
This is a repository copy of Social-Insect-Inspired Adaptive Task Allocation for Many-Core 
Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/98358/

Version: Accepted Version

Conference or Workshop Item:
Rowlings, Matthew Raymond Peter orcid.org/0000-0003-3800-2055, Tyrrell, Andrew 
Martin orcid.org/0000-0002-8533-2404 and Trefzer, Martin Albrecht orcid.org/0000-0002-
6196-6832 (2016) Social-Insect-Inspired Adaptive Task Allocation for Many-Core Systems.
In: IEEE World Congress on Computational Intelligence (WCCI 2016), 24-29 Jul 2016. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Social-Insect-Inspired Adaptive Task Allocation for

Many-Core Systems

Matthew Rowlings, Andy M. Tyrrell, Martin A. Trefzer

Intelligent Systems Group, Department of Electronics, University of York, York, YO31 5DD, UK

Email: mr589@york.ac.uk, andy.tyrrell@york.ac.uk, martin.trefzer@york.ac.uk

Abstract—Large social insect colonies require a wide range
of important tasks to be undertaken to build and maintain the
colony. Fortunately, in most nests there are many thousands of
workers available to offer their assistance to ensure the expansion
and survival of the colony. However, there is a crucial equilibrium
between the number of workers performing each task that must
not only be maintained but must also continuously adapt to
sudden changes in environment and colony need. What is most
fascinating is that social insects can sustain this balance without
any centralised control and with colony members that have
relatively little intelligence when considered on their own. Due to
this simplicity and evident scalability it would seem that social
insects have evolved an interesting scalable approach to task
allocation that could be applied to very large many-core systems.
To investigate this we have explored biological models of task
allocation in ant colonies and applied this to a 36-core Network
on Chip. This paper not only shows that effective decentralised
task allocation is achieved, but also that such a scheme can adapt
to faults and alter its behaviour to meet soft real-time constraints.
Therefore, it is established that social insect inspired intelligence
models offer a suitable metaphor and development direction for
tackling the challenges introduced by dark silicon and in-field
faults in a decentralised and adaptive fashion.

I. INTRODUCTION

The complex, yet coordinated behaviours that social insect

colonies have formed to allow colonies to thrive in a vast

number of different and ever changing environments exhibit

an impressive ability of providing adaptivity, scalability and

survivability to a colony. Despite this, most of us would

consider individual insects as rather simple beings, seemingly

always preoccupied with a particular task with no obvious

ambition in sight. The choice of task however is an important

part of colony survival, species that build large colonies not

only rely on a wide range of tasks to be completed but

also require an appropriate allocation of colony members to

tasks; indeed the colony may not survive if this balance is

upset. An intriguing part of this task allocation coordination

is that there is no hierarchy of command in a colony, no

single or group of members are responsible for allocating

tasks to colony members. Instead the task it performs is

entirely upto each individual, and the crucial allocation of

tasks emerges from the decentralised dynamics of the social

interactions between colony members. The emergence of such

a complex and important behaviour across tens of thousands of

colony members is of significant interest to solving distributed

problems, indeed task allocation is now an important part of

designing many-core systems.

For many years the advancement of digital technology has

steadily exploited the transistor performance and density gains

anticipated by Moore’s law [1] and Dennard scaling [2].

Modern technologies however have reached a fundamental

transistor size where Dennard scaling starts to break down

when scaling down further [3], resulting in a shift of fo-

cus away from single-core performance towards many-core

systems [4]. This has been driven by fundamental power

and thermal limitations caused by the breakdown of Dennard

scaling, with the result that all transistors on the chip can

no longer be switched at their maximum frequency. Thus

the many-core approach is required to leverage as much as

the chip’s computational potential as possible by relying on

speed-up from application parallelism on cores that run below

their maximum frequency and from hardware accelerators to

stay within the power and thermal budgets [4]. This limitation

has been dubbed Dark Silicon and has been highlighted as a

crucial problem for the semiconductor industries, with some

predictions claiming that at an 8nm process over 50% of a

chip may need to be powered off [3].

The processing elements of a many-core system are typi-

cally interconnected on a single device using a Network on

Chip (NoC) [5] [6]; an interconnection scheme based on con-

ventional networking where routers and channels are provided

for communication between nodes. Many node topologies,

interconnect options and constraint optimisations are possible

[7], giving the hardware engineer a powerful platform for

implementing systems that could be made dark silicon tol-

erant. This flexibility comes with its own engineering caveats

however: the large number of parameters will require problem

and system analysis to ensure that systems implemented within

NoCs fit their requirements and may necessitate the need

for heuristical approaches such as [8][9][10] to optimise the

design space; this is especially relevant when we consider the

extra thermal and power constraints imposed on the design

by dark silicon. This approach also suffers as the analysis

is done at design time and so cannot be adapted should the

operating conditions or properties of the chip change during

operation. However such flexibility is a key requirement for

supporting future many-core system design paradigms such as

dynamic task allocation, in field self-repair and autonomous

online optimisation [11].

Thus we need networks that can self-organise and self-

optimise without the need for offline analysis. To support

good scalability and dynamic network reconfiguration, ideal



networking design space optimisations should therefore not

rely on global knowledge of the network layout; indeed if

many-core systems do scale into the hundreds and thousands

of cores as suggested, then any online analysis will be com-

putationally infeasible particularly within embedded systems.

Thus, we will need to take a decentralised approach to the

Network on Chip that utilises information available at each

node instead of relying on a global view of the entire network.

We have started to address this approach in our previous

work, whereby inspiration was taken from behaviours of social

insect colonies and applied to the problem of routing in the

Network on Chip [12][13]. It was shown that social insects are

a suitable metaphor for many-core networking as their com-

munication structures fit the decentralised model well; simple

communications between members result in self-organising

behaviours emerging when observed globally at colony level.

This was achieved by combining information from simple

monitors within the network interfaces of each node with a

small amount of local intelligence at each node to enable

routing decisions to be made in a fully decentralised manner;

the emergent behaviour resulted in desirable adaptive qualities

such as routing around network hot-spots and enabling fault

tolerance by dynamically routing packets around faulty nodes.

Following on from this work, the investigation presented in

this paper explores the application of a model of social insect

behaviours to achieve dynamic task allocation on a many-

core system. In this case the routing behaviour is fixed and

each node decides which task it should be performing in a

decentralised and autonomous way. Task allocation models of

the social insects, with a focus on ants in this case, are first

introduced followed by a description of how this was trans-

formed into a form suitable for many-core implementation.

We then present our investigations in Section IV, the results of

which illustrate the effective adaptive behaviour of the model,

with a further development to show how more elaborate adap-

tive behaviours are supported including experiments with fault

tolerance and soft real-time applications. Further extensions to

this intelligence model are then proposed to enable integration

with modern hardware systems to demonstrate how social

insect intelligence models are an adept yet scalable metaphor

for enabling autonomous self-optimisation and self-repair of

future many-core systems.

II. INTELLIGENT TASK ALLOCATION

Task allocation is the process of mapping tasks to nodes

within the many-core and is a part of the multi-objective

design space optimisation required for mapping applications

to NoCs. It is easily seen that the layout of tasks on the grid

will impact the network traffic profile of the many-core and

so co-optimisation is required to optimise both dimensions to

the problem. This becomes even harder when factors such as

thermal constraints are also considered and if adaptation to

changes to the topology (e.g. fault handling) is also required

then there are many different scenarios to be considered and

analysed.

If we now consider ant colonies in a similar fashion, we

realise that some parallels are easily made. Each ant in the

colony has to decide what task it should be undertaking at

any one point and, of particular interest, no methods of global

organisation or coordination of work exist in the colony. De-

spite this, colonies exhibit complex collective behaviours that

are essential for the colony to survive. A broad spectrum of

tasks are required to be undertaken: ranging from feeding and

rearing of the young brood, nest expansion and maintenance

tasks, to scouting for and retrieving food from outside of the

nest. Differences in task partitioning and allocation between

ant species was explored in [14] where they considered the

differences between highly social ant species and species

that build colonies of only a small number of members. In

general they found that as social complexity increases (larger

colonies), individual complexity decreased. They argued that

there is a decline in autonomy of individuals of larger colonies,

meaning they are less likely to be able to function on their

own. This was also explored in terms of what tasks the

members undertake, in smaller colonies the members tend to

be “generalists”: they are able to undertake all tasks regardless

of factors such as age. The greater differentiation in larger

colonies means that members may be more optimal to perform

certain tasks and specialists start to emerge, to the point that

they may not exhibit their full task repertoire during their

lifetime. This is analogous to systems comprising of a few

but high performance general purpose processors (multi-core)

against systems utilising a very large number of specialist

cores (GPU, many-core). Thus we consider species that have

large nest population and some degree of specialisation be-

tween members; mapping well to a hardware accelerator or

FPGA approach where node reconfiguration can happen but

at a temporal cost.

Many biologists have studied the task allocation of social

insects and a comprehensive review of different models is con-

sidered in [15]. They explore six classes of models: response

threshold, integrated information transfer, self-reinforcement,

foraging for work, social inhibition and network task allocation

models. Each model differs in what information source is

used by individuals to determine which task they should be

undertaking and so a brief summary of each model is given:

1) Response Threshold: In this model the assumption is

made that workers are exposed to task-specific stimuli

(e.g. dirty chambers, untended larva, hunger) and each

worker has an internal threshold that dictates whether

an individual decides to undertake a task depending

on if a task stimuli exceeds this threshold, with a

default behaviour of a “rest state” i.e. doing no task.

The thresholds can vary between individuals and when

a worker starts a particular task before other workers

(it may have a lower stimulus threshold) it also start

reducing the task stimulus for other workers, providing

a lot of negative feedback into the task allocation system.

2) Integrated Information Transfer: This is an extension to

the prior threshold model, whereby social information



transfer is also integrated into the threshold. Workers

could inform each other with information on what tasks

they perceive need to be undertaken, yielding a more

step-wise distribution of task allocation from the positive

feedback nature of the social-communication.

3) Self-Reinforcement: In an attempt to model the oc-

currences of specialists and generalists in the colony,

experience based models have been proposed. In such

models the decision to undertake each task is considered

a probability, a successful undertaking of a task increases

the probability that this task is performed again whilst an

unsuccessful task or a lack of opportunity to undertake it

will reduce the probability of the task being performed.

This results in a self-reinforced system and by adding a

notion of “forgetting” it allows specialists to revert back

to generalists should the balance of tasks in the colony

change.

4) Foraging For Work: This model uses a production line

analogy such that there are a series of tasks to be done,

geometrically spread. On contact with a particular task

an individual will perform this task until it is no longer

required (see task stimuli in the Response Threshold

model), at which point it will then roam the nest until

a new task to be done is found. This model predicts

temporal polyethism, for example newly hatched work-

ers will start their lives in the brood chambers at the

back of the nest and so will find brood tending tasks to

perform. However once this reaches a critical limit of

workers then there will be a time where no brood tasks

need to be performed and they will slowly work their

way to the front of the nest as they forage for new tasks.

5) Social Inhibition: Another explanation of temporal

polyethism can be obtained by considering the effect

of older workers as an inhibitor for younger workers

taking up new tasks. If a number of foragers is lost then

the number of mature workers in the nest is reduced,

resulting in less inhibition of the potential tasks a young

worker can perform and so making up for the loss

of foragers. However such a model for task allocation

assumes that all tasks decisions are polyethism and

inhibition driven, which has been shown not to be the

case with task stimuli.

6) Network Task Allocation Models: The final modelling

method considers the interactions between workers and

their environment as a series of differential-equations or

network models. The resultant models show similarity

to real colonies to an extent that it can be concluded

that division of labour can be generated and maintained

purely from the local information encountered by an

individual worker.

Finally the authors conclude that these models should be

considered “exploratory” and that in reality some hypotheses

of these models will eventually be refined and merged to

produce a final “explanatory” model (for example the merged

threshold and reinforcement models in [16]).

This gives us a choice of models that we could use for

task allocation on the many-core. As we are not interested

in precisely modelling the actual interactions and stimuli of

social insects, we are more interested in the network-based

models. Indeed Gordon explores task allocation as an ad hoc,

dynamical network in [17], and explores interactions between

members as the foundation for task allocation with suggestions

such as: “what matters to an ant is the pattern of interactions

it experiences, rather than a particular message or signal

transferred at each interaction”. Indeed this could be analogous

to a node monitoring the properties of packets it encounters

(priority, rate, destination) rather than the actual data contained

within the packet. In fact the parallel distributed model Gordon

proposes in [18] could quite easily be adapted for many-core

experiments. Simple threshold decision functions were used by

each agent (member of the colony) to determine which of eight

states the agent should currently be fulfilling. It was found

that not only did this model exhibit several characteristics of

colony dynamics, it also allowed perturbations in tasks to be

introduced and the agents in the system would then adapt their

states until it would eventually return to a normal, stable state.

This is exactly the type of adaptive behaviour that we want

from our many-core and so we have adapted the model for

implementation in each router in the NoC. We implemented

a simple 5-port router (N, E, S, W and internal node) and

assumed a method of communication between the router and

the internal node that allows the router to inform the node

which task it should currently be undertaking (this could be

as simple as a few wires to communicate the value or could be

more complex such as a special packet sent from the router to

the node). The task switch process is shown by the four steps

in Figure 1

1

1 2 3

1

1 2 3

2

1 2 3

2

1 2 3

a)

c)

b)

d)

Fig. 1. Task switch decision algorithm for an example with three tasks. a)

When a packet arrives at the router the router inspects what task the packet is
destined for. The router then increments an internal counter of the destination
task of the packet. b) If a task counter exceeds the task switch threshold then
the decision is made to change (or maintain) to that task and the application
node is informed. c) All of the counters are then reset d) The router then
starts the task switch process again

III. EXPERIMENTAL SETUP

The task allocation scheme introduced in Section II was

experimented with by implementing the scheme in the routers

of a high level NoC simulation. This was implemented using



TABLE I
APPLICATION MODEL SETTINGS. THESE DETERMINE WHEN A PACKET IS

GENERATED, AS EXPLAINED IN SECTION III AND FOR EACH OF THE

APPLICATION GRAPHS SHOWN IN FIGURE 2 AND 3

Scenario 1 Scenario 2

Task: 1 2 3 1 2 3

Ratio: 1 1 1 1 1 1

Rate: 10 0 0 10 0 0

Packets Required: 0 1 1 0 1 1

CPU Time: 1 1 1 1 10 1

System-C [19] to allow realistic simulation of NoC specific

effects such as interconnect latencies and packet buffering. A

6x6 NoC was simulated with a grid topology such that all

nodes have four cardinal neighbours aside from the nodes at

the edges. Each interconnect between nodes has a buffer of

25 packets on the receiving end and it was simulated that it

takes a packet 10µs to be routed between nodes.

As with our previous experiments ([12][13]), two appli-

cation scenarios were used for the experiments: one repre-

senting a balanced application and the second an application

bottleneck where the ratio of each tasks are not equal. The

application graphs for these scenarios are shown in Figure

2 and 3. A difference from the previous experiments is that

the packets are no longer generated at a fixed rate. Packets

from Task 1 nodes are generated at a fixed rate of one every

10 µs, whilst Task 2 and 3 nodes do not send a packet

out until they have received a packet with their task as the

destination - this introduces causality into the model and is a

more realistic processing stream. Each node also has a “CPU

time”, this is a period that the internal port cannot sink packets

due to the attached node processing a previously sunk packet

and so incoming packets are passed on. These settings are

summarised in Table I

An issue with allowing nodes to change their processing

task is that it will render preset routing tables invalid when a

task switch happens. As dynamic updating of routing tables is

a research problem in itself we shall not approach this problem

in this paper. Our approach however should adapt to an non-

optimal routing scheme to provide better performance, many

packets of the wrong task being sent to a particular node

should result in that node deciding to switch its task to fit

this routing pattern. For this reason it is decided to preset

each router with a random routing table for each experiment,

we then expect the task allocation scheme to adapt to this

non-optimal routing pattern. Of interest is that this makes

the system susceptible to cyclic livelock situations where

the packets are routed in a circle, never reaching a suitable

destination node. This will in turn create a large response in

the routers handling these packets, causing them to decide to

initiate a task switch to the task required by the cyclic packets

and so breaking the cyclic behaviour.

All routers use a simple Round Robin approach to choosing

which port to service i.e. ports N, E, S, W, I are serviced in turn

continuously. As covered in our earlier work, Round Robin

is a simple, decentralised yet fair strategy, albeit limited in

intelligent capabilities. For the experiments we have also re-

introduced the concept of node “hunger” from our previous

work. When a node is busy processing data it sets a flag that

tells its immediate neighbours that it currently does not want

to receive packets, a neighbouring node could then decide to

send its data to another node to exploit task parallelism in the

network.

1
2

3

Fig. 2. Application graph for the first scenario. This represents a simple
balanced processing application resulting in balanced traffic profile across the
network, perturbed only by the network topology.

1

2

3

2 2 2

Fig. 3. Application graph for the second scenario. A data pipeline with a
parallel stage is represented here whereby there are four times as many task
two nodes as task one or three nodes. This can represent a typical many-core
streaming application with a stage that is massively parallel, all data rates are
kept the same as in the previous, balanced application graph shown in Figure
2 aside from CPU time for Task 2 nodes as shown in Table I. This scenario
effectively increases the load on Task 2 nodes.

IV. INVESTIGATION AND RESULTS

A series of experiments using the simulated many-core

system described in the previous section are presented here.

Firstly the performance of the task allocation scheme for both

application scenarios is analysed. Then we explore the fault

tolerance capabilities of such a scheme - it is easily seen

that if a node should become faulty then the task allocation

across the network will no longer be balanced and the network

should adapt to the faults. Finally an experiment exploring the

addition of an extra monitor to the intelligent task allocation

shows how we can advance this model towards real-time

applications through the addition of deadlines.

Every experiment records the average time taken for a

packet to traverse from its source node to its target node and its

packets are continuously dispatched until 5000 packets have

been sent throughout the network. This experiment is repeated

100 times with different randomly generated routing tables and

starting topology in each run. This allows a statistical outline

of the performance across many variations in network node



topology to be measured, capturing the mean performance as

well as the worst and best case outliers.

A. Task Allocation Performance

Figures 5 and 6 show the distribution of the average packet

latency of each task for each application scenario and across

100 runs of the experiment. For the sake of comparison, the

simulation was exploited to allow updating of all of the router’s

routing tables with new optimum paths when a task switch

happens. This is the fourth scheme and allows us to anticipate

the expected performance benefit that a dynamic routing up-

date could provide. In the case with no task switching enabled,

the routers are preloaded with optimal routing tables whilst

in the task switching cases they are preloaded with random

directions. This leads to a large spread in the task switching

results in both application scenarios, however the medians are

not drastically worse in the first application implying that a

near comparable performance can be recovered despite the

poor routing tables. Indeed when the latencies over time are

considered in Figure 4 we can clearly see the adaptive task

allocation at work, initially very poor performance is seen but

this gets better as the dynamics of the network adapt until the

performance plateaus; in this case with a ≈50% improvement

over the random starting point.

When we enable the hungry flag we get a much better

spread of packets across the network and hence a much tighter

distribution. In fact this spread is very important for dynamic

task allocation as if the fixed routing tables are followed then

there are some nodes that will never get packets sent to them

and so will not be able to adapt to the task requirements of

the network. This is also clearly seen in Figure 4, the descent

to good performance is much faster and the average much

more stable than compared to task switching with no hunger

flag. Some perturbations are seen in this plot but this is to be

expected in an adaptive system and the system consistently

returns to a stable state of improved performance. The extra

optimality offered by updating the routing table can also be

seen in Figure 4 but it is not exceptionally better for this run,

especially considering the overhead that such an update would

take to calculate in a real system.

B. Fault Injection Experiment

An exciting prospect of dynamic task allocation is the

autonomous recovery of performance under faulty scenarios.

If we consider the second application scenario then it can be

seen that a loss of a Task 3 node would dramatically increase

the workload of the remaining Task 3 nodes as there are many

Task 2 nodes to process packets from. In our network this will

alter the balance of packets in the network such that the overall

rate of packets that Task 3 nodes send out will drop, potentially

causing the thresholds in other nodes to initiate a task switch.

To experiment with this we undertook an extreme fault case

whereby after 500ms of execution all of the Task 3 nodes are

disabled. Their routers can still route packets but their attached

node will not produce or sink packets. Packets destined for

Task 3 nodes will therefore be constantly routed around the

0
200
400
600
800

1000
(a) No Task Switching

0
200
400
600
800

1000
(b) Task Switching (TS)

0
200
400
600
800

1000
(c) TS with Neighbour Hunger

0 1000 2000 3000 4000 5000
0

200
400
600
800

1000
(d) TS with Hunger and RoutingP

ac
k
et

 T
ra

ve
rs

al
 T

im
e 

(u
s)

Comparison of Packet Traversal Times

Packet Number

Fig. 4. Average packet traversal time represented in the temporal domain. A
moving average was applied across the raw latencies of each packet in one of
the 100 runs that make up the box plots. The same seed is used for each run
of the different schemes and so the random starting topology and preloaded
random routing tables are consistent across each scheme in this graph. This
shows how stable each scheme is and the time required for the task switching
behaviour to “settle down”.

network until a working node(s) decides to perform a task

switch. Ultimately the performance of other tasks will have

to be sacrificed to fulfil this lack of Task 3 ability, but due

to the causal nature of our test application it can be seen

that by reducing the number of Task 1 nodes (the only node

that produces packets at a fixed rate) the overall load on

the network will decrease. Eventually this allows the network

to return to a similar load to before the fault, albeit with a

decrease in the total amount of processing being achieved due

to loss of capacity from the faulty nodes. In an autonomous

system this is usually a highly desirable failure mode as it

allows graceful degradation of full system performance rather

than system failure.

This fault injection and recovery sequence can be seen in

Figure 7. The effect of the fault on the system is clearly seen

with varying recovery times between the schemes as the time

taken for nodes to switch task elapses. Indeed it could even

be the case that an over compensation happens, whereby too

many nodes switch task to recover the functionality; possibly

causing the instability seen for the task switch case (graph a.).

The optimum routing update case is clearly the most stable and

quick to recover, this is probably as the information about a

recovered Task 3 node is distributed the fastest via the routing

table update instead of local inference from network traffic as

with the other two schemes.



Task 1
(0.41)

Task 2
(0.26)

Task 3
(0.24)

Task 1
(0.48)

Task 2
(0.45)

Task 3
(0.65)

Task 1
(0.12)

Task 2
(0.10)

Task 3
(0.11)

Task 1
(0.07)

Task 2
(0.07)

Task 3
(0.07)

0

0.5

1

1.5

2

2.5

3
A

ve
ra

g
e 

P
ac

k
et

 T
ra

ve
rs

al
 T

im
e 

(m
s)

Average Packet Traversal Times for Scenario 1

No Task Switching Task Switching (TS) TS with Neighbour Hunger TS with Hunger and Routing

Fig. 5. Average packet traversal times for the first application scenario, with the median traversal time given in brackets on the x-axis. Despite the optimal
routing tables for the no task switching case there are still some extreme outliers present, showing that some task allocation topologies are inherently inefficient
and so task switching will be required to optimise this. With just task switching enabled we see a larger spread of average latencies when compared with no
task switching; however the task switching experiment is loaded with a random routing table. Thus early packets will have high latencies until the network
has adapted, see Figure 4 for an example of this effect. A “god mode” is used to update the routing tables for the final set, this is purely for comparison and
shows that even with no routing table updates (the third scheme), the task switching with hungry flag performs well.

10
20
30
40
50
60
70

Average Packet Traversal Times for Scenario 2

Task 1
(1.72)

Task 2
(0.34)

Task 3
(0.22)

Task 1
(17.90)

Task 2
(0.87)

Task 3
(1.03)

Task 1
(0.32)

Task 2
(0.43)

Task 3
(0.37)

Task 1
(0.08)

Task 2
(0.12)

Task 3
(0.09)

0

2

4

6

8

10

No Task Switching Task Switching (TS) TS with Neighbour Hunger TS with Hunger and Routing

A
ve

ra
g
e 

P
ac

k
et

 T
ra

ve
rs

al
 T

im
e 

(m
s)

Fig. 6. Average packet traversal times for the second application scenario. Due to the large spread of task 1 latencies in the task switching case we have had
to provide a second scaled axis. The hunger flag provides a much balanced spread of data across the network, this is clearly shown by the severely reduced
latencies for task 1 packets - showing that the network adapts to this processing bottleneck. Once again the median traversal times are given in brackets on
the x-axis.



10
2

10
3

10
4

10
5

10
6

(a) Task Switching (TS)

10
2

10
3

10
4

10
5

10
6

(b) TS with Neighbour Hunger

0 500 1000 1500 2000 2500 3000 3500 4000

10
2

10
3

10
4

10
5

10
6

(c) TS with Hunger and Routing

P
ac

k
et

 T
ra

ve
rs

al
 T

im
e 

(u
s)

System Response to Fault Injection

Packet Number

Fig. 7. Each of these graphs show the response of the system to a catastrophic
fault under the three task allocation schemes (without task switching it would
not be possible to recover, hence the no task switching case is not shown).
The first application scenario is run and then all task three nodes were failed
at the point shown on the graph as a dotted line. The logarithmic scale shows
the severity of the extreme fault case, followed by varying speeds of recovery
and some minor instabilities still present post-recovery.

C. Towards Real-Time Applications

Many autonomous embedded systems are implemented in

environments where a calculation will be required to be done

within a given time, in some cases information being late could

be more detrimental than a fault in the system. We can see

many time dependant behaviours in Nature in the form of

startle behaviour: if a predator is attacking then you may well

need to act faster than the predator to survive. At a neuronal

level this had led to many organisms evolving startle reactions

that can even shortcut the usual nerve-brain-muscle pathways

to ensure a quick reaction [20]. Taking inspiration from this

our third investigation added the requirement that all packets

should finish with 100µs, that is be routed from source to

destination task within 100µs. An extension was added to the

router that read the created timestamp contained in the packet

and this was then compared to the current time. If more than

100µs had elapsed since the packet was created then the node

immediately undertook a task switch to be able to process the

packet. This is not a temporary task switch - the counters for

all tasks are cleared as with a normal task switch and the node

continues processing with the task it had urgently switched

to until it may decide to switch again. Indeed with such a

deadline approach to packets then the concern is how optimal

the network is at meeting deadlines as opposed to processing

packets as fast as possible.

As can be seen in Figure 8, this simple modification is

highly effective. The spread of packets with just task switching

enabled is much smaller and the medians are very close

to the desired 100µs. Once the hungry flag is enabled the

entire distribution is within the deadline and the difference

of advantage offered by the routing update is minimal. This

shows that it is possible to merge the intelligence model with

other decision pathways and is a promising indication that the

resilience of bio-inspired adaptive systems may be integrated

with the stringent engineering requirements of more critical

systems.

V. CONCLUSIONS

We have demonstrated here how task allocation in Social

Insects can be applied effectively to many-core systems to

achieve adaptive task allocation across the many-core. The

decentralised nature of this model is highly desirable and

required as many-core systems start to scale into the hundreds

and thousands of nodes; rendering traditional design space

exploration approaches infeasible. We have shown how a

simple behaviour at each node results in a model that intrin-

sically copes well with faults, allowing autonomous systems

to gracefully bring back functionality from even catastrophic

failure situations. This has been furthered by introducing

more complexity into the intelligence, a panic-like reaction

allows approaching deadlines to be serviced by exploiting the

task switch to ensure packet deadlines are met. Our results

indicate that our approach will be an appropriate mechanism

to overcoming the problems introduced by Dark Silicon and

other issues of extremely large scale integration that require

adaptive solutions.

VI. FURTHER WORK

As we saw in Section II there are many more models of so-

cial insect task allocation and although we shall not implement

each one in turn, we could take mechanisms from other models

and refine them for use with the implemented model. For

example the Self-Reinforcement model would allow nodes to

discover if they had a particular advantage undertaking certain

tasks over others (use of a hardware accelerator for example)

and could also offer a autonomous approach to dynamically

managing the balance of “specialist” and “generalist” nodes

in the network depending on the current application profile.

Indeed it is generally accepted that polymorphism (whereby

members more physically suited to a particular task are more

likely to undertake it) is a key aspect of division of labour in

social insect colonies and so we are keen to exploit this model

as it maps so well to specialist hardware accelerators that we

could have in our many-core.

From a systems perspective we have made some simpli-

fications in this model such as assuming an instantaneous

task switch and that all nodes can perform all tasks. When

integrating with an actual system we shall have to consider

such costs and constraints as part of the decision making

process, possibly through extending the monitors in the system

and integrating these into the intelligence model. We would

then look to implement these experiments within the RISA



Task 1
(1454)*

Task 2
(2076)*

Task 3
(1219)*

Task 1
(193)

Task 2
(354)

Task 3
(219)

Task 1
(79)

Task 2
(78)

Task 3
(74)

Task 1
(72)

Task 2
(68)

Task 3
(72)

0

100

200

300

400

500

600

700

800

900
A

ve
ra

g
e 

P
ac

k
et

 T
ra

ve
rs

al
 T

im
e 

(u
s)

Average Packet Traversal Times for Scenario 1 with a 100us Deadline

No Task Switching Task Switching (TS) TS with Neighbour Hunger TS with Hunger and Routing

Fig. 8. Results of the first application scenario with a deadline of 100µs applied. In this plot the upper bound of the average latency for the runs is given
in brackets. It is shown that in terms of meeting the deadline the Hunger flag with task switching is of comparable performance to the same scheme with
optimal routing updates enabled. This is of interest as it shows the flexibility of the network in this case is as important as optimal routing. Indeed this is
even shown in the first half of the plot as the task switching scheme has managed to provide a far tighter distribution that the no task switching (but optimal
routing) scheme. Thus we have captured some of the flexibility gains that social insect colonies have formed to exploit. *The upper outliers of the No Task

Switching case have been omitted from the plot to give better clarity to the results of the other schemes with task switching enabled.

many-core comprising of 36 nodes as we have done with

previous investigations [13].

ACKNOWLEDGEMENTS

This work was supported by funding from the Department

of Electronics and an EPSRC DTA award.

REFERENCES

[1] G. Moore, “Cramming more components onto integrated circuits,”
Proceedings of the IEEE, vol. 86, no. 1, 1998.

[2] R. Dennard and V. Rideout, “Design of ion-implanted MOSFET’s with
very small physical dimensions,” Solid-State Circuits, IEEE Journal of,
vol. 9, no. 5, pp. 256–268, 1974.

[3] H. Esmaeilzadeh and E. Blem, “Dark silicon and the end of multicore
scaling,” in Proceedings of the 38th Annual International Symposium on

Computer Architecture, 2011, pp. 365–376.
[4] G. Venkatesh and J. Sampson, “Conservation cores: reducing the energy

of mature computations,” in Proceedings of the Fifteenth Edition of

ASPLOS on Architectural Support for Programming Languages and

Operating Systems, 2010, pp. 205–218.
[5] L. Benini and G. D. Micheli, “Networks on chips–a new SoC paradigm,”

Computer, 2002.
[6] A. Hemani, A. Jantsch, S. Kumar, and A. Postula, “Network on chip:

An architecture for billion transistor era,” in IEEE NorChip Conference,
2000.

[7] R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, and Y. Hoskote,
“Outstanding Research Problems in NoC Design: System, Microarchi-
tecture, and Circuit Perspectives,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 28, no. 1, pp.
3–21, jan 2009.

[8] H. G. Lee, N. Chang, U. Y. Ogras, and R. Marculescu, “On-chip
communication architecture exploration,” ACM Transactions on Design

Automation of Electronic Systems, vol. 12, no. 3, pp. 23–es, aug 2007.

[9] K. Srinivasan, K. Chatha, and G. Konjevod, “Linear programming based
techniques for synthesis of network-on-chip architectures,” in IEEE

International Conference on Computer Design: VLSI in Computers and

Processors, 2004. ICCD 2004. Proceedings. IEEE, 2004, pp. 422–429.
[10] U. Ogras and R. Marculescu, “Energy- and Performance-Driven NoC

Communication Architecture Synthesis Using a Decomposition Ap-
proach,” in Design, Automation and Test in Europe. IEEE, 2005, pp.
352–357.

[11] G. Tempesti, “Graceful Design,” International Innovation Issue 140, pp.
76 – 78, 2014.

[12] M. Rowlings, A. Tyrrell, and M. Trefzer, “Social-Insect-Inspired Net-
working for Autonomous Load Optimisation,” Procedia CIRP, vol. 38,
pp. 259–264, 2015.

[13] ——, “Social-Insect-Inspired Networking for Autonomous Fault Toler-
ance,” in 2015 IEEE Symposium Series on Computational Intelligence.
IEEE, dec 2015, pp. 1198–1205.

[14] C. Anderson and D. McShea, “Individual versus social complexity,
with particular reference to ant colonies,” Biological Reviews (of the

Cambridge Philosophical Society), pp. 211–237, 2001.
[15] S. Beshers and J. Fewell, “Models of division of labor in social insects,”

Annual review of entomology, 2001.
[16] G. Theraulaz, “Response threshold reinforcements and division of labour

in insect societies,” in Proceedings of the Royal Society B: Biological

Sciences, 1998, pp. 327–332.
[17] D. Gordon, “The organization of work in social insect colonies,” Nature,

1996.
[18] D. Gordon, B. Goodwin, and L. Trainor, “A parallel distributed model

of the behaviour of ant colonies,” Journal of theoretical Biology, 1992.
[19] IEEE, “IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005),” pp.

1–638, 2012.
[20] P. Simmons and D. Young, Nerve cells and animal behaviour, 3rd ed.

Cambridge University Press, 2010.


