

This is a repository copy of Validation of Surrogate Endpoints in Advanced Solid Tumors: Systematic Review of Statistical Methods, Results, and Implications for Policy Makers.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/98519/

Version: Supplemental Material

Article:

Ciani, O., Cantrell, A. orcid.org/0000-0003-0040-9853, Davis, S. orcid.org/0000-0002-6609-4287 et al. (6 more authors) (2014) Validation of Surrogate Endpoints in Advanced Solid Tumors: Systematic Review of Statistical Methods, Results, and Implications for Policy Makers. International Journal of Technology Assessment in Health Care, 30 (3). pp. 312-324. ISSN 0266-4623

https://doi.org/10.1017/S0266462314000300

This article has been published in a revised form in International Journal of Technology Assessment in Health Care [https://doi.org/10.1017/S0266462314000300]. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works. © Cambridge University Press 2014.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

	Frequency (%)				
Type of meta-analysis					
Aggregate data	18 (58)				
IPD	13 (42)				
Number of trials, Median (IQR)	28 (9 - 51)				
Aggregate data	39 (31 - 67)				
IPD	4 (4 - 10)				
Number of patients, Median (IQR)	4138 (1167 - 15262)				
Aggregate data	15850 (10714 - 23492)				
IPD	1158 (642 - 1280)				
Advanced tumour types					
Colorectal cancer	12 (39)				
Ovarian cancer	7 (23)				
Breast cancer	8 (26)				
Lung cancer	9 (29)				
Renal cell carcinoma	3 (10)				
Prostate cancer	2 (6)				
Glioblastoma multiforme	2 (6)				
Gastric cancer	1 (3)				
Head and neck cancer	1 (3)				
Pancreatic cancer	1 (3)				
Number of tumour types examined					
1	24 (77)				
2	4 (13)				
> 2	3 (10)				
Surrogate endpoint considered					
PFS	15 (48)				
TTP	6 (19)				
PFS and TTP [*]	3 (10)				
PFS/TTP [§]	5 (16)				
PFS and TTP and PFS/TTP	2 (6)				

Table 1. Summary of the characteristics of included meta-analyses, N=31

IPD = Individual patient data; NSCLC = non-small-cell lung cancer; PFS = Progression-freesurvival; TTP = Time to progression* PFS and TTP analysed as two distinct endpoints§ PFS and TTP analysed as single endpoint

Table 2. Assessment of the validity of PFS as surrogate for OS: comparison of meta-analyses by tumour type across evaluation frameworks. Shaded cells indicate meta-analyses using individual patient data.

Tumour	Meta-analysis	Elston and Taylor	IQWiG framework ^b			BSES3°		Authors' conclusions
type	Meta-analysis	framework ^a	Reliability	Correlation	Conclusion	Overall Score /12	Level of Evidence	
Colorectal cancer	Louvet 2001 ⁴³	Level 2	Low	-	No proof	7	D	"In conclusion, PFS certainly deserves further evaluation as an endpoint measure."
	Tang 2007 ⁴⁴	Level 1	Moderate	Medium	Hint	10	С	"In first-line chemotherapy trials for metastatic CRC, improvements in PFS are strongly associated with improvements in OS. In this patient population, PFS may be an appropriate surrogate for OS."
	Wilkerson 2009 ⁴⁰	Level 1	Moderate	Low	No Proof	8	D+	"We conclude that PFS is not a surrogate for OS; rather it is a straightforward measure of on-therapy benefit."
	Chirila 2012 ²⁵	Level 1	Limited	Medium	Indication	9	C-	"We have shown that the correlation of OS with PFS, either alone or aggregated with TTP, in clinical trials of patients with metastatic CRC is robust across lines of therapy and provides a useful means of predicting improvements in OS."
	Burzykowski 2001 ³⁸	Level 1	Limited	Low	No Proof	7	D	"These results suggest that PFS is neither trial level nor individual level valid"
	Burzykowski 2006 ²⁴	Level 1	Limited	Medium	Indication	8	D+	"This clearly illustrates that PFS would not be an acceptable, even 'potentially', surrogate for survival in the set of trials analysed here. [However] the association between the treatment effects on both endpoints may

								have been dominated by random noise."
	Buyse 2007 ⁴⁵	Level 1	Limited	High	Indication	10	с	"The analyses presented here show that, in historical trials comparing FU leucovorin with single-agent FU or with raltitrexed, PFS was an acceptable surrogate for OS"
	Green 2008 ²⁶	Level 1	Limited	Medium	Indication	10	C-	"We conclude that there is modest evidence for surrogacy between one-year PFS and two-year OS."
Lung cancer	Hotta 2011 ⁵⁰	Level 2	Low	-	No Proof	8	D+	"A PFS advantage is unlikely to be associated with an OS advantage any longer due to this increasing impact of PPS on OS."
	Li 2012 ⁴⁷	Level 2	Low	-	No Proof	7	D	"Our data suggest that PFS is appropriate survival marker in the clinical trials of EGFR-TKIs for advanced NSCLC."
	Mandrekar 2010 ⁴⁸	Level 2	Low	-	No Proof	6	D-	"Our present findings (based on data from phase II trials) demonstrate that PFS is a significant predictor of patient survival in advanced NSCLC."
	Foster 2011 ⁵⁷	Level 1	Limited	Medium	Indication	8	D+	"PFS showed the most promise as a surrogate endpoint for OS (in SCLC) at the patient and the trial-level across all the statistical methods assessed."
Breast cancer	Miksad 2008 ⁵³	Level 1	Limited	Low	No Proof	8* 9**	D+ C-	"This meta-analysis suggests that the trial-level TE on PFS is significantly associated with the trial-level TE on OS. However, prediction of OS based on PFS is surrounded with uncertainty."
	Wilkerson 2009 ⁴⁰	Level 1	Moderate	Low	No Proof	8	D+	"We conclude that PFS is not a surrogate for OS; rather it is a straightforward measure of on-therapy benefit."

	Burzykowski 2008 ⁵¹	Level 1	High	Low	No Proof	7	D	"No end point could be demonstrated as a good surrogate for OS in these trials."
Ovarian cancer	Wilkerson 2009 ⁴⁰	Level 1	Moderate	Low	No Proof	8	D+	"We conclude that PFS is not a surrogate for OS; rather it is a straightforward measure of on-therapy benefit."
	Rose 2010 ⁵⁴	Level 2	Low	-	No Proof	5	E+	"We studied the correlation between PFS at six months and survival and found measures of PFS at six months correlated better than response rate to OS."
	Burzykowski 2001 ³⁸	Level 1	Limited	High	Indication	8	D+	"It seems plausible to conclude that PFS is a valid surrogate for survival in advanced ovarian cancer for treatments of the type used in the trials analysed."
	Burzykowski 2006 ²⁴	Level 1	Limited	High	Indication	8	D+	"Consequently, we suggest a better validity of the surrogate (PFS) [than in CRC]."
Renal cell carcinoma	Heng 2011 ⁵⁹	Level 2	Low	-	No Proof	5	E+	"PFS may be a meaningful intermediate endpoint for OS in patients with metastatic RCC who receive treatment with novel agents."
Prostate cancer	Halabi 2009 ⁵⁸	Level 2	Low	-	No Proof	6	D-	"PFS seems to be associated with OS. These data need to be validated prospectively before it can be used routinely as an intermediate end point in phase II trials in CRPC."
GBM	Ballman 2007 ⁴²	Level 2	Low	-	No Proof	6	D-	"In light of our assessment of the relationship between PFS and OS, it appears that PFS provides only a moderately reliable estimate of survival."
	Polley 2010 ⁴¹	Level 2	Low	-	No Proof	5	E+	"Our analysis suggested that PFS at 6 months may be an appropriate primary endpoint in the context of phase II trials evaluating treatment regimen in newly diagnosed

			GBM patients. Future research is needed to validate our
			findings in a larger population."

CRC = colorectal cancer; CRPC = castrate-resistant prostate cancer; EGFR-TKIs = epidermal growth factor receptor tyrosine-kinase inhibitors; FU = fluorouracil; GBM = Glioblastoma multiforme; NSCLC = non-small-cell lung cancer; OS = overall survival; PFS = progression-free survival; PPS = post-progression survival; RCC = renal cell carcinoma; RCT = randomised controlled trial; SCLC = small-cell lung cancer; TE = Treatment effect, TTP = time to progression.

*Taxanes; ** Anthracyclines.

^a Level 1 corresponds to treatment-level association, i.e. evidence showing treatment effects on the surrogate correspond to treatment effects on the final patient-relevant endpoint. Level 2 corresponds to evidence showing association between the two endpoints.

^bReliability is assessed according to (i) use of appropriate statistical approach, (ii) robustness and generalisability of results, (iii) systematic compilation of data, (iv) sufficient restriction of indications, degrees of disease severity, interventions and (v) clear definitions of endpoints. Low, moderate, limited and high indicate growing level of reliability. High correlation corresponds to $R \ge 0.85$ whilst low correlation to $R \le 0.70$. Correlation is not even assessed if the study is of low reliability. The conclusion about the effect on the final endpoint drawn from the effect observed on the surrogate can be a no proof, hint, indication or proof according to increasing level of validity of the surrogate endpoint.

^cOverall score sums up scores from 0 to 3 obtained in each of the four domain (i.e., study design, target endpoint, statistical evaluation and generalisability). Category A and B of level of evidence correspond to good evidence for validity of the surrogate endpoint. If the score is lower than 2 in any domain, the level of evidence drops by one alphabetic category.

Table 3 Assessment of the validity of TTP as surrogate for OS: comparison of meta-analyses by tumour type across evaluation frameworks

Tumour	Meta-analysis	Elston and Taylor	IQWiG framework ^b			BSES3 ^c		Authors' conclusions
type	Weta-analysis	framework ^a	Reliability	Correlation	Conclusion	Overall	Level of	
		ITAITIEWUIK	Reliability	Correlation	Conclusion	Score /12	Evidence	
Colorectal								"Our findings support the use of time to progression
cancer	Johnson 2006 ²⁷	Level 1	Limited	Low	No proof	8	D+	as a surrogate for survival in metastatic lung cancer
								and colorectal cancer."
								"Our analysis showed that improvements in PFS,
								TTP, and RR were all strongly associated with an
		Level 1	Moderate	Medium	No Proof	7	D	improvement in OS in randomized control trials of
	Tang 2007 ⁴⁴							first-line chemotherapy for metastatic CRC. [] The
								overlapping definitions of PFS and OS may account
								for the superiority of PFS as a surrogate for OS, as
								compared with TTP or RR."
								"The relationship between PFS and PPS in cancer
	Bowater 2008 ²³	Level 1	Low	-	No proof	8	D+	treatment that have been examined in this study are
								worthy of further investigation."
								"It would appear that drugs for metastatic breast or
	Bowater 2011 ³⁷	Level 1	Low		No proof	7	D	CRC that extend, by a given amount, the TTP have a
	Dowater 2011	Leveri	LOW			1		strong tendency to extend, by roughly the same
								amount, the OS."
	Chirila 2012 ²⁵	a 2012 ²⁵ Level 1 Limited Low N	No proof	8	D+	"The weighted correlation value did not change for		
						0		PFS and it was somewhat lower for TTP (although

								with confidence limits that overlap those of PFS/TTP)
								[] the correlation of OS with PFS, either alone or
								aggregated with TTP, in clinical trials of patients with
								metastatic CRC is [] a useful means of predicting
								improvements in OS."
NSCLC								"Our findings support the use of time to progression
	Johnson 2006 ²⁷	Level 1	Limited	Low	No proof	8	D+	as a surrogate for survival in metastatic lung cancer
								and colorectal cancer."
								"The relationship between PFS and PPS in cancer
	Bowater 2008 ²³	Level 1	Low	-	No proof	8	D+	treatment that have been examined in this study are
								worthy of further investigation."
								"TTP potentially acts as a surrogate marker, but may
	Hotta 2009 ⁴⁶	Level 1	Limited	Low	No Proof	8	D+	not be still a definitive alternative in the first-line
								setting."
								"Our data suggest that PFS is appropriate survival
	Li 2012 ⁴⁷	Level 2	Low	-	No Proof	7	D	marker in the clinical trials of EGFR-TKIs for
								advanced NSCLC."
Breast								"TTP may be a useful surrogate marker for predicting
cancer								survival in women receiving first-line anthracycline
	Hackshaw 2005 ⁵²	Level 1	Moderate	Medium	Hint	9	C-	chemotherapy and could be used to estimate the
								survival benefit in future trials of first-line
								chemotherapy."
								"The relationship between PFS and PPS in cancer
	Bowater 2008 ²³	Level 1	Low	-	No proof	8	D+	treatment that have been examined in this study are
								worthy of further investigation."

	Bowater 2011 ³⁷	Level 1	Low	-	No proof	7	D	"It would appear that drugs for metastatic breast or CRC that extend, by a given amount, the TTP have a strong tendency to extend, by roughly the same amount, the OS."
	Burzykowski 2008 ⁵¹	Level 1	Limited	Low	No Proof	7	D	"No end point could be demonstrated as a good surrogate for OS in these trials."
Ovarian cancer	Buyse 2000 ⁹	Level 1	Limited	High	Indication	8	D+	"We conclude that TTP can be used as a surrogate for survival in advanced ovarian cancer."
Prostate cancer	Bowater 2008 ²³	Level 1	Low	-	No Proof	8	D+	"The relationship between PFS and PPS in cancer treatment that have been examined in this study are worthy of further investigation."

CRC = colorectal cancer; EGFR-TKIs = epidermal growth factor receptor tyrosine-kinase inhibitors; NSCLC = non-small-cell lung cancer; OS = overall survival; PFS = progression-free survival; PPS = post-progression survival; RR = response rate; TTP = time to progression. Shaded cells indicate meta-analyses using individual patient data.

^asee Table 2.

^bsee Table 2.

^csee Table 2.