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Abstract�Recent years have witnessed an ever-increasing

growth for cloud computing services and applications housed by

data centers. PON based optical interconnects for data center

networks is a promising technology to offer high bandwidth,

efficient utilization of resources, reduced latency and reduced

energy consumption compared to current data center networks

based on electronic switches. This paper presents our proposed

scheme for data center interconnection to manage intra/inter

communication traffic based on readily available low cost and

power PON components. In this work, we tackle the problem of

resource provisioning optimization for cloud applications in our

proposed PON data centers architecture. We use Mixed Integer

Linear Programming (MILP) to optimize the power consumption

and delay for different cloud applications. The results show that

delay can be decreased by 62% for delay-sensitive applications

and power consumption can be decreased by 22% for non-delay

sensitive applications.

Keywords� Passive Optical Network (PON); data center;

energy efficiency; arrayed waveguide grating routers
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I. INTRODUCTION

The use of Passive Optical Networking (PON) technology
in data centers and the useful functionalities provided by
devices like Arrayed Waveguide Routers (AWGR), fiber
Bragg grating (FBG), and star couplers/splitters have attracted
much attention from the research community in the last few
years. As PON technology performance has been proven in
access networks and has shown its capability in provisioning
low cost, high capacity, low latency, scalable, and energy
efficient networks, it has become more attractive to be adopted
to provide fabric interconnection in modern data centers.

PONs can resolve many issues in current electronic and
optical data center architectures such as high cost and high
power consumption resulting from the large number of access
and aggregation switches needed to interconnect hundreds of
thousands of servers [1]. PONs can also overcome the
problems of switch oversubscription and unbalanced traffic in
data centers where PON architectures and protocols have
historically been optimized to deal with these problems and
handle bursty traffic efficiently through flexible protocols.

PON solutions are scalable. This is readily proven in the
combination of core and access networks that are able to
connect easily 20 million homes in the UK, 5 times that in
the US. PONs achieves scalability due to their cellular
architecture. A PON cell may connect 256 servers and many
cells can then provide coverage of a small data center or a large
data center with a possible 1 million servers. PON solutions

enable efficient wavelength/bandwidth utilisation as PONs can
assign a wavelength to large �elephant� flows between servers
and can also allocate a time slot in their TDM-WDM structure
to accommodate �mice� flows.

In our previous work we investigated energy efficiency for
core networks with data centers and clouds [2-8]. In [9], we
proposed and compared five novel designs for PON
deployment in future cloud data centers to handle intra and
inter-rack communications. In [10], we have shown that the
AWGR-based PON architecture can be scaled up efficiently to
hundreds of thousands of servers and have shown energy
savings of 45% and 80% compared to the Fat-Tree [11] and
BCube [12] architectures, respectively. In this paper, we further
investigate the proposed AWGR PON architecture for cloud
resource provisioning applications. We present our results
through a developed Mixed Integer Linear Programming
(MILP) optimization model for power consumption and delay
minimization for different applications that can be hosted in
data centers.

The remainder of this paper is organized as follows: In
Section II, we present our proposed PON data center
architecture. In Section III, we present our results for resource
provisioning through our optimization model. Finally we
conclude the paper in Section IV.

II. ARCHITECTURE OF THE PROPOSEDAWGR-BASED PON

DATACENTER

Fig. 1. A possible PON deployment in a data center (a) An OLT

chassis with 16 AM, each of which with 16 ports, (b) AM OLT card

connecting number of PON cells

In this section, we consider PONs for deployment in data
centers. Figure 1 shows the proposed connectivity created by
PON deployment. The OLT chassis hosts 16 access module
cards (AM) where each AM has the capacity to connect 16



ports, each of which provides a transmission rate up to 10 Gb/s
(e.g., XGPON2). A single card port can connect up to 128
servers, therefore, one card can connect 2048 servers and one
chassis can provide connections to 32,768 servers. The
architecture can be scaled up to host hundreds of thousands of
servers by adding more chassis.

The architecture is similar to a cellular network in that
wavelengths are reused for other racks connected to different
OLT ports where each port connect a PON cell. The cellular
based architecture using PONs improves scalability to allow
such architectures to host millions of servers without having
limitation on number of wavelengths as these wavelengths are
reused in all cells.

Fig. 2. (a) Architecutre of proposed PON cell with servers equipped

with tuneable lasers (b) Obtained MILP configuration for 4x4

AWGRs interconnection for wavelenght routing (c) MILP obtained

wavelength routing table for intra-cell communication

Figure 2(a) depicts the architecture of a PON cell relying
only on optical passive devices. The PON cell is equipped with
two intermediate AWGRs to provision full interconnection

among the PON cell racks. Each PON group hosts 16-32
servers connected by passive splitters/couplers. The connection
between the racks and the OLT is established via a 1: N
AWGR. Each server is equipped with a tuneable laser and
needs to tune to a particular wavelength to communicate with
other servers in different racks. The fabric interconnection and
wavelength routing table shown in Figures 2(b) and (c) are
obtained through a mathematical MILP optimization model.

A. Inter-Rack Communication within the PON Cell

Inter-rack communication within the cell can be
provisioned either via the OLT switch or directly through the
intermediate AWGR where a wavelength is selected for
transmission based on the location of the destination server.
Alternative routes facilitate multi-path routing and load
balancing at high traffic loads, however, forwarding traffic
through the OLT switch should be avoided if possible to reduce
delay and power consumption. A server can reach servers in
other racks by tuning its transceiver to the proper wavelength
that matches the AWGR wavelength routing map.

This design is a Wavelength Routing Network (WRN) with
N+1entities (N racks and the OLT) to communicate with each
other. In a WRN for N+ 1 entity to communicate with N
entities, we require either N fibers with N2 wavelengths or N2

fibers with N wavelengths. In our designs, we select N
wavelengths and employ the 2 AWGRs to represents the N2

fibers (connections). For the architecture depicted in Figure 2
with N=4, 4 wavelengths are needed.

According to the wavelength routing table shown in Figure
2(c), if a demand exists between servers A and B located in
rack 1 and 4 respectively. A control request message is sent to
the OLT switch using wavelength 3 routed through AWGR-1
input port 1 to output port 3. If the OLT decides to grant the
request, the OLT then replies with a control messages to the
two servers A and B using wavelengths 3 and 2 for racks 1 and
4 respectively. The control messages shall contain information
about the wavelengths both servers need to tune to and
assigned resources. Upon reception of the control information
from the OLT switch, servers A and B tune their transceivers to
wavelength 1. Idle servers by default should be tuned to
wavelengths connecting them with the OLT.

B. Intra-Rack Communication

Intra-rack communication within the PON cell can be

provisioned using one of the described techniques in Figure 3.

The first proposed design uses a passive star reflector to

connect servers within a rack allowing each server to

broadcast to other servers using an additional transceiver. The

main limitation of such a design is the complexity of the MAC

protocol needed to coordinate and arbitrate channel access.

Another solution to support intra-rack connectivity is to

deploy a Fiber Brag Grating (FBG) after the star coupler

connecting the servers in the rack to reflect a dedicated

wavelength assigned for intra-rack traffic communication. To

facilitate the use of the FBG for the intra-rack communication,

each server can be equipped with a second multi-wavelength

(MW) transceiver. OFDM technology can be used to allow a

single transceiver to generate multiple carriers, one for intra-
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rack communication and another for connections to the OLT

or other racks. However, the expensive OFDM transceivers

will increase the deployment cost of the PON design.

A third alternative which we find more practical for intra-

rack communication is the Passive Polymer Backplane

developed in [13]. This technology employs a passive

backplane with multimode polymer waveguides and can

provide non-blocking full mesh connectivity with 10 Gb/s

rates per waveguide, exhibiting a total capacity of 1 Tb/s.

Fig. 3. PON based technologies for intra-rack communication

C. Inter-Cell Communication

The depicted design in Figure 4 shows a schematic of
proposed upper level connectivity for inter-cell communication
using only passive devices. For simplicity, we only show
uplink connections from PON cells to the OLT switches. This
facilitate multi path routing and also enhance the bandwidth
allocation mechanism by introducing 2-tiers of optical passive
AWGRs for connectivity with multiple OLT switches instead
of having each PON cell connected to a single OLT port. This
allows efficient utilization of resources in case of low activity
in some PON cell by allowing servers at heavily loaded cells to
join multiple OLT ports where resources are available. We
employ SDN control and management system to coordinate
and arbitrate the channel access for communication through the
OLT links for uplink and downlink transmissions.

Fig. 4. Upper-level connectivity for inter-cell communication

Depending on the activity ratio of servers in different PON
cells, the PON protocol through SDN can reconfigure the
network by retuning the servers� transceivers to distribute and
perform load balancing to different OLT ports. Alternatively
the SDN can also consolidate loads at fewer PON cells to save
power in response to the variation of the daily load. The main
advantage of the design is its flexibility which allows servers to
join different OLT ports based on availability of resources in
order to reduce oversubscription and improve resources
provisioning mechanism through energy efficient grooming
and reconfiguration.

III. OPTIMIZATION OFRESOURCES PROVISIONING IN PON

DATACENTER

In this section, we report the MILP optimization results
with the objectives of power and delay minimization for
efficient resource provisioning in a PON data center. We
examined a different number of VMs (20, 40, and 60), where
each VM has a requirement for CPU, memory, and
communication traffic with other VMs selected randomly
following uniform distribution. Table I presents the input
parameters used for the model.

TABLE I: INPUT DATA FOR THE MODEL

Link capacity 10Gb/s

Power consumption for idle servers 201 W [14]

Maximum power consumption for servers 301 W [14]

Clients� processing requirements of CPU cycles

in MHz

500-2000

Clients� memory requirements in MB 500-2000

Server�s processing capacity in GHz 2.5

Server�s memory (RAM) in GB 8

ONU power consumption 2.5W [15]

VMs traffic 40-200 Mb/s

The model ensures that the ONU link capacity along with
the physical machines� CPUs and memory capacities are not
exceeded when assigning VMs. We also ensure that servers in
each PON group do not exceed the shared capacity of assigned
wavelengths while communicating with other servers in
different PON groups. A wavelength continuity constraint is
used to ensure that the wavelength going into a node is the
same wavelength leaving it for all nodes except the source and
destination. Furthermore, we ensure the PONs� directionality
property is satisfied by ensuring flows are only directed from
inputs to outputs of the optical passive devices.

The objective of minimizing the servers� power
consumption results in the allocation of CPU and RAM
resources requested by clients to the minimum possible number
of servers by means of consolidation (a packing optimization
problem). This objective does not take into account the
communication demands among the VMs to decide the
location of each VM. We will consider such communication
requirements in extensions to our work. The objective that
addresses the minimization of delay aims to minimize traffic
flow on communication links and does not take into account
the number of servers used to provision resources to the clients



Fig. 5. Average server�s utilization examining three sets of VMs; 20,

40, and 60 for the two objective functions; Minimization of physical

machine power consumption and minimization of delay

Fig. 6. Total power consumption examining three sets of VMs; 20,

40, and 60 for the two objective functions; Minimization of physical

machine power consumption and minimization of delay

Fig. 7. Total number of switched on servers examining three sets of

VMs; 20, 40, and 60 for the two objective functions; Minimization of

physical machine power consumption and minimization of delay

Fig. 8. Average delay examining three sets of VMs; 20, 40, and 60 for

the two objective functions; Minimization of physical machine power

consumption and minimization of delay

(the placement optimization problem). The number of servers
can however be taken into account in a hybrid problem. We
have therefore chosen to focus on the boundary problems to
establish the limits on power saving and delay minimization
through our proposed PON architecture and MILP
optimization.

With minimization of delay, the model tries to allocate
VMs that have mutual communication traffic in the same
servers as much as possible. As a result, traffic flow among
servers, ONU power consumption, and average delay are
reduced. However, total power consumption is increased
compared to the minimization of servers� power consumption
model, as more servers are required to accommodate groups of
VMs with mutual bandwidth. For the different number of VMs
under examination, the model with the objective of delay
minimization shows that the average delay can be decreased by
62%, while the power consumption minimization objective
shows that power savings can reach 22%.

Minimization of delay also results in lower utilization of
servers� resources as more servers are used to serve the same
number of VMs to ensure that the maximum possible number
of VMs are collocated in servers. Figures 5 and 7 present
average servers� utilization and the number of activated servers
for the different objectives for 20, 40, and 60 sets of VMs.
Delay minimization results in lower average utilization of
around 65%, while the minimization of servers� power
consumption approach results in servers� utilization that is
more efficient and approaches 90%.

IV. CONCLUSIONS

This paper has proposed an optimization model and has
introduced two objective functions: minimization of delay and
minimization of power consumption, to cater for different
applications that can be hosted in a PON cloud data center. Our
results have shown the trade-off between minimization of
power consumption and minimization of delay objectives. The
minimization of delay model is best for real-time delay-
sensitive applications and our PON architectures and
optimization have shown that a reduction in delay of 62% is
possible compared with the model and approach where the
server�s power consumption is minimized. On the other hand,
minimization of server�s power consumption can be used for
non-delay sensitive applications with power savings that can
reach 22%.
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