
This is a repository copy of Feedback-Based Specification, Coding and Testing with JWalk.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/98339/

Version: Accepted Version

Proceedings Paper:
Simons, A.J.H., Griffths, N. and Thomson, C. (2008) Feedback-Based Specification,
Coding and Testing with JWalk. In: Practice and Research Techniques, 2008. TAIC PART
'08. Testing: Academic & Industrial Conference. TAIC PART '08, 29-31 Aug 2008, Windsor,
UK. IEEE , pp. 69-73. ISBN 978-0-7695-3383-4

https://doi.org/10.1109/TAIC-PART.2008.20

© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Feedback-Based Specification, Coding and Testing with JWalk

Anthony J H Simons, Neil Griffiths and Christopher Thomson

Department of Computer Science, University of Sheffield

{a.simons, c.thomson}@dcs.shef.ac.uk, aca05ng@shef.ac.uk

Abstract

JWalk is a lazy systematic unit-testing tool for Java,

which supports dynamic inference of specifications

from code and systematic testing from the acquired

specification. This paper describes the feedback-based

development methodology that is possible using the

JWalkEditor, an original Java-sensitive editor and

compiler coupled to JWalk, which helps programmers

to prototype Java class designs, generating novel test

cases as they code. Systematic exploratory testing

alerts the programmer to unusual consequences in the

design; and confirmed test results become part of the

evolving specification, which adapts continuously to

modified classes and extends to subclasses. The cycle

of coding, inferring and testing systematically exposes

test cases that are often missed in other test-driven

development approaches, which rely on programmer

intuition to create test cases.

1. Lazy systematic unit testing

Lazy systematic unit testing is a software testing

method based on the two notions of lazy specification,

the ability to infer the evolving specification of a unit

on-the-fly by dynamic analysis, and systematic testing,

the ability to explore and test the unit’s state space

exhaustively to bounded depths [1]. Lazy specification

is a term coined by analogy with lazy evaluation in

functional programming and refers to a flexible

approach to software specification, in which the

specification evolves rapidly in parallel with frequently

modified code. The specification is inferred by a semi-

automatic analysis of a prototype software unit. This

can include static analysis (of the unit’s interface) and

dynamic analysis (of its behaviour), supplemented by

limited interaction with the programmer. Systematic

testing refers to a complete, conformance testing

approach, in which the tested unit is shown to conform

exhaustively to a specification, up to the testing

assumptions [2]. This contrasts with exploratory,

random or other incomplete forms of testing. The aim

of systematic testing is to provide guarantees of

correctness, once testing is over.

JWalk is a unit-testing tool supporting the lazy

systematic unit testing of compiled classes in Java [3].

It is provided both as a command line utility, and as an

API toolkit for integration with other third-party

software development tools. It has been integrated

experimentally [1] as a plug-in for the IBM Eclipse 3.0

SDK platform [4] and is currently being trialed by Java

programming groups at IBM (Hursley) and Accenture

(Washington DC), among others [3].

2. The JWalkEditor tool

The current work describes a bespoke integration of

JWalk with a Java-sensitive editor, also developed in

the Java programming language [5]. The JWalkEditor

was designed with novice programmers in mind, to

support the interactive exploration and testing of class

APIs as these were being developed. Similar to other

editors like jEdit [6] and Eclipse [4, 7] the JWalkEditor

offers Java-sensitive text highlighting and syntax

checking. The Java compiler may be invoked from the

tool, tracing any compile-time faults back to errors

located in the source file. Multiple classes may be

developed (in separate tabbed panes) and executed as a

system within the same Java runtime environment.

In addition, the JWalkEditor can exercise the public

methods of any component class, as a means of

validating or testing this unit, at any stage of coding,

whether or not the class is finished. Test sequences,

consisting of constructors, followed by progressively

longer chains of methods, are generated and executed,

in a way that systematically explores the test-class’s

API. The JWalkEditor provides a sidebar panel for

setting the test parameters, such as the test mode (see

below) and the maximum test depth (sequence length),

and a button on the main toolbar initiates unit testing.

Depending on the test mode selected, the tool may

either help the programmer to validate the test-class’s

observable behaviour, by presenting the results of

exploratory sequences for inspection, or formally test

the class’s behaviour with respect to a test oracle,

which is created according to the lazy specification

method described above.

During validation, the tool may explore all method

protocols (all interleaved orderings of methods), all

algebraic constructions (all interleaved state-modifying

methods, followed by every observer-method) or all

design states and transitions (the switch-1 … switch-n

cover). This can be viewed as exploring the test-class

according to different models of state abstraction. The

first mode can be compared roughly with JCrasher [8]

and Rostra’s [9] method-states and the second mode

with Rostra’s modifier-states (except that JWalk is not

random, but deterministic in its selection of arguments,

and detects state-modification empirically, rather than

by signature analysis). The design state mode is

original to JWalk and utilizes the Cartesian product of

state predicate observations as indicators of qualitative

states [1]. The results of exploring the test-class are

presented to the programmer for validation, as sets of

observations, organized by sequence length, in a

window containing a tabbed pane for each set (fig. 1).

During formal testing (as opposed to exploratory

validation), the tool verifies the outcomes of the same

tests semi-automatically against predictions made by a

test oracle. The oracle is gradually populated with

known correct and incorrect results, as the programmer

accepts or rejects key test sequences, using a dialog

that presents one sequence at a time. By making a

mixture of opportunistic and conservative assumptions,

JWalk predicts further test outcomes, given the initial

results. For example, void methods typically yield no

result (but may raise exceptions); and sequences with

observer-methods in their prefix are predicted to yield

the same result as shorter sequences without the

observers. When used incrementally, JWalk predicts

over 90% of test outcomes (amortized over test depth;

see section 5), allowing significantly large numbers of

paths to be tested [1] for minimal human intervention.

3. Feedback-based development method

The JWalkEditor supports a novel paradigm for

specification, coding and testing, which contrasts both

with formal development, and with more recent agile

approaches. Formal software development methods

Figure 1. JWalkEditor, exploring the API of a LibraryBook during the validation phase

have an initial specification stage, in which the design

is specified in a formal language, such as Z or VDM, or

using a state-based tool, such as SDL or Statemate.

This approach supports fully automated and systematic

test generation, using the specification to inform the

selection of test cases and determine coverage; but has

the extra overhead of developing a specification in the

first place; and runs the risk that the software may later

evolve independently.

More recently, agile development methods, such as

extreme programming (XP), have advocated a “test-

first” approach [10] in which programmers create tests

before writing software, or “test-driven development”

[11] in which testing and coding are inter-dependent

activities. The tests take the place of a formal

specification, encoding the properties that the software

must eventually satisfy. This has the advantage that the

specification (viz. the test-set) is executable, but the

disadvantage that it is developed in a piecemeal way,

according to the fallible insights of the programmer,

who must constantly update the test-set if the

production code is modified (arguably no easier than

maintaining the validity of a formal specification w.r.t.

evolving code).

The JWalkEditor offers a new approach, in which

the programmer is entirely free to prototype the code as

they wish; and the tool supports this by “growing” an

associated specification, which evolves in step with the

code. The specification is in the form of the saved

oracle, generated during interactive testing. At first,

the tool presents key test cases to the programmer for

confirmation (state-modifying sequences, followed by

single observations); but later it uses saved results to

predict further test outcomes by rule [1]. Whenever a

novel test outcome is observed (because it breaks a

prediction, or contradicts a previously-saved result),

the tool requests another confirmation. Otherwise, it

assumes that the existing prediction is still valid (which

holds in practice most of the time – see the discussion

below; and [1]). In this way, JWalk incrementally

builds a bounded, exhaustive model of an algebraic

specification. It then generates a more abstract, high-

level state-based specification, exploring the test

class’s state space, using state-predicate methods in the

class’s interface to identify any interesting states.

JWalk acquires the state cover test set (reaching all

states) and from this may generate the transition cover,

the switch-1 cover (all method pairs), the switch-2

cover (all method triples), starting from each state.

But the tool also offers something else that is quite

valuable, namely an on-the-fly validation of the latest

design choices. When the programmer makes a change

to the code in the editor, JWalk may immediately

explore the consequences of the latest modification,

systematically revealing the effects of novel

interleavings of methods and exposing corner-cases

(such as testing nullops, or all interleaved observer-

methods for their unexpected side-effects), which the

programmer might not have fully considered. This

experience is somewhat similar to that of model-

validation from a partial specification, the approach

adopted by model-checking tools such as Alloy [12].

For this reason, it is relevant to consider the

JWalkEditor also as a kind of specification tool, which

helps the programmer to determine dynamically the

desired design for the class under development. We

call this a “feedback-based” approach to specification,

since the programmer may immediately see the

consequences of particular design choices.

The cyclic development methodology is extremely

habitable, because it capitalizes on what the different

parties do best. Programmers are motivated mostly by

the creativity of writing new code, and the gratification

of seeing this execute, rather than by the process of

creating a watertight specification. On the other hand,

automated tools are better at performing systematic

tasks, such as exploring all method combinations, states

and transitions. The process of building confidence in

the design is also on a human scale, since the tool

presents information gradually to the programmer,

showing first the obvious cases, then only presenting

interesting novel cases, which could not be predicted.

4. An example of class development

To illustrate the experience of developing code in

the JWalkEditor, the following example is given, as an

indication of how a typical apprentice programmer

might approach the task of providing two classes,

related by inheritance. The first class, a LibraryBook,

has the following structure:

public class LibraryBook {

 private String borrower;

 public LibraryBook();

 public void issue(String);

 public void discharge();

 public String getBorrower();

 public Boolean isOnLoan();

}

Initially, the programmer codes issue and discharge

to set and clear the borrower attribute, and ensures that

isOnLoan returns true when borrower != null. Next, a

protocol-walk is performed, which reveals interesting

observations: sequences that repeat issue, or discharge

are apparently acceptable! The programmer considers

this, deciding that it is legitimate for discharge to be a

nullop when the LibraryBook is not on loan, but that

sequences repeating issue violate the business rules of

the library. So, he returns to the editor, and inserts a

precondition into the issue method, which raises an

exception if an attempt is made to issue the

LibraryBook to more than one borrower. Focusing

now on state-modifying sequences, the programmer

initiates an algebra-walk (see fig. 1) to confirm that the

precondition correctly raises the exception. After this,

he may explore algebraic constructions to greater

depth, to be assured that it is possible to discharge and

then issue the LibaryBook to a different borrower.

At this point, the observed behaviour seems

acceptable, so the programmer switches to the algebra-

test mode, in order to build the oracle, and confirms

each presented observation as correct. In order to

verify the class more thoroughly, he then selects the

state-test mode, in which JWalk identifies two abstract

design states, the Default state and the OnLoan state,

determined from the false and true outcomes of the

state predicate isOnLoan. JWalk computes the state

cover, and tests all interleaved method sequences,

starting in each of these states, to the desired depth. If

the depth parameter is 3, this is equivalent to testing the

switch-2 cover [13], which according to Chow’s testing

theory is sufficient to guarantee the correct behaviour

of even a poorly implemented test class, containing

redundant states and duplicated paths of length 2.

Subsequently, the programmer wishes to extend the

behaviour of the LibraryBook, in a subclass called

ReservableBook. This has the structure:

public class ReservableBook

 extends LibraryBook {

 private String requester;

 public ReservableBook();

 public void reserve(String);

 public void cancel();

 public String getRequester();

 public Boolean isReserved();

}

Let us assume that the programmer expects to

validate combinations of the state-modifying methods

reserve, cancel and observers getRequester, isReserved

in a similar style to the above. What he may not have

anticipated is that methods inherited from LibraryBook

interact with ReservableBook’s methods in unexpected

ways (he has “tunnel vision”, a common fault).

In algebra-test mode, JWalk imports the existing

oracle for the LibraryBook superclass, using this as the

basis for the new oracle. The tool exercises reserve

and cancel as expected, but does not re-present any of

the old mutation sequences that involved only issue and

discharge, which it can predict from the old oracle.

However, previously unseen sequences that interleave

reserve and cancel with the inherited state-modifying

method sequences containing issue and discharge are

presented. This is a considerable improvement over

regression testing with saved test-sets in JUnit, since it

interleaves local and inherited methods in all possible

combinations, rather than simply applying the

superclass’s test-set as a whole to the subclass, which

has been proven to hide introduced faults [2].

At depth 2, the algebra-test interleaves reserve and

issue. At depth 3, getBorrower and getRequester

observe that a book can be reserved by borrower-A and

then issued to borrower-B, which violates the library’s

business rules again. The programmer is able to reject

this outcome, which is logged in the oracle as a known

fault. Furthermore, issuing the book should cancel the

prior reservation (and does not). At the end of the test

cycle, all known faults are listed in a summary.

Returning to the editor, the programmer decides to

override issue in ReservableBook to ensure that a book

is only loaned (a) if it was not reserved, or (b) if the

new borrower is the requester who reserved it; and then

the prior reservation should be cancelled. Re-

compiling the test-class, he re-runs the algebra-test,

and this time is only presented with the cases involving

the modified code, which he confirms as correct.

Finally, to demonstrate JWalk’s ability to detect

interesting high-level states, the state-test mode may be

selected. JWalk will detect four abstract design states:

Default, OnLoan, Reserved and OnLoan&Reserved,

named automatically after the boolean product of the

predicates isOnLoan and isReserved (which yield false

and true in four combinations). JWalk will determine

how to reach each of these states and may be directed

to verify the switch-n cover. In this test mode, JWalk

will predict most test results, either from previously

seen cases (during the algebra-test) or by rule-based

prediction, identifying equivalence-classes of test

sequences, which all map onto canonical sequences

with no observers in the prefix. Some longer unseen

sequences that start in the more distant states (e.g.

OnLoan&Reserved) will request new confirmations.

5. Experimental Evaluation

The effectiveness of this cyclic feedback-based

coding, specification and testing method can be

measured in several ways. Firstly, the number of new

test-confirmations in each cycle is small, compared to

the overall number of automated tests. Table 1 shows

the amortized cost of confirmations over test cycles of

increasing depth, for the algebra-test mode (a1, a2,

a3), followed by the state-test mode (s1, s2, s3). The

rows marked “con” denote new manual confirmations

per depth cycle, while the rows marked “pre” denote

automated retests and predictions, which increasingly

dominate the state-test results. The level of automation

rises from 40% to well over 90%. But even if

confirmations are not amortized over test cycles, they

still form a small fraction of overall tests executed:

20/138 or 14% for the LibraryBook, and 167/1816 or

9% for the ReservableBook.

Table 1. Amortized user interaction costs

Test class a1 a2 a3 s1 s2 s3

LibBk con 3 5 7 0 0 5

LibBk pre 2 8 18 18 38 133

ResBk con 3 14 56 0 11 83

ResBk pre 6 27 89 36 241 1649

With practice, a programmer can confirm each key

test-result in 2-3 seconds, building the oracle at around

25 test cases per minute. This compares favourably

against manual testing methods, in which programmers

take much longer to think up suitable test cases. Table

2 shows how long it took two developers to test “the

transition cover, plus argument equivalence partitions”

[14] both manually “man”, and using the tool “jwk” for

the same examples. The time column indicates min.sec

taken to develop and conduct tests.

Table 2. Speed and adequacy of testing

Test class T TE TR Adq time

LibBk man 31 9 22 90% 11.00

ResBk man 104 21 83 53% 20.00

LibBk jwk 10 10 0 100% 0.30

ResBk jwk 36 36 0 90% 0.46

The test coverage adequacy Adq is expressed as a

fraction of effective test cases TE over ideal test cases T

that were determined by inspection. The redundant

tests TR indicate wasted effort, showing how the manual

tester over-compensated, creating duplicated test cases.

JWalk’s coverage was nearly total (100% effective on

state-based criteria, but missing 4 partitions on input-

criteria: JWalk does not yet perform full equivalence-

partition testing).

The power of JWalk comes from its predictive rules,

especially the predictions about sequence equivalence-

classes (the observer-prefix elimination case); this is a

strong conservative assumption, which always holds

(side-effect-free invocations are detected empirically).

A weaker opportunistic assumption, such as where

stack.pop() is expected to return void, may not always

hold, and early testing may fail to spot the missing

precondition on empty stacks. Violated assumptions

are usually detected by longer test-sequences in the

next cycle, such as the unexpected result: stack.size()

== -1. The same principle applies to missing overrides

(the case of issue, above), or rare cases of double-faults

that happen to map onto the correct result. Testing to

depth k+1 usually exposes unwanted states

masquerading as expected states in the previous cycle,

c.f. Chow’s method [13]. Opportunistic assumptions

are so useful in cutting down the number of cases

presented to the programmer, that it would be

impractical to do without them. Further examples of

the test-coverage of JWalk may be found in [14].

Acknowledgement: Thanks are due to Arne-Michael

Toersel (at TaicPart ’07) for test cases used to develop

the JWalk beta-2 revision.

6. References

[1] A. J. H. Simons, “JWalk: a tool for lazy systematic testing

of Java classes, by design introspection and user interaction”,

J. Auto. Softw. Eng., 14 (4), 2007, 369-418.

[2] A. J. H. Simons, “A theory of regression testing for

behaviourally compatible object types”, Softw. Test., Verif.

Reliab., 8(2), 2006, 133-156.

[3] A. J. H. Simons, “JWalk: lazy systematic unit testing”,

http://www.dcs.shef.ac.uk/~ajhs/jwalk/, 2007.

[4] O. Gruber, B. J. Hargrave, J. McAffer, P Rapicault and T.

Watson, “The Eclipse 3.0 platform: adopting OSGi

technology”, IBM Sys. J., 44(2), 2005, 289-299.

[5] N. Griffiths, “Test-as-you-code Java editor”, BSc dissert.,

Dept. Comp. Sci., University of Sheffield, 2008.

[6] S. Pestov et al., “jEdit programmer’s text editor”,

http://www.jedit.org/, accessed 8 May 2008.

[7] The Eclipse Foundation, “Eclipse – an open development

platform”, http://www.eclipse.org/, accessed 8 May 8, 2008.

[8] C. Csallner and Y. Smaragdakis, “JCrasher: an automatic

robustness checker for Java”, Software: Practice and

Experience, 34(11), 2004, pp. 1025-1050.

[9] T. Xie, D. Marinov and D. Notkin, “Rostra: a framework

for detecting redundant object-oriented unit tests”, Proc.

19th IEEE Conf. Automated Softw. Eng., IEEE, Washington

DC, 2004, pp. 196-205.

[10] K. Beck, Extreme Programming Explained: Embrace

Change, 1st edn. New York: Addison-Wesley, 2000.

[11] ibid., 2nd edn. New York: Addison-Wesley, 2005.

[12] D. Jackson, Software Abstractions: Logic, Language

and Analysis, MIT Press, 2006.

[13] T. S. Chow, “Testing software design modeled by finite-

state machines”, IEEE Trans. Softw. Eng., 4(3), 1978, 178-

187.

[14] A. J. H. Simons and C. D. Thomson, “Benchmarking

effectiveness for object-oriented unit testing”, Proc. 1st

Software Testing Benchmark Workshop, IEEE 1st Int. Conf.

Softw. Testing, Lillehammer, 2008.

