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ABSTRACT
The increasing power of computers makes it possible to model the nonlinear inter�
action between magnetic �elds and convection at the surfaces of solar�type stars in
ever greater detail� We present the results of idealized numerical experiments on two�
dimensional magnetoconvection in a fully compressible perfect gas� We �rst vary the
aspect ratio � of the computational box and show that the system runs through a
sequence of convective patterns� and that it is only for a su�ciently wide box �� � �	
that the 
ow becomes insensitive to further increases in �� Next� setting � � �� we
decrease the �eld strength from a value strong enough to halt convection and �nd
transitions to small�scale steady convection� next to spatially modulated oscillations
��rst periodic� then chaotic	 and then to a new regime of 
ux separation� with regions
of strong �eld �where convection is almost completely suppressed	 separated by broad
convective plumes� We also explore the e�ects of altering the boundary conditions and
show that this sequence of transitions is robust� Finally� we relate these model cal�
culations to recent high�resolution observations of solar magnetoconvection� in plage
regions as well as in light bridges and the umbrae of sunspots�

Key words� convection  MHD  Sun� granulation  Sun� magnetic �elds  sunspots
 stars� magnetic �elds�

� INTRODUCTION

Magnetic �elds interfere with convective transport in the
photospheres of late�type stars� This interaction can be ob�
served in detail at the surface of the Sun� where features
that are only a few hundred kilometres across can now be
resolved� revealing a variety of �ne structure that depends
on the local strength of the magnetic �eld� At the same
time� rapid advances in computing power have made it possi�
ble to model nonlinear magnetoconvection in regimes where
numerical experiments can be contrasted with solar obser�
vations� In this paper we study the e�ects of varying the
geometry and boundary conditions in idealized models� and
identify di�erent patterns of behaviour when the �elds are
weak or strong� These regimes are then related to convective
structures on the Sun�

In the solar photosphere� the strongest vertical �elds
are found in pores and sunspot umbrae� where convective
plumes show up as �umbral dots� 	Danielson 
���� These
small bright features are present in all sunspots� though
large spots contain isolated regions 	dark nuclei� that are
free of them 	Muller 
���� Sobotka� Bonet � V�azquez 
����
Sobotka 
����� Until very recently it was thought that um�
bral dots had diameters of 
������ km and a �lling factor of
��
��� With improved resolution 	Sobotka 
���� Sobotka�
Brandt � Simon 
���a�b� it is now clear that there is no
typical diameter� rather� the number density of umbral dots
increases with decreasing size� down to the limit of resolution

at ������ 	��� km�� An average specimen has a diameter of
��� km and a lifetime of 
 minutes but the lifetimes range
from � hr for the largest bright dots to a few minutes for the
smallest� �Light bridges� are bright linear features that cut
across sunspots and exhibit a �ne granular structure 	Muller

���� Sobotka et al� 
���� Sobotka 
����� The �eld within a
light bridge is weaker than in the surrounding umbra� so the
bridge resembles a slot� contained between magnetic walls
that resist distortion� within which more vigorous convec�
tion can occur� Rimmele 	
���� has followed the evolution
of convective plumes within such a slot for a full hour and
con�rmed that bright granules are associated with upward
motion� He also found that the velocity and intensity varied
in a manner consistent with oscillatory convection�

Outside sunspots� there is a distinction between plage
regions 	with average �eld strengths greater than 
�� G�
and quiet Sun� Plages are characterized by abnormal gran�
ulation� corresponding to convection with a smaller hori�
zontal scale� The �elds form a perforated network� includ�
ing �ne magnetic structures that give rise to isolated bright
points 	Title et al� 
���� Muller 
��� Sobotka� Bonet �
V�azquez 
���� These appear most strikingly in the CH G�
band and their dynamic behaviour indicates that magnetic
�ux moves rapidly through the intergranular network� form�
ing ephemeral concentrations rather than isolated �ux tubes
	Berger et al� 
���� Berger � Title 
���� Berger et al� 
�����
Within the photospheric network� magnetic structures are
smaller and more nearly isolated� with diameters less than
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 ��� km and �elds of 
�� kG 	Muller 
����
There are two approaches to modelling the nonlinear in�

teraction between convection and magnetic �elds at the sur�
face of a star like the Sun 	Weiss 
����� The �rst attempts
to simulate photospheric magnetoconvection in as much de�
tail as possible� this approach was pioneered by Nordlund
	
���� using the anelastic approximation� and later car�
ried through to a fully compressible calculation that demon�
strates the formation of the intergranular magnetic network
	Nordlund � Stein 
���� 
����� The dynamical evolution
of an isolated �ux element has also been simulated in the
same style� though so far only in a more restricted two�
dimensional 	�D� geometry 	Steiner� Kn�olker � Sch�ussler

��� Steiner et al� 
���� 
����� The second approach is less
ambitious but more systematic� it relies on idealized mod�
els� where di�erent physical processes can be isolated and
the key parameters can be varied� The combined e�ects of
strati�cation and compressibility were �rst studied in a �D
model which showed that convection in a slot should in�
deed exhibit spatially modulated oscillations 	Weiss et al�


����� Subsequently� three�dimensional 	�D� computations
revealed the changes that occur in both the scale and the
pattern of convection as the overall �eld strength is var�
ied 	Weiss et al� 
����� At any stage such calculations are
limited by the computing power that is available� in prac�
tice this means that turbulent motion cannot be faithfully
represented� and that the normalized width of the compu�
tational box 	its aspect ratio� is limited� Experience shows
that the pattern of convection may be drastically altered if
the aspect ratio is too small 	Weiss et al� 
�����

Unfortunately� these idealized �D and �D models have
not so far reproduced the range of scales that is now known
to exist for umbral dots� This discrepancy might be ascribed
to various causes� First of all� the aspect ratio may be too
narrow to allow a su�cient range of variation� Secondly� the
choice of boundary conditions for the idealized models may
be inappropriate� In these models the lower boundary is
closed and kept at a �xed temperature� with a magnetic �eld
that may vary but is constrained to be vertical� It is known
that the return �ow has a signi�cant e�ect 	Nordlund� Gals�
gaard � Stein 
���� Furthermore� the same conditions were
applied at the upper boundary� where radiative transport is
important and it would be more appropriate to match the
internal �eld to a force�free 	or even a potential� �eld in the
upper atmosphere�

The aim of this paper is to explore the e�ects of varying
the aspect ratio and of introducing more realistic boundary
conditions at the top of the convecting layer� In order to do
so it is necessary to carry out a large number of numerical ex�
periments with di�erent choices of parameters and boundary
conditions� With three space dimensions the computational
requirements would become prohibitive and our calculations
are therefore restricted to two dimensions� In the next sec�
tion we brie�y summarize the model problem and formulate
our modi�ed boundary conditions� Heat is conducted to the
upper boundary but is then emitted as black body radia�
tion 	according to Stefan�s law�� so the temperature can now
vary on that boundary� while the internal magnetic �eld is
matched to an external �eld that is force�free 	and hence
current�free in this geometry��

For this survey we adopt a standard polytropic atmo�
sphere as the basic state and �x the relative values of the

magnetic� viscous and thermal di�usivities� The remain�
ing parameters are the Rayleigh number R� which mea�
sures the superadiabatic temperature gradient� the Chan�
drasekhar number Q � jB�j�� where B� is the imposed ver�
tical magnetic �eld� and the aspect ratio �� these quanti�
ties are de�ned below� All results here are for a prescribed
Rayleigh number R � 
�� ���� which is high enough to pro�
duce vigorous convection with a range of spatial scales� We
�rst study the e�ects of varying � for a �xed value of Q�
The results in x�� for Q � ��� con�rm that the pattern of
convection is severely constrained in very narrow boxes� As
� is increased there are transitions from steady convection
to travelling waves and then to spatially modulated oscil�
lations� In wide boxes 	� � �� a totally new phenomenon
appears� the magnetic �eld separates from the motion� leav�
ing broad� dynamically active convective plumes and strong
isolated concentrations of magnetic �ux�

Next� in x� we take a box that is wide enough 	� � ��
to allow su�cient freedom� and vary the �eld strength to
reveal new patterns of behaviour� For very strong �elds con�
vection is completely suppressed but as Q is decreased there
are again transitions to steady and oscillatory convection�
culminating in �ux separation for Q � ���� The e�ects of
choosing di�erent boundary conditions are explored in x�
and the implications of our results for �D models� as well as
for photospheric convection in the Sun and other late�type
stars� are discussed in the �nal section�

� THE MODEL PROBLEM

Our basic con�guration has already been used for both �D
	Hurlburt � Toomre 
���� Weiss et al� 
���� and �D 	Weiss
et al� 
���� investigations� Once again� we introduce carte�
sian co�ordinates with the z�axis pointing downwards and
two�dimensional �elds such that the velocity u and the mag�
netic �eld B lie in the xz�plane and are independent of y�
Then we cast the equations into dimensionless form and
consider a perfect gas occupying the region f� � x � ��
z� � z � z� � 
g� In the absence of any motion there is a
uniformly strati�ed equilibrium solution corresponding to a
polytrope with index m� for which the temperature T � z
and the density � � 	�z�m� where � � 
�z�� This strati�ca�
tion is superadiabatic if m � 
�	� � 
�� where � is the ratio
of the speci�c heat at constant pressure to that at constant
volume�

The nonlinear partial di�erential equations that gov�
ern the evolution of �	x� z� t�� T 	x� z� t�� B	x� z� t� and
u	x� z� t� with time t are as given by Weiss et al� 	
���� and
need not be repeated here� These equations have to be solved
subject to appropriate boundary conditions� The lateral
boundaries are straightforward� we assume that all quan�
tities are periodic in x with period �� so that T 	�� z� t� �
T 	�� z� t� etc� At the top and bottom of the layer there are
supposed to be impermeable but slippery boundaries� on
which the normal component of the velocity and the tan�
gential component of the viscous stress both vanish� thus

uz � 	ux�	z � � at z � z�� z� � 

 	
�

The standard idealized boundary conditions for B and T
require that the �eld is vertical and the temperature is con�
stant� so that

Bx � 	Bz�	z � �� T � z� � 
 at z � z� � 
� 	��
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Figure �� Linear stability� the critical Chandrasekhar numberQc

as a function of the wavelength ��� Below the curve the reference
atmosphere is unstable�

and

Bx � 	Bz�	z � �� T � z� at z � z�
 	��

A more realistic alternative is to match the �eld at the
upper boundary to a potential �eld in the half�space z � z��
If the �eld components are expanded in Fourier series as �

Bx	x� z� t� �

LX

�L

 Bx�l	z� t� exp 	��ilx����

Bz	x� z� t� �

LX

�L

 Bz�l	z� t� exp 	��ilx����

	�

with  Bx��l �  B�

x�l �  Bz��l �  B�

z�l �  Bx�� � � �  Bz�� � 
 � then

 Bx�l	z�� t� � i	l�jlj�  Bz�l	z�� t� 	l �� �� 	��

and� since B is solenoidal�

	  Bz�l

	z
� ���il

�
 Bx�l �

��l�

�jlj
 Bz�l 	l �� �� 	��

at z � z�

It is also appropriate to relax the thermal constraints

by allowing a variable temperature T 	x� z�� t� on the upper
boundary� This can be done by matching the heat conducted
to the boundary to black�body radiation from the surface so
that� in dimensional terms� K	T�	z � !�T �� where K is the

	uniform� thermal conductivity and !� is Stefan�s constant�
In our formulation� the ratio !��K is determined by requiring
that the static polytropic atmosphere should be in thermal
equilibrium� whence it follows that

	T�	z � 	�T �� at z � z�
 	��

The numerical experiments described in xx� and  below
were all carried out with the �realistic� boundary conditions
	���	�� at the upper boundary� while retaining the idealized
boundary conditions 	�� at the base of the layer� In x�� how�
ever� we compare these results with solutions obtained using
di�erent combinations of the boundary conditions�

For the calculations in this paper we adopt a standard
�deep layer� model with the polytropic reference atmosphere
that has been used in various previous studies 	Hurlburt�
Toomre � Massaguer 
��� Hurlburt � Toomre 
���� Weiss
et al� 
���� 
���� Cattaneo et al� 
��
� Brummell� Hurlburt
� Toomre 
���� and set m � 
� � � 
� 	or z� � �

��
� and

� � �

�
� as for a monatomic gas� in addition� the Prandtl

number 	ratio of viscous to thermal di�usivity� � � 
� The
ratio  of the magnetic to the thermal di�usivity is a cru�
cial parameter� for it determines whether convection sets in
at an oscillatory or a stationary bifurcation when Q � 
�
Although  � 
 in the photospheres of cool stars� the ion�
ization of hydrogen increases the opacity and reduces the
thermal di�usivity� so that  � 
 at depths below � ��� km
in the Sun� Since  � � in our model 	with the thermal and
electrical conductivities both constant� and �	z� increases
with depth in our reference atmosphere� the correspond�
ing value of the di�usivity ratio 	z� � ��	z�� To mimic
the variation of � in the Sun we choose � � �
�� so that
�
� � 	z� � �
� and the value at the midpoint is given by
  � 	z� �

�

�
� � 

�� The Rayleigh number

R	z� � 	m� 
��	



m� 

� � � 


�
�

z�m��

� !K�z��m
� 	��

where !K is the dimensionless thermal conductivity� also
varies with depth and is speci�ed by its midpoint value
 R � R	z� � �

�
�� Throughout this paper we shall take

 R � 
�� ��� 	cf� Weiss et al� 
����� The strength of the
imposed magnetic �eld can be measured either by the ratio
�	z� of the gas pressure to the magnetic pressure in the static
reference atmosphere or by the Chandrasekhar number

Q �
�z�

�� !K��	z��
� 	��

which is independent of the depth z� With these parameter
values� �	z� � �� 
��	z��
�Q� and its midpoint value  � �
�	z��

�

�
� � 

�� 
���Q� We shall only consider a regime in

which Q � � ��� or  � � ��� so e�ects of compressibility will
be limited�

In the absence of any magnetic �eld the reference atmo�
sphere will be stable to perturbations with wavelength !� if !�
is either very large or very small� so with R �xed convective
instability only occurs for �� � !� � ��� When Q is very
large convection will be completely suppressed but as Q is
reduced there will be a critical value Qc	!��� for �� � !� � ���
at which the atmosphere becomes unstable� For our choice
of parameters we expect instability to set in at a supercriti�
cal pitchfork bifurcation 	cf� Weiss et al� 
����� followed by
steady overturning convection� Fig� 
 shows Qc as a function
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of !� for the linearized equations with the idealized boundary
conditions 	
��	��� replacing 	�� by the �realistic� boundary
conditions 	���	�� has only a small stabilizing e�ect� With
our values �� 	 �
�� and �� 	 �� and from the �gure we
see that Qc attains its maximum value 	Qc 	  ���� for
!� � !�c 	 �
��� Note� however� that a box with aspect ratio
� only allows discrete wavelengths ��n� n � 
� �� 


� cor�
responding to n pairs of rolls and that for large � we might
expect to �nd n 	 ��!�c�

Fully nonlinear solutions have to be obtained numer�
ically� We use a �D version of the �D code described by
Matthews et al� 	
���� see also Weiss et al� 
����� which
is related to codes developed for other nonmagnetic prob�
lems 	Cattaneo et al� 
��
� Brummell� Cattaneo � Toomre

���� Brummell et al� 
����� This code uses a pseudospec�
tral method in the x�direction� coupled with fourth�order
�nite di�erences in the z�direction� Thus the boundary con�
ditions 	�� and 	�� for the magnetic �eld can readily be sat�
is�ed� Timestepping is by a second�order Adams�Bashforth
scheme� limited by the Courant condition and its di�usive
analogue� We typically obtain su�cient accuracy with ��
mesh intervals in the z�direction and ��� points in the x�
direction for � � �� Such �D computations can readily be
carried out on Hewlett�Packard� Silicon Graphics and DEC
Alpha workstations � but the corresponding �D calculations
require a massively parallel machine�

� VARYING THE ASPECT RATIO

The results of any numerical experiment depend critically on
the choice of boundary conditions� In our runs we impose pe�
riodicity in the lateral direction� so the solution will depend
on the aspect ratio� �� In this section we show that the width
of the box can have a profound e�ect on the resulting �ow�
To do this� we �x the values of all the physical parameters�
setting  R � 
�� ��� and taking a particular value for Q�
and hence for the strength of the magnetic �eld� As already
stated� we adopt the idealized boundary conditions 	�� at
the base of the box� where the �eld is held vertical and the
temperature is �xed� but introduce the �realistic� conditions
	���	�� at the top� where the �eld is matched continuously
to an external potential �eld and energy is lost by radiation�

With weak �elds 	Q � ���� behaviour is e�ectively
kinematic� while strong �elds 	Q � � ���� allow only steady
convection to occur� We need a value of Q that allows dif�
ferent types of dynamically interesting behaviour and hence
we choose Q � ���� The results of our runs for �

�
� � � 
�

are summarized in Table 
 where we give the number n of
cells in the box� the rms velocity urms �

phhhjuj�ixizit� the
normalized mean surface temperature !T and the normalized
energy transport T �� where

!T � hh�T 	x� z�� t�ixit and T � � hh"�T 	x� z�� t�#�ixit� 	
��
and the average maximum �eld strength Bmax � hmax jBjit
	where the initial uniform �eld strength is unity��

��� Weak convection in narrow boxes �� � ��

From Fig� 
 we anticipate that convection will be completely
suppressed for � � �
� Indeed� initial perturbations soon
die away when � � �

�
but with � � �

�
we obtain the weakly

Table �� Varying the aspect ratio� �� for a �xed �eld strength
�Q � �		� We give the pattern of convection� the number of
cells in the box� n� the rms velocity� urms� the normalized mean
surface temperature� �T � the normalized energy transport� T �� and
the maximum �eld strength� Bmax� as the box size is varied�

� pattern n urms
�T T � Bmax

�

�
no convection 	 � ��			 ��			 ��	

�

�
steady convection � 	��� ��	�	 ����� ���

� travelling wave � 	��� ��	�� ����� ����

� travelling wave � 	��� ��	�
 ����	 ����
�

�
aperiodic oscillation � 	��� ��	�
 ����
 ����

� transitional � 	��� ��	�� ����� �
��

� �ux separation � 	��
 ��	�� ����� ���	


 �ux separation � 	�
	 ��	�� ����� ����

�� �ux separation � 	��� ��	�� ����
 ����

convecting steady solution that is shown in Fig� �	a�� Here
the pattern is symmetric about vertical planes through the
centres of the plumes� As expected� the hot rising plume
expands and the highest velocities are in the narrow sink�
ing plumes� The �eld lines are weakly distorted and �ux is
concentrated in regions of converging �ow�

Re�ection symmetry is broken in a bifurcation at � 	
�
�� which gives rise to travelling waves� Fig� �	b� shows
such a solution for � � 
� The plumes drift leftward without
change of form but are markedly asymmetric� being tilted
by the streaming �ow� The �eld is weakened by expansion in
the rising plume but there are stronger �ux concentrations
where the horizontal in��ows meet� When � � � the box is
wide enough to accommodate two pairs of plumes� and the
waves have become weakly modulated� so that they oscillate
aperiodically as they drift�

��� Spatially modulated oscillations in
medium�sized boxes � �

�
� � � �

Once � � � the solutions are no longer severely constrained
by the width of the box� and can pick a length scale that
is close to the preferred wavelength� !�c� for linear instabil�
ity� Convection consequently becomes much more vigorous�
When � � �

�
the box contains three rising plumes that os�

cillate chaotically� and much more vigorously than was the
case for � � �� Two opposite phases of a spatially modulated
oscillation are displayed in Fig� �	c�� Apart from a slow drift
to one side� the positions of the plumes at the base of the
layer 	where  � 
� are virtually unaltered� while there are
large changes in velocity at the top 	where  � 
� as adja�
cent plumes alternate in strength� This pattern of behaviour
is characteristic of convection in strong �elds�

Results for the run with � �  are initially similar to
those for � � �

�
� except that there are now four plumes

that oscillate chaotically� However� there is a slow secular
change as a particular plume grows in size and oscillates less�
while the other plumes contract accordingly� At the same
time� practically all magnetic �ux is cleared from within the
largest plume and remains clustered at its edge� However�
the growth of such a plume is soon stopped and it sometimes

c� ���
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Figure �� The e�ects of increasing the aspect ratio � for a �xed �eld strength �Q � �		� �a shows � � �

�
� �b � � �� �c � � �

�
� �d

� � �� In each pair of images the left panel shows the relative temperature �uctuations� with velocity arrows� and the right panel gives
the �eld strength jBj� with �eld lines� Bright regions indicate higher temperatures and �eld strengths�
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shrinks again� while another plume is allowed to grow� This
aperiodic cycle continues� as illustrated in Fig� �	d�� Note
that at di�erent times there may be �� � or  plumes in the
box�

��� Separation of the magnetic 	eld in wide
boxes �� � ��

The behaviour just described is a prelude to the appear�
ance of an entirely new regime� Increasing the box size from
� �  to � � � allows the development of a qualitatively dif�
ferent pattern� Initially� there are seven plumes in the box�
undergoing spatially modulated oscillations � as would be
predicted from the results that have just been described�
Just as for � � � some of these plumes begin to grow�
while others shrink and vanish� This evolutionary process
can be visualized by displaying the temperature� T 	x� z�� t��
on the upper surface � an advantage of using the bound�
ary condition 	�� rather than 	��� The grey�scale image in
Fig� �	a� shows spatially modulated oscillations for t � ���
Subsequently� some plumes 	like that at x 	 �� expand and
swallow up an immediate neighbour� leaving a single plume
of twice the size where two were previously� The horizon�
tal out�ow of the resulting plume is then strong enough for
it to resist being torn apart again� This process continues
and the total number of plumes declines until only two are
left� At this stage� the plumes themselves contain virtually
no magnetic �ux and the magnetic �eld is con�ned to the
regions between them� where convection is inhibited� The
two plumes then engage in a battle for domination as the
horizontal out�ow at the top of each exerts a lateral force on
the magnetic �ux between them� Slowly� one of the plumes �
usually� but not always� the one that was initially the smaller
� is reduced in size� until the surrounding magnetic �eld is
able to suppress it� This results in a single convective plume
occupying approximately two�thirds of the box�

This plume can settle to what appears to be a steady
state but� as is apparent in Fig� �	a�� it is liable to split�
Splitting can occur in either of two ways� as may be seen in
Fig� �	a�� it may happen rapidly� for example at t � ���� and
subsequently several times at around t � 

��� or slowly� as
seen between t � ��� and t � 
���� Careful analysis of
both situations has demonstrated that they are essentially
manifestations of the same process�

Fig�  shows a time�sequence of a rapid split that occurs
at around t � 

��� Initially� there is a broad� symmetric
convection cell with a strong up�ow in its centre� The hot
rising gas then moves horizontally outwards until it meets
the wall of high �eld strength� before sinking suddenly again�
The plume itself is practically �eld�free � in places the �eld
strength is reduced to one�millionth of its original value �
except for a narrow �ux concentration at its base� where the
�eld is pinned down by the horizontal in�ow� The remainder
of the box� on the other hand� has a strong and fairly uniform
vertical �eld throughout� with narrow current sheets at its
edges� The high �eld strength halts convection here� and the
region is held at a fairly cool and steady temperature�

At the centre of the plume� buoyancy braking 	Spruit
et al� 
���� inhibits upward motion� From time to time this
causes local cooling to occur and the plume e�ectively splits
into two as the cool material falls� Some of the magnetic �ux
accumulated near the upper stagnation point is caught by

the horizontal out�ow and rapidly expelled� while the plume
recovers its symmetric state� The process takes place on a
dynamic timescale of around �� dimensionless time units
and repeats inde�nitely at irregular intervals�

If the blob of cool material drops su�ciently close to the
centre of the plume then small countercells may be formed
before the horizontal out�ow can expel it� In this case the
split is maintained for around 
������ time units before the
asymmetry of the two resulting plumes causes it to drift to
one edge and the single symmetric plume is reformed� If we
were actually to impose mirror symmetry about the centre
of the plume then the studies of Ste�en� Ludwig � Kr�uss
	
���� imply that the sinking plume would remain there
inde�nitely� as was found in their model of axisymmetric
convection�

This new pattern of behaviour persists thereafter as the
aspect ratio is increased� When � � � the main plume takes
a little longer to form� and is narrower compared to the
box size� Apparently this width of box is on the borderline
between being able to hold one stable plume� and two� in�
deed� it takes much longer for the two parts of the main
plume to recombine when it has split� Such behaviour is
consistent with the results for � � 
�� which are shown in
Fig� �	b�� The box now contains two large stable plumes�
which undergo dynamic splitting irregularly and indepen�
dently of each other� Magnetic �ux is trapped in the two re�
gions that lie between them� in one the �eld is strong enough
to suppress convection but the other has a weaker �eld that
allows feeble spatially modulated oscillations to survive� Ta�
ble 
 con�rms that spatially averaged behaviour does not
change signi�cantly for � � �� We conclude therefore that
an aspect ratio � � � should be su�cient to deliver the true
pattern of convection� i�e� one that remains unchanged as �
is inde�nitely increased�


 VARYING THE FIELD STRENGTH

The results in the previous section show that the pat�
tern of convection is constrained in boxes with small aspect
ratios� Even when the box contains several plumes 	as in
Fig� �	c� for � � �

�
�� the results may be misleading� since

wider boxes allow the magnetic �eld to separate from the
motion� We can� however� be con�dent that this new form of
magnetoconvection is adequately represented for all � � ��
In this section we therefore �x the aspect ratio by setting
� � � and obtain a single�parameter set of solutions by
holding the Rayleigh number �xed 	with  R � 
�� ���� and
varying the �eld strength� 	Decreasing Q for �xed  R is of
course equivalent to increasing  R for �xed Q but we are
more concerned with the e�ects of strong �elds on the pat�
tern of convection�� The results for � ��� � Q � ��� are
summarized in Table ��


�� The magnetically dominated regime

We begin with a magnetic �eld strong enough to suppress
all convection and gradually decrease the �eld strength� un�
til we end up in the kinematic regime� For Q �  ���� the
Rayleigh number is subcritical and all perturbations to the
static state� with a uniform vertical �eld and a uniformly
strati�ed equilibrium atmosphere� decay to zero�
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Table �� Varying the �eld strength for �xed aspect ratio� � � ��
as the Chandrasekhar number� Q� is varied� The column entries
are de�ned in ��	�

Q pattern urms
�T T � Bmax

��	 �ux separation ����� ����� ����	 �
�	

�		 �ux separation ��	�� ���	� ����� �
�	

�		 �ux separation 	��
� ��	�� ����� ���	

��	 oscillations 	���� ��	�� ����� �
��


		 oscillations 	���� ��	�� ����
 ���	

�			 oscillations 	��	� ��	�� ����� ����

��		 oscillations 	���� ��	�� ����� ���

���	 steady convection 	���� ��	�� ����� ��


�			 steady convection 	�	�� ��	�� ����� ���

�			 steady convection 	�	�	 ��	�� ��	�� ��	

�			 steady convection 	�	�	 ��		� ��		� ���

��		 no convection � ��			 ��			 ��	

�			 no convection � ��			 ��			 ��	

Convection sets in with narrow rolls at Qc 	  ����
For Q � ���� nine small� equally sized cells are rapidly
formed 	so !� � �

�
� and they remain steady throughout the

ensuing motion� The pattern in each cell is similar to that in
Fig� �	a� and the magnetic �eld is only slightly distorted by
the �uid motion� Fig� �	a� shows the evolution of the surface
temperature T 	x� z�� t� when Q � � ���� Once again� the
strong �eld enforces steady motion� somewhat more vigorous
than before� but there are now only eight plumes 	!� � �

�
��


�� Spatially modulated oscillations

This steady solution undergoes an oscillatory bifurcation at
Q 	 
 ���� For Q � 
���� we �nd oscillations that are e�ec�
tively periodic� The box contains � plumes� all comparable in
size� which are spatially modulated so that alternate plumes
grow and shrink in strength� This solution closely resembles
that found by Weiss et al� 	
���� for Q � 
��� but with
di�erent boundary conditions�

The motion grows more vigorous as the �eld strength
is further reduced� The evolution of the surface temperature
for Q � 
��� is displayed in Fig� �	b�� This solution bears
little resemblance to the ordered oscillations seen when Q �

���� there are now only eight plumes and these oscillate
aperiodically� and much more vigorously than before� With
Q � ���� the chaotic solution has only seven plumes and
convection has increased yet further in strength� Finally� at
Q � ���� the seven plumes are no longer held separate by
the �eld� sporadically two of them merge� only to be torn
apart again soon after� as shown in Fig� �	c�� The �eld no
longer has any persistent structure� and is tossed around by
the disordered motion of the �uid�


�� Flux separation

As Q is reduced from ��� to ���� there is a very rapid change
in the system�When the �eld strength passes below a certain
point� global behaviour is no longer dominated by the �eld
and we begin the approach to the kinematic regime� motion

is now so vigorous that the magnetic �eld is only important
dynamically in the regions where it is locally strong� The
evolution of the surface temperature for Q � ��� is shown
in Fig� �	a� and has already been discussed� We see the
formation of the single convection cell that was described in
x��� and illustrated in Fig� � The rms velocity has increased
dramatically to nearly ��� of the surface Alfv�en velocity�
while the maximum velocity has more than double the value
it had for Q � ���� The rapid oscillations that are visible
in Fig� � are due to convectively excited magnetoacoustic
modes 	cf� Ste�en et al� 
�����

Further reduction of Q produces very little qualitative
change� The two large plumes form more rapidly� the motion
becomes more chaotic� and the dynamic splitting and �ux
expulsion grow more violent� The decreased �eld strength
allows the �ow to push the �ux into an ever smaller region�
while the plume width increases accordingly� Fig� �	d� shows
T 	x� z�� t� for Q � ���� In the �nal state� the pair of convec�
tion rolls now occupies about three�quarters of the box� with
the �ux sheet �lling the remaining quarter� Compare this to
Fig� �	a� which shows T 	x� z�� t� for Q � ��� in which the
rolls take up over ��� of the box� The early oscillations are
suppressed far more rapidly as the �eld distortion becomes
ever more nearly kinematic� In both cases� the structure is
repeatedly distorted by splitting of the plume� as in Fig� �

The �ux sheet there has a strong� predominantly verti�
cal �eld but the �eld lines at its edges are curved so as to
be concave outwards� At the base of the layer they follow
the �ow but at the top the expansion is caused by magnetic
pressure� which becomes increasingly important for small
z in a strongly strati�ed atmosphere� The curvature force
is almost balanced by a magnetic pressure gradient� Fig� �
shows pro�les of the vertical and horizontal components of
B at the middle of the layer� where the �eld points outwards�
Some of the magnetic �ux is trapped in the rising plume but
most of it is contained in the main �ux sheet� In its centre
the �eld is fairly uniform but Bz rises to sharp peaks at the
edges of the sheet� Close inspection of the solutions shows
that these peaks are maintained by slender countercells in
the lower part of the box�

The abrupt transition from chaotically modulated os�
cillations to �ux separation at Q 	 ��� is associated with
hysteresis� In Fig� �	b� we show the surface temperature for
a run with Q � 
���� Unlike those for Fig� �	b�� which was
started from small random perturbations to the static so�
lution� the initial conditions for this run correspond to the
�nal state for Q � ���� in Fig� � We observe that �ux sep�
aration is maintained� though the �ux sheet expands while
the convective plume contracts and is more liable to split� As
Q is further increased� �ux separation eventually gives way
to small scale oscillatory convection� with carefully chosen
initial conditions� a transient single cell solution can never�
theless persist for a long time 	over ��� dimensionless time
units� even when Q � � ����

Eventually� when Q is very small� the Lorentz force be�
comes negligible and the �eld pro�le is determined by dif�
fusion� In this kinematic regime the whole box is �lled by
a single plume 	!� � ��� We have not attempted to dis�
cover whether the plume width saturates at some �nite size
in the absence of a magnetic �eld� We note� however� that
N�E� Hurlburt 	private communication� investigated �D con�
vection in a similar con�guration� but with idealized bound�
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ary conditions� for � � 
� and found that although the box
contained several plumes early on in the simulation� over a
long period of time a single plume began to dominate whilst
the others dwindled away� Of course� such a plume would be
unstable to �D perturbations in the form of cross�rolls 	cf�
Matthews et al� 
�����

The numerical results in Table � are summarized in
Fig� �� We note that T � rises rapidly with decreasing Q af�
ter the onset of convection� with an increased rate of change
after the onset of oscillatory convection� but that � despite
a rapid increase in urms � convection becomes less e�cient
after �ux separation occurs at Q 	 ���� owing to the ap�
pearance of stationary �ux sheets�

With our scaling� the temperature �uctuations at the
upper surface remain small 	less than ���� and the mean
vertical temperature gradient !� � 
� z�	
� !T � di�ers only
slightly from its value in the static polytrope� To measure
the e�ciency of convection� we should compare the heat
transport with the energy that would be conducted down the
superadiabatic gradient� Thus we de�ne a Nusselt number

N �
T � � !�ad
!� � !�ad

� 	

�

where the adiabatic gradient !�ad � 	m�
�	
� 
��� 	Hurl�
burt et al� 
����� With our choice of parameters� N 	
�T � � � so the Nusselt number rises from unity 	in the
absence of convection� to about  when Q � ���� The dif�
ference between this and the much higher value of N for �D
convection in an incompressible 	Boussinesq� �uid at the
same value of  R is due to the combined e�ects of strati�ca�
tion and of the stagnant �ux sheet�

� EFFECTS OF DIFFERENT BOUNDARY
CONDITIONS

We have obtained solutions with �realistic� boundary condi�
tions 	���	�� at z � z� for other combinations of Q and �
in addition to those already described� Fig� �	a� shows the
various types of solution found in di�erent regions of the
Q��parameter plane� It is clear that the sequence of tran�
sitions� from the static state to steady convection� then to
spatially modulated oscillations and �nally to �ux separa�
tion is robust� Their order does not vary with the aspect
ratio once � � 
� although the transitions do occur at some�
what higher values of Q for � � ��

The transition from oscillations to �ux separation is
accompanied by a change in horizontal scale� The physi�
cal mechanism whereby narrow rolls give way to broader
rolls is straightforward� Once convection is strong enough
for �ux expulsion to occur� motion becomes more vigorous
as the width of a roll increases 	up to some limit that we
are unable to determine�� Consider a symmetrical pair of
rolls in dynamical equilibrium� with magnetic �ux con�ned
to a sheet between them� Suppose now that one roll expands
slightly while the other contracts� then the expanding roll
will squeeze the �ux sheet to produce a stronger �eld� which
will in turn lead to a further contraction of the smaller roll�
This process can then continue until the weaker roll is elimi�
nated� Moreover� �ux transport may be facilitated if the ris�
ing plume tilts and gives rise to shearing motion 	cf� Proctor
et al� 
���� One would expect there to be parameter values

at which both the narrow�roll and the �ux separated regimes
are stable� as we have demonstrated�

From a mathematical point of view� one would like to
associate these transitions with bifurcations from one state
to another� This is feasible for solutions whose spatiotem�
poral structure is straightforward� Thus we can identify the
initial pitchfork bifurcation from the trivial solution and the
subsequent bifurcation that leads to travelling waves as Q
is decreased 	cf� Hurlburt et al� 
����� While the chaotically
modulated regime present with weaker magnetic �elds has
complicated spatial and temporal structures� it is clear �
at least qualitatively � that it retains a characteristic spa�
tial scale that is much smaller than in the �ux�separated
regime� Neither of these two states has instantaneous spa�
tial symmetries� but one quantitative way of characterising
the di�erence between them is through their time�averaged
spatial periodicity� For instance� once the slow drift is re�
moved from the data in Figure �	c� 	� � �� Q � ����� the
time�averaged solution has wavelength �$�� while the wave�
length of the pattern withQ � ��� 	Figure �	a�� is �� the size
of the box� Techniques for measuring time�averaged symme�
tries have been developed by Barany� Dellnitz � Golubit�
sky 	
����� and would be useful in determining more pre�
cisely the nature of the transitions that we have observed�
In particular� it should be possible to relate the transitions
between the narrow�roll and �ux�separated regimes to the
bifurcation structure associated with subcritical behaviour
in Boussinesq magnetoconvection 	cf� Proctor � Weiss 
����
Fig� �
�� This approach deserves further investigation�

Having ascertained the e�ects of varying the aspect ra�
tio and �eld strength on the pattern of convection� we now go
on to investigate the sensitivity of this behaviour to changes
in the magnetic and thermal boundary conditions at the top
of the layer�

��� Magnetic boundary conditions

The obvious alternative to imposing the potential �eld con�
ditions 	�� and 	�� is to set Bx � 	Bz�	z � � at z � z��
as in 	��� while retaining the radiative condition 	��� so that
B is vertical at the top as well as at the bottom of the layer�
Results for this choice of boundary conditions are summa�
rized in Fig� �	b�� Although the survey is less thorough than
that in Fig� �	a�� it is clear that the overall pattern is simi�
lar but with transitions displaced to higher values of Q� The
two sets of runs for � � � are contrasted in Fig� 
�� The
sequences of transitions are identical� and the initial bifur�
cations occur very close together� However� steady solutions
persist over a wider range of Q with a potential �eld� More�
over� �ux separation appears already at Q � 
 ��� with a
vertical �eld� rather than at Q � ��� as it does with a po�
tential �eld�

The di�erence between the two cases is simply that�
for a given value of Q� the magnetic �eld is less potent in
Fig� �	a� than in Fig� �	b�� The reason is clear� when the
�eld is vertical� the curvature force vanishes at the surface
� where it would be most e�ective� On the other hand� the
potential �eld boundary conditions allow the Lorentz force
to inhibit convection more e�ciently�

It is instructive to experiment with other combina�
tions of the magnetic boundary conditions while keeping
Q � 
��� and � � �� Comparing the new results with those

c� ���
 RAS� MNRAS ���� �����	




Modelling Photospheric Magnetoconvection �

in x� we �nd that imposing a potential �eld at the top and

the bottom has little e�ect� The spatially modulated oscilla�
tions are more regular and uniform� and the plumes wobble
laterally as they wax and wane� re�ecting the extra freedom
given by a potential �eld� Imposing a potential �eld at the
base� with a vertical �eld at the top� though unphysical� has
a more marked e�ect� the oscillating plumes demonstrate no
real regularity in either space or time� being of varying size�
shape� and period� Their number varies between � and ��
and the pattern of behaviour is exceedingly complex�

��� Thermal boundary condition

In previous papers 	e�g� Weiss et al� 
���� 
���� the temper�
ature was held �xed at both the surface and base� In substi�
tuting the radiative boundary condition 	�� at the surface� it
is important to discover how those results are changed� Sev�
eral sets of numerical experiments were performed in which
all parameters and boundary conditions were identical� ex�
cept that in one run the temperature was held constant at
z � z�� z��
� and in the other the radiative boundary condi�
tion �T

�z
� 	�T �� was imposed at z � z�� The results of these

computations demonstrate that imposing the new boundary
condition has very little e�ect on the pattern of convection
� which is not surprising� since the resulting temperature
variations at the surface are comparatively small� In each
case the two runs were almost identical� though the radia�
tive boundary condition produced slightly more dynamical
activity�

For comparison with earlier work� we show in Fig� 


a time sequence from a run with Q � 
��� and � � ��
with the idealized boundary conditions 	�� and 	�� at both
boundaries� During this transient phase� there are �ve or
six oscillating plumes of di�erent strengths and sizes but
eventually� after a very long time� the �ux separates out to
leave a single plume� We comment later on the implications
of this run�

� COMPARISON WITH OBSERVATIONS

The ease with which two�dimensional computations can be
carried out has allowed us to make a systematic survey of
the e�ects of varying both the aspect ratio and the bound�
ary conditions in this problem� Not surprisingly� we �nd that
solutions are profoundly a�ected if the box width � is too
small� It was already known 	for idealized boundary condi�
tions� with Q � 
���� that the steady solution with � � �

�

gave way to spatially modulated oscillations when � � �

�

	Weiss et al� 
����� As the aspect ratio is further increased�
both spatial and temporal symmetries are broken� the solu�
tion illustrated in Fig� 

 shows aperiodic oscillations with
a wide range of spatial scales for � � �� Within this chaotic
pattern there is nevertheless a tendency for adjacent plumes
to alternate in vigour� What was not expected was that this
multiroll solution proved to be transient and eventually led
to �ux separation� with behaviour similar to that in Fig� �
Moreover� there is a parameter range with hysteresis� where
both multiroll convection and �ux�separated solutions are
stable� which of these is found then depends on the ini�
tial conditions� This result suggests that isolated sheets 	or
tubes� of magnetic �ux� with �elds that are su�ciently in�
tense� may be able to maintain their integrity if they are

injected into regions where small�scale convection is locally
preferred�

We have established the sequence of transitions as the
�eld strength is progressively reduced from a value that
is strong enough to stop convection� These changes� from
steady convection to spatially modulated oscillations 	�rst
periodic and then chaotic� and then to a regime with �ux
separation� are shown schematically in Fig� 
�� Altering the
boundary conditions simply shifts the transitions without
changing the order in which they occur� so the sequence is
apparently robust� We cannot� however� use these �D results
to predict the actual parameter ranges where di�erent �D
patterns will be found on the Sun�

The clearest parallel between theory and observations is
for light bridges in the umbrae of sunspots� which provide a
quasi�two�dimensional con�guration� Rimmele 	
���� stud�
ied a light bridge with a row of three bright granules and
found that the vertical velocity and continuum intensity
were anticorrelated� thereby con�rming that the structure
was convective� He also showed that individual structures
waxed and waned� with a characteristic period of about ��
min� in a manner consistent with the presence of irregu�
lar spatially modulated oscillations� The magnetic �eld of

 ��� G or less permits relatively large granules to develop�
with a separation of 
��
� to 
��
�� The light bridge therefore
acts as a box with a fairly small aspect ratio 	cf� Fig� �	c���
allowing chaotic oscillations to be maintained�

High�resolution spectroscopic observations show that
umbral dots are indeed a magnetoconvective phenomenon
	Lites et al� 
��
� and Rimmele 	
���� has succeeded in
measuring upward velocities of �� m s�� at the photosphere�
Such relatively low velocities� combined with the lack of any
observable variation in the strength of the magnetic �eld�
imply that the convective plumes 	which must be present to
transport energy� are obscured by a radiative blanket 	Lites
et al� 
��
� Weiss et al� 
����� Rimmele 	
���� also identi�
�ed periodic variations of intensity in some prominent um�
bral dots� with periods of about �� min� These observations
are all consistent with the behaviour of spatially modulated
convective plumes� in a regime where their spatial and tem�
poral structure is chaotic 	Weiss et al� 
���� 
����� Recent
white light observations with exceptionally high resolution
have revealed a population of umbral dots with diameters
ranging from ��� down to ������ or less� and a corresponding
range of lifetimes� We have con�rmed that larger aspect ra�
tios do allow a much wider range of horizontal scales in our
numerical experiments� as shown by Fig� 

�

The dark nuclei within the umbrae of large spots show
no signs of convective activity� They contain magnetic �elds
that are stronger and more nearly vertical than elsewhere
	Stanch�eld� Thomas � Lites 
����� Convection must still
be e�ective at some depth beneath these features 	which are
too large to be heated laterally by radiation� but is relatively
weak� Our results suggest that the dark nuclei result from a
form of �ux separation within the umbra� leading to isolated
regions with enhanced �eld strengths and relatively feeble
motion�

The persistence of plage regions� as local �ux concentra�
tions with abnormal granulation� is another example of �ux
separation� Here the stronger �elds allow a modi�ed form of
convection� with smaller plumes than in the ambient �eld�
free photosphere� An idealized version of this behaviour ap�
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pears in some of our runs� which show small�scale spatially
modulated oscillations adjacent to broad convective plumes
	see Fig� �	b��� In our calculations� �ux separation is asso�
ciated with splitting of the �eld�free plumes� as illustrated
in Fig� � The key feature of this process is the appearance
of a down�ow near the centre of the plume� as a result of
buoyancy braking 	Spruit et al� 
����� What happens next
depends on the imposed geometry� with imposed axial sym�
metry the reversed �ow remains on the axis 	Ste�en et al�


����� in our �D models the down�ows move outwards� in �D
simulations the behaviour mimics observations of exploding
granules 	Nordlund 
���� Spruit et al� 
���� Rast et al� 
����
Rast 
���� and the sizes of �eld�free plumes are limited by
this process�

These �D investigations do improve our understanding
of the interaction between magnetic �elds and convection
at the surfaces of stars like the Sun� but they should really
be regarded as necessary preliminaries to more realistic �D
experiments� Clearly it is essential to carry out such com�
putations in wide boxes� Preliminary calculations� in square
boxes with aspect ratios � �  and �� show that �ux sep�
aration still occurs and� as might be expected� leads to a
richer variety of behaviour in �D than we have found here
	Tao et al� 
����� We have established that qualitative be�
haviour is relatively insensitive to the choice of boundary
conditions� so pattern formation can indeed be studied in
idealized models� For quantitative predictions� on the other
hand� we must rely on detailed simulations 	Spruit 
����� As
numerical techniques and computing power improve� these
two approaches are gradually converging and coming closer
to the reality that is revealed by observations�
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