that is in question, not a thing. She still has trouble understanding but her closed class RI at line 5 shows that she is likely to have heard at least the word ‘live’ as she now knows a person referent needs clarifying. In response to this, Harry delivers the only element of his repairable turn that still needs clarifying and the repair sequence is complete.

Instead of increasing the specificity of repair initiation, in this sequence, Joan does the opposite, progressing from using a ‘repeat + wh-word’ form to a ‘closed class’ form. It is suggested that the reason for this deviance from the general pattern is that
her first RI did not fit the repairable. Unknown to her, she did not yet have enough information to enable her to use a ‘repeat + wh-word’ form. If she had tried an OCRI or a partial repeat (‘where the..’) it’s possible that only one RI would have been needed.

Where increasing the specificity goes wrong

Although multiple repair is not the focus of their paper, Bloch and Wilkinson (2009) describe a phenomenon whereby a CP uses the ‘wrong kind’ of RI. Mary, who has severe dysarthria as a result of MND, is asked by her CP (Stan) what kind of cancer their acquaintance has. Stan suggests different candidate types: ‘cancer of the spine was it, no cancer of the hip was it?’ Mary’s response lacks intelligibility and sounds like ‘mine mm’. After a 2 second pause, Stan then initiates repair, using a ‘repeat + wh question’ form; ‘mind the what?’ based on his not yet confirmed candidate understanding of Mary’s turn. He has misinterpreted both the word (spine) and the action Mary is carrying out (correcting). He uses a more specific RI than an open class one, at a point where he does not yet have the right syntactic knowledge to warrant this. Mary then repeats ‘spine’ and further repair initiation is needed, in the form of a repeat (‘spine?’) before Mary confirms this candidate understanding with a head nod and the conversation moves on. A similar phenomenon has been observed in the current data.

In addition to the deviant case already described, there are 2 multiple repair sequences that fit the overall pattern of RIs increasing in specificity and yet this in itself causes a problem. The following extract is presented as an example. Joan asks Harry* to help her complete her shopping list (Extract 6, lines 1-3). He begins to read aloud from the list (line 4), then after a pause, offers up as a new item, ‘fairy liquid,
yes'. This is delivered at a fast speech rate and Joan has trouble understanding, as reflected by her open class repair initiation at line 6.

Extract 5
Harry: Fairy liquid
14.8 – 44.2

Figure 8: Harry* is on the on the right

1 Joan: now um. I'm doing a list here for (2.0) ((picks up pen and list)) hh Morrisons.
2 is there anything else we want, d'you think? ((passes list to Harry))
3 Harry: (I dunno,) (crunchy oats) flour eggs bread milk () (2.2) >fairy liquid< yes.
4 Joan: → mm,
5 Harry: >fairy< liquid.
6 (1.1)
7 Joan: → it's what?
8 Harry: ↑>fairy< liquid.
9 (0.5)
10 Joan: we don't need a lo t
11 Harry: ↓no
12 (1.9)
13 Joan: we need fish
Harry repeats the new item at line 7 but with a lack of phonetic upgrading seen elsewhere in his data. In fact if anything his pitch and volume are both reduced and his rate of speech does not change. He does however ‘re-do’ the linguistic structure, deleting the ‘yes’. This does not lead to repair resolution and Joan tries a second RI at line 9. This time she increases the specificity. It is hypothesised that she has heard ‘fairy’ and believes that Harry is making a comment on the list being ‘fairly’ something. ‘It’s what?’ could be described as a ‘repeat + wh-word form’, although the repeat element of the turn is an inferred repeat; Joan is repeating what she thinks Harry has said, not what he actually said. ‘. At line 10, Harry provides a second repeat, upgraded this time with increased pitch.

Joan still has trouble understanding. If she is expecting his next self-repair turn (line 10), to be in the category of adjectives, this is not surprising. She appears to gloss over the trouble at line 12, producing a turn that moves the conversation on and Harry abandons his attempts to get fairy liquid on the list. In this sequence, rather like the deviant case, Joan upgrades the strength of the repair initiation at a point where she does not yet have enough knowledge of the syntactic category the repairable item falls into. This hampers her processing of Harry’s subsequent self-repair attempt. Context is important when interpreting disordered speech and if listeners are primed to expect to hear an adjective when in fact the utterance is a noun, this is likely to impact on intelligibility.

In a move designed to restore intersubjectivity and get the conversation ‘back on track’ as quickly as possible, Joan increases the strength of her repair initiation in this example. Unfortunately she ends up using the wrong type of RI at the wrong time. She could have done more groundwork by using less specific RIs until repair was achieved or until she was at least sure of the elements the repairable turn
contained. Without this groundwork there is a danger that repair will get abandoned and the PD speaker’s contribution left unacknowledged, which could be argued to present more of a risk to social solidarity than continuing to resolve the trouble.

An extended Multiple Repair Sequence

In Extract 7, Rosie tries to discover what Greg* would like to drink. This sequence is now examined in order to highlight some of the common features of all three extended multiple repair sequences found in the data.

Extract 7

Greg: A whole pint of something

03:20 – 04:14

![Figure 9: Greg* is on the left](image)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 1 | Rosie:

((wiping his mouth then putting tissue on table)) would you like a ↓drink |
2	Greg: “yes”
3	(1.3)
4	Rosie: what ↓drink would y’like
5	Greg: (1.9) (pint)
6	Rosie: ➜ pardon? ((leans in close and puts her ear near his mouth))
7	Greg: (1.2) (pint)
8	(1.1) ((Rosie reaches for tissue and wipes his mouth))
9	Rosie: ➜ what would you ↑like to drink?
Greg: whole pint of (lemon ade)
Rosie: → a whole pint of something,
Greg: yes.
Rosie: → a whole pint ov: >lemon< ↑squash
Greg: no um (3.6) ((wipes his mouth))
Rosie: → o↑range
Greg: no
Rosie: → ↓no, wa↑ter
Greg: "water, ↓no"
Rosie: → beer,
(1.7)
(d’y want a beer?)
Greg: no
Rosie: → ↓no coke
(4.9) ((Greg moves his mouth minimally but no voicing occurs))
Rosie: → you’d like a drink of ↓what
Greg: () water
Rosie: water. water. o↑kay ↓l cn do ↑that ↓with some ice in, ((Rosie moves away from table))

The 10 RIs are marked with arrows. Overall, this sequence fits the pattern of Ris increasing in specificity. Rosie moves from an OCRI (line 6) to a repeat form (line 11) to a number of understanding checks in the form of candidate solutions (lines 13, 15, 17, 19, 21 and 23). However, amongst this overall sequence, at lines 9 and 25, Rosie uses a different form of RI, not described in the Schegloff et al (1977) heirarchy, that we have labelled ‘Repeating/rephrasing the first pair part (FPP)’. This will be explained in the following analysis.
When Rosie’s OCRI (line 6) fails, she issues a rephrasing of the original question (line 9). An important feature of the turn-taking system in ordinary conversation is ‘adjacency’, whereby ‘first pair parts (FPPs)’ such as questions or invitations are routinely followed by ‘second pair parts (SPPs)’ such as answers, acceptances and so on, with nothing intervening (Schegloff, 2007). At line 9, Rosie is rephrasing the original FPP. This action could be said to double up as a RI as well as a question, as it is being used to resolve rather than gloss over the original trouble source. It appears to work, as at line 10 Greg replies that he’d like a whole pint of lemonade. However it is only with the benefit of repeated listening when transcribing, that his response becomes clear. In real time, Rosie’s RI did not work for her as she still cannot understand his response. She follows up with what looks like a partial ‘repeat + wh word’ at line 11, with ‘something’ taking the place of a ‘wh’ word and displaying that it is the drink name Greg needs to focus on repairing. Instead of repeating the drink name he simply confirms with an elongated ‘ye:s’ at line 12 suggesting that this is not a straightforward agreement but that maybe he is still trying to process his next response.

There then follows a series of understanding checks of the ‘offering candidates’ type, each rejected apart from ‘beer’ at line 19 which gets no response. Rosie re-offers up this choice for confirmation at line 21 but this time constructs it as if it is being presented for the first time: ‘d’you want a beer?’ (line 21). This strategy has the feel of going back to the beginning and making the conversation sound fresh again.

When a further candidate solution fails (line 23), Rosie tries the strategy of deleting the entire preceding repair sequence by rephrasing the original FPP again at line 25. ‘What drink would y’like’ (line 4) has become ‘you’d like a drink of what’ (line 25). This restructuring has made the request for the drink name (‘what’) more recent and
is likely to help with Greg’s cognitive difficulties. He now indicates that he would like water (line 26) and Rosie understands and accepts this. The repair sequence is resolved. Greg, however, has moved from a position of requesting lemonade to now requesting water. Antaki et al (2008) offer some insights that might help to explain this in their study on how choices around meals, holiday and leisure planning are presented to adults with intellectual disabilities. Offering a series of choices (in this case candidate repair solutions), each to be accepted or rejected, can be effective in some cases. A danger arises however when one of the choices is accepted, and yet the series of choices continues in an effort to make sure that the ‘chooser’ has been completely understood. These checks may induce the chooser to switch decision. This may be the result of confusion due to cognitive overload, or may be a result of the chooser reacting to a sense that their first choice was somehow wrong: ‘After all, what seems to be the re-issue of a question may indicate that there was something wrong with the answer ‘(Antaki et al., 2008:1171). By the end of Extract 7 Greg seems to switch decision, although Rosie has made it clear at line 11 that she didn’t actually hear ‘lemonade’, so the switch is less likely to be due to him taking the hint that his answer was somehow inappropriate. Somewhere during the long sequence of questioning, he may well have forgotten what he actually wanted or become unable to retrieve the lexical item. He also may simply be going along with the easiest option in order to end the sequence and restore normality. Either way, offering a series of candidates in this example was not effective. What was effective in bringing the sequence to a close was repeating/rephrasing the original question (FPP), which allowed the conversation to progress but at the cost of Greg getting what he really wanted and sequentially deleting what has gone before.
However, elsewhere in Greg’s data, Rosie uses this strategy with more positive benefits for securing Greg’s participation.

Conclusions and implications

When multiple repair initiation takes place, this study has demonstrated a general tendency for CPs to use RIs of increasing specificity in the order outlined by Schegloff et al (1977). Sometimes, PD speakers’ self-repair attempts do not provide enough information to enable CPs to increase the specificity of their RIs and in these cases, repeated non-specific RIs are used (e.g. Extract 1, lines 3 and 5). In all instances where one OCRI follows another, the second takes a different form to the first, either lexically, becoming non-verbal or by upgrading the delivery by increasing gaze or intensifying prosody. Prompts to modify speech can also follow OCRIs.

A series of understanding checks in the form of candidate solutions may not be a very effective method of resolving extended repair sequences, especially where the PD speaker has cognitive difficulties. Extract 7 showed how using serial understanding checks, in the form of candidate solutions (e.g. Beer?…Coke?…Water?) risks PD speakers becoming cognitively overloaded and abandoning what they originally intended to communicate. In order to lessen this risk, when ‘offering candidates’ as part of the repair sequence, CPs could be advised to add to their armoury of resources, an effective strategy described by Antaki et al (2008). In their study it was noted that one of the ‘carers’, when offering a choice of 2 items, first asked the question e.g. ‘what would you like for lunch?’ then held up his fists one after the other in synchrony with the presented choices, as a visual cue/reminder. Variations on this strategy are described in the aphasia literature (Lasker et al., 1997). Choices can be provided in written form to supplement verbal presentation. Alternatively, choices can be presented one at a time, each choice
coinciding with the speaker pointing to a place on a page (marked with 1- 2- 3- etc) visually representing that choice. These strategies can enable people with severe aphasia, with varying levels of comprehension deficit, to make choices through pointing. However, despite the known cognitive and language processing deficits associated with PD, these kinds of adaptations do not feature in the standard advice for communicating with people with PD and there is little guidance for SLTs in managing the cognitive/linguistic aspects. Looking to the literature on other communication disorders, such as aphasia, could inform intervention planning.

Repeating or rephrasing the original FPP is a strategy that has been seen to be effective in moving out of multiple repair or at least splitting up an extended repair sequence into shorter units, thus making the conversation feel less of a prolonged struggle to resolve one trouble source.

CPs may successfully initiate repair on separate syntactic elements of a repairable utterance in stages. They may also, in their efforts to promote progressivity, increase the specificity of their repair initiation before they have adequate knowledge regarding the syntactic elements of the repairable turn to inform this. An extended sequence can result from the CP increasing the specificity of repair initiation too early.

The regular occurrence of multiple repair sequences in the data suggests that, when trouble is not straightforward to resolve, CPs do not easily give up trying to enable both themselves and the PD speakers to regain joint understanding and thereby spontaneous involvement in conversation. The instances of multiple repair described show that glossing over the trouble or going with a best guess are not strategies that are readily employed to avoid further repair initiation. Rather, there is plenty of evidence to suggest that CPs ‘stick with it’ despite the negative social implications
associated with repair initiation and prolonged repair sequences, perhaps because in these conversations, joint intersubjectivity in interaction (and therefore full and meaningful participation) is a ‘prized outcome’ (Heritage, 2007) that can over-ride concerns over the need for progressivity.

Ideas for intervention

There is a need to develop new communication assessments that can reveal the complexity of experience for people with PD outside the clinic and interventions targeting improved participation in talk. Based on the findings of this examination of multiple repair, figure 10 shows a prototype adapted menu and hierarchy of repair initiation based on the original Schegloff et al (1977) model. An option for resolving multiple repair covered here, such as prompting to modify speech, has been added to the hierarchy of RIs as one that is stronger than an OCRI in indicating how self-repair should unfold. The strategy of repeating the FFP might prove helpful in some cases, i.e. ‘if all else fails go back to the beginning’ and therefore also appears on this revised hierarchy.

This kind of resource, further elaborated and accompanied by an instruction manual, could be used as a tool by SLTs to inform individualised therapy. It could aid SLTs when examining video recorded episodes of informal conversations showing repair in action and form the basis of discussions with PD clients and their CPs. Various options could be explained, along with their relative benefits to progressivity against risks in terms of the social implications.

This prototype is presented here in its current early form, as it is expected that clinicians, given the lack of current available resources, might find it helpful when planning conversation-focussed therapies. However, further work will need to be done in terms of developing this into a feasible and acceptable resource.
Figure 10: Prototype adapted menu and hierarchy of repair initiation based on Schegloff et al (1977)

If problem is one of getting stuck mid-turn, try repeating back the partial turn so far.

Avoid repair by going with a best guess or glossing over the trouble (consider associated risk to participation)

Trouble source
If none of utterance heard, start with open class or prompt.

If some of utterance heard, or if entire utterance heard but not understood, start with a strategy from closed class to understanding check, depending on what was heard/understood.

Repeat/rephrase original first pair part (FPP)

If the PD speaker usually takes long turns, interruptive repair (breaking into a turn to initiate repair) might be helpful.

If having to use these repeatedly and still can’t hear enough of utterance to move on, try varying the form used/adding terms of endearment. Try non-verbal options as variants e.g. leaning in, an enquiring head movement...

If giving choices, consider using visual cues as support, e.g. holding up fists in synchrony with presented choices and asking PD speaker to point to correct fist (Antaki et al., 2008), or giving written choices (see further strategies described by Lasker et al., 1997)

Open class
e.g. 'mm?' 'Pardon?' 'Sorry love?'

Prompt to modify speech
e.g. 'Can you say it louder please?'

Closed class
wh-word
e.g. 'where?' 'when?'

Understanding check
e.g. 'Do you mean the paper shop?' 'Ten or eleven?'

Repeat e.g. 'The shop opens at ten o’clock?'

Repeat + wh-word
e.g. The shop opens when?'

Repair initiation may not result in successful repair, but you have now heard/understood more of the utterance than you did before. If so, try a repair initiator further along the continuum, depending on how much information you now have.

If several attempts at repair are unsuccessful, try starting again by repeating/rephrasing the original turn that required a response, e.g. the question 'Where would you like to go on holiday?' becomes 'What holiday shall we go on?'

If problem is one of going off topic, try a topic prompt e.g. ‘Not about x, about y.’

Do not move on from open class/prompts to modify speech unless absolutely sure of some part of the utterance.

Avoid repair by going with a best guess or glossing over the trouble (consider associated risk to participation)

Consider using ‘repeat-receipts’ at times i.e. repeating back utterances that don’t need repair: a way of saying ‘I’m understanding you. This conversation is working.’
During a dissemination exercise, a small group of four people with PD (not the original participants) reported that they liked the idea of encouraging CPs to vary the form of OCRI if more than one is needed, including the use of non-verbal methods of repair initiation like leaning forward to indicate trying to hear. They also expressed a preference to be prompted by CPs to modify their speech rather than CPs avoiding the problem. This is interesting, given that there was some evidence both from the data and anecdotally from talking to relatives of those with PD, that although prompts can be successful in avoiding long repair trajectories, CPs may be reluctant to use them except as a last resort.

Six local SLTs (some of whom were the original recruiters) also took part in a dissemination group. They liked the idea of using videos of everyday interaction combined with a repair initiation menu to guide individually tailored therapy for this client group. It was felt that a training video for SLTs could be produced alongside a manual and a checklist and that any future tool should be written for SLTs who are not necessarily familiar with CA terminology. One attendee stressed that maximising the CP’s hearing should be a first priority in therapy as this exacerbates the problems and is often overlooked. All felt that addressing the use of prompting to modify speech should definitely be part of intervention and that CPs should be educated that despite the negative social implications, prompting can be beneficial.

This study has contributed to a growing understanding of how delays in progression and repair are managed in communication disability and the implications of these for participation. Findings such as those reported here can allow SLTs work with PwPD at the level of participation, raising awareness of current strategies-in-use and strategies with potential to be trialled. For instance, if PD speakers would prefer more prompts, CPs could be supported in trying them out. They could experiment...
with wording that is most acceptable to all. ‘Speak up please’ might not feel acceptable whereas ‘sorry - your volume’s gone a bit.’ might feel better for example.

Previous CA and dysarthria studies have tended to recruit participants with measurably moderate to severe intelligibility impairments (e.g. Bloch and Wilkinson, 2004; Bloch and Beeke, 2008; Rutter, 2009; Bloch, 2011). Including a range of participants, some of whom might be described as ‘high functioning’ in terms of the measurable aspects of speech, this study has allowed an exploration of the day-to-day impact on communication of these ‘mild’ difficulties.

The number of participants was modest, and there was no attempt to investigate interaction outside the home setting, with unfamiliar people, therefore the study does not allow for wide ranging generalisation. Stronger claims of generalisation could accumulate over time through a process of aggregation, as further studies reveal similar patterns (Svennevig and Skovholt, 2005).

In terms of the future research agenda, this study forms part of an essential development phase of developing and evaluating complex interventions (Craig et al., 2008), providing the initial groundwork before ‘feasibility and piloting’ ‘evaluation’ and ‘implementation’ can be addressed. There are indications that a clinical resource for SLTs, supporting their use of video material, with an observation checklist based on the findings of this study, would be well received as long as it was accessible to those with no prior CA training. There is still a great deal of work to be done if the ideas for intervention are to be further developed and eventually embedded in clinical practice.
References

BLOCH, S. 2011, Anticipatory other-completion of augmentative and alternative communication (AAC) talk: A Conversation Analysis study. Disability and Rehabilitation, 33, 261-269.

GRiffiths, S. 2013, Managing everyday conversation in Parkinson's Disease: a conversation analytic study. PhD, Peninsula College of Medicine and Dentistry.

Appendix A

Table 3: Jefferson (2004) transcription conventions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.8)</td>
<td>Numbers in parentheses = length of silence in tenths of a second</td>
</tr>
<tr>
<td>[</td>
<td>Start of overlapping talk</td>
</tr>
<tr>
<td>]</td>
<td>End of overlapping talk</td>
</tr>
<tr>
<td>.</td>
<td>Falling intonation</td>
</tr>
<tr>
<td>,</td>
<td>Rising intonation, suggesting continuation.</td>
</tr>
<tr>
<td>?</td>
<td>Rising intonation. Questioning inflection, but not necessarily a question</td>
</tr>
<tr>
<td>word</td>
<td>Underlining = stress/emphasis</td>
</tr>
<tr>
<td>°°</td>
<td>Degree signs = talk between these is markedly quieter than the surrounding talk</td>
</tr>
<tr>
<td>↑</td>
<td>Up arrow = sharp intonation rise</td>
</tr>
<tr>
<td>↓</td>
<td>Down arrow = sharp intonation fall</td>
</tr>
<tr>
<td>.hh</td>
<td>Audible in-breath</td>
</tr>
<tr>
<td>()</td>
<td>Double parentheses enclose description of environment or non-verbal behaviour</td>
</tr>
<tr>
<td>()</td>
<td>Empty parentheses enclose unintelligible talk</td>
</tr>
<tr>
<td>(word)</td>
<td>Words in parentheses indicate transcriber’s ‘best guess’ utterance</td>
</tr>
<tr>
<td>> <</td>
<td>Talk between symbols is rushed</td>
</tr>
<tr>
<td>:</td>
<td>Prolongation/stretching out of sound</td>
</tr>
<tr>
<td>=</td>
<td>Contiguous utterances with no interval between talk</td>
</tr>
<tr>
<td>£</td>
<td>Smile voice</td>
</tr>
</tbody>
</table>