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An Efficient Downlink Channel Estimation

Approach for TDD Massive MIMO Systems
Yang Nan, Li Zhang, and Xin Sun

Abstract—In this paper, the channel estimation problem for
the downlink massive multi-input multi-output (MIMO) system
is considered. Motivated by the observation that the channels
in massive MIMO systems always exhibit sparsity and the path
delays vary slowly in one uplink-downlink process, we propose
a novel channel estimation method under the framework of the
weighted compressive sensing. Unlike the conventional methods
which do not make use of any a priori information or assume
the path delays are invariable, we estimate the probabilities that
the paths are nonzero in the downlink channel by exploiting
the channel impulse response (CIR) estimated from the uplink
channel estimation. Based on these probabilities, we propose
the Weighted Structured Subspace Pursuit (WSSP) algorithm
to efficiently reconstruct the massive MIMO channel. Simulation
results show that compared to the conventional methods, the
WSSP could achieve a significant reduction in the number of
pilots while maintain good channel estimation performance.

Index Terms—Massive MIMO, channel estimaion, compressive
sensing.

I. INTRODUCTION

As a promising technology for future communication tech-

nologies, massive multiple-input multiple-output (MIMO) sys-

tems where the base station (BS) is equipped with a large

number of antennas have received enormous attention [1]. It is

shown that with increase number of BS antennas, the massive

MIMO techniques could provide unprecedented spectral effi-

ciency and array gains. However, to implement this technique

in practice, there are still many issues that need to be properly

addressed. One of the key challenges is the downlink channel

estimation, where the required number of the downlink pilots

is proportional to the large number of antennas at the BS side,

which is unaffordable for the massive MIMO system.

To solve this problem, some efficient downlink channel

estimation schemes have been proposed based on the struc-

tured compressive sensing (SCS), which could recovery the

channel with relatively few pilots by exploiting the sparse

nature of the massive MIMO channels [3]-[6]. In [3], the

structured subspace pursuit (SSP) algorithm is proposed for

downlink massive MIMO system by using the superimposed

pilots. In [4], block based orthogonal matching pursuit scheme

is proposed for downlink massive multiple-input single-output

(MISO) systems. In order to further improve the channel
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estimation, the authors in [2] exploit the channel reciprocity in

time division duplex (TDD) mode whereby the user terminals

(UTs) could utilize the channel support estimated from the

uplink training to enhance the downlink channel estimation

[2]. Based on this idea, they propose the Auxiliary information

based Block Subspace Pursuit (ABSP) algorithm. However,

the assumption of channel reciprocity sometimes does not hold

since the support of CIR changes over time if there is a relative

movement between the UTs and the base station. As a result,

using the uplink channel support directly in the downlink

channel estimation may lead to performance deterioration.

In this paper, we propose a new Weighted Structured

Subspace Pursuit (WSSP) algorithm for the downlink channel

estimation in TDD massive MIMO systems. This approach is

inspired by the weighted CS (WCS) [7] and the observation

that in the massive MIMO systems the path delays (active

paths) in the downlink channel change slowly over one uplink-

downlink process [8][9]. Firstly, we present a method that

easily estimates the probabilities of the nonzero paths delays in

the downlink channel based on the knowledge of the previous

uplink CIRs. After that we combine these probabilities with

the SSP by adjusting the weights of SSP according to the

probabilities to improve the channel estimation performance.

Compared with the conventional SSP method and ABSP

method, the proposed method reduces the pilot overhead

significantly while maintains an accurate channel estimation

performance.

The rest of the paper is organized as follows. We first

describe the downlink massive MIMO system model in Sec-

tion II. Then the WSSP algorithm is proposed in Section III.

Section IV presents the simulation results. Finally, section VI

concludes the paper.

Notations: Throughout this paper, boldface lower and upper

case symbols represent vectors and matrices, respectively.

Operators T , H and † represent transpose, Hermite and Moore-

Penrose matrix inversion, respectively. diag{c} is the diagonal

matrix with x at its main diagonal. P(x), ‖x‖p and suppK(x)
denote the probability, the ℓp-norm and the largest K elements

in the support of x, respectively.

II. MASSIVE MIMO OFDM SYSTEM MODEL

Consider a downlink massive MIMO OFDM system where

the BS with M antennas is serving a large number of U
autonomous single-antenna UTs (M > U ). The CIR between

the mth BS antenna and one certain UT can be denoted as

hm = [hm(0), hm(1), · · · , hm(L − 1)]T with 1 ≤ m ≤ M ,

where L is the maximum delay spread of the CIR. Under the
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assumption of channel sparsity, only K elements are nonzero

in hm, satisfying K ≪ L [3]. Meanwhile, it is reasonable

to assume that the CIRs of the uplink channels between

the UT and different BS antennas share a common support,

considering that the distance between UT and BS is much

bigger than the space between the antennas at the BS [3]-

[5]. In other words, by defining Sm = supp{hm} = {τ :
|hm(τ)| > 0}L−1

τ=0 , we have S1 = S2 = · · · = SM .

Suppose the total number of OFDM subcarriers is N ,

among which Np subcarriers are randomly employed to trans-

mit pilot symbols. Thus we can denote the pilot sequence

transmitted from the mth antenna of the BS to one certain

UT as xm = [xP1,m
, · · · , xPj,m

, · · · , xPNp,m
], where pm =

[P1,m, · · · , Pj,m, · · · , PNP ,m] is the corresponding subcarriers

indices of Np pilots. To reduce the pilot overhead, we adopt the

superimposed pilot pattern that the pilots at different transmit

antennas share the same locations, i.e. p1 = p2 = · · · = pM ,

but each pilot sequence xm is unique. In this paper, we simply

generate the pilots by setting xPj,m
= 1 or xPj,m

= −1 with

1 ≤ j ≤ Np, following the identically and independently

distributed (i.i.d) random Bernoulli distribution [3].

At the UT side, the received pilot vectors from different BS

antennas are distinct due to the distinct xm and path gains in

each downlink channel. The superposition of M pilot vectors

can be expressed as

y = ΣM
m=1diag{xm}Fhm + ηm

= ΣM
m=1AmFhm + ηm

(1)

where Am = diag{xm} is the diagonal matrix with xm on its

main diagonal, F is a Np×L submatrix comprising the p rows

and the first L columns of the standard N×N discrete Fourier

transform matrix, and ηm is the additive white Gaussian noise.

Moreover, let Φ denote the Np × LM matrix as

Φ = [A1F,A2F, · · · ,AMF], (2)

and h = [hT
1 , · · · , hT

M ]T = [h(0), h(1), · · · , h(ML − 1)]T ,

then we have

y = Φh + η. (3)

Since h is a sparse vector, we can formulate the channel

estimation problem as a classic ℓ1 norm minimisation problem,

argmin ‖h‖1 s.t. ‖y− Φh‖2 ≤ ε, (4)

for some suitable ε > 0.

Besides the spatial correlation which ensures the common

support of the sparse MIMO channel, we have also noticed

the temporal correlation of wireless fading channels, whereby

the channels exhibit identical common support in one uplink-

downlink process [2]. However, using the uplink channel

support directly to aid the downlink channel estimation is

sometimes unreliable since the support of CIRs may change

over time if there is a relative movement between the UT and

BS. Despite of this, we can still find some useful information

from the uplink support, owing to the substantial correlation

of CIRs between uplink and downlink [8][9].

In this paper we apply a novel channel estimation method

called WSSP which is able to produce accurate channel

estimation performance from even fewer number of pilots than

the SSP by exploiting a priori information obtained from the

estimated uplink CIRs.

III. WSSP ALGORITHM FOR UPLINK MASSIVE

MIMO SYSTEMS

The main idea of WSSP is based on the observation that

the support of the downlink channel is closely similar to

the support of the uplink channel in one uplink-downlink

process. As a result, we could be able to explore some useful

information about the support of h from the CIR of the uplink

channel. Since the path delays vary slowly, we could calculate

the probabilities that the elements in h are nonzero according

to Ŝ, where Ŝ is the channel support estimated from the

uplink training, and then use these probabilities to aid the

reconstruction of h. This approach is divided into the following

two steps: 1) Estimation of the probabilities; 2) Downlink

channel estimation with the aid of the probabilities.

A. Estimation of the probabilities

Note that two channel taps are not resolvable if the time

interval is no more than 1
2B [2]. That is, a channel tap with

delay τ can be recognized to be h(j) if τj − 1
2B ≤ τ ≤

τj+
1
2B , where τj =

j
B denotes the delay of h(j). For example,

assume B = 7.56MHz [10], then we can obtain the minimum

resolvable interval of channel taps as 1
2B ≈ 0.06µs. Let the

maximum delay spread τmax be 20µs according to the ITU-

VB channel with 120km/h receiver velocity and the maximum

variation rate of the delays within one uplink-downlink process

is ν = ±0.5%, then we can acquire the variation of the delays

by |var| ≤ ν × τmax = 0.1µs < 1
B [11]. Thus, we can

conclude that the path delay in uplink channel will either be

invariant (|var| ≤ 1
2B ) or move next to its original location

( 1
2B < |var| ≤ 1

B ) in the downlink.

Let t = [t0, · · · , tl, · · · , tML−1] be the probabilities that

the lth element in h is nonzero , i.e., tl = P(h(l) 6= 0) for

0 ≤ l ≤ ML − 1. It is obvious that if tl = 1 then the lth
element in h should be nonzero (though the value of h(l) is

still unknown), while if tl = 0 the lth element in hi should be

definitely zero. Based on the assumption that the path delays

only vary slightly in one uplink-downlink process, there is

a good chance that the positions of nonzero elements in the

uplink channel would be either unchanged or just shift to the

nearby locations in the downlink process. In addition, it is also

reasonable to predict that zero elements will appear in similar

locations with uplink. Thus, suppose l ∈ Ŝ, then there would

be a good chance that this spike remains at this location or

move to the locations in the vicinity of l in the downlink,

i.e., h(l ± ς) 6= 0 where ς is a small integer. Meanwhile, the

probability of h(l ± ς) 6= 0 decreases as ς gets bigger. This

behaviour inspires us to express the probability tl by using the

Gaussian function,

tl =
1√
2πσ2

e−(l−b)2/2σ2

, (5)

where σ is the standard deviation which depends on the

variation rate ν. Assume Ŝ = {10} and ν = ±0.5%,

we plot the measured probability of this spike in downlink
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Fig. 1. Comparison between the measured probability and Gaussian function

channel by performing 100 independent trails in Fig.1(a).

Also, the Gaussian functions with σ2 = 0.6 is draw as

comparison. It is obvious that the measured probability and the

Gaussian function match very well. Therefore, we can obtain

the estimated probability of this spike in downlink channel

from (5) as t10 = 0.66, t9 = t11 = 0.16. Moreover, if there

were multiple paths, we could simply acquire the probabilities

by summing the probabilities of each nonzero spikes as

tl =
∑

b∈Ŝ

1√
2πσ2

e−(l−b)2/2σ2

(6)

In Fig.1(b), we illustrate an example with three spikes (Ŝ =
{5, 10, 12}). It is worth noting that t11 has higher probability

than t9 since both of its neighbours are in the support Ŝ,

which increases the probability that the path gain at j = 11 is

nonzero.

B. Downlink channel estimation with the aid of the probabil-

ities

In order to incorporate the probability tl into the CS

algorithm, we replace the ℓ1 norm in (4) with a weighted norm,

where the weights are adjusted according to the probability tl,
and then obtain

argmin ‖Wh‖1 s.t. ‖y− Φh‖2 ≤ ε, (7)

where W = diag([w0, · · · , wl, · · · , wML−1]) is the matrix

with the weights wl (0 ≤ l ≤ ML − 1) on its diagonal.

Intuitively, smaller weights could encourage elements in h to

remain nonzero, while the larger weights urge elements to be

zero. Therefore, smaller weights should be set to the elements

with higher probabilities of being nonzero. In this paper, we

first initialize the weights wl equal to the reciprocal of tl as1

wl =

{ 1

tl
, for tl 6= 0

0, for tl = 0
, (8)

and then normalize wl by

wl =
wl

max
0≤j≤ML−1

(wj)
, (9)

1It is worth noting that the weighted ℓ1 minimization problem in (7) is
equivalent to the ℓ1 minimization problem in (4) when no a priori information
tl is available (where all the weights could be 1).

To solve the weighted ℓ1 minimization problem, based on

the classical SSP algorithm [3] which does not take any auxil-

iary information into account, we propose the WSSP approach

to perform channel estimation with the aid of weights. The

proposed WSSP algorithm is summarized in Algorithm 1.

Algorithm 1

1: Input: Received pilot sequence y, sensing matrix Φ, previ-

ous support Ŝ, approximated channel sparsity K = ‖Ŝ‖0
2: Initialization:

3: The initial residual v1 = yi, k = 1 and W ← 0
4: If i = 1 then

5: W ← 1
6: Else

7: Obtain W from (5) and (8)

8: Ω← supp(W)
9: End

10: while ‖vk‖2 < ‖vk−1‖2 do

11: z← ΦHvk
12: d(l)←

∑M−1
m=0 |z(l+mL)|2, 0 ≤ l ≤ L− 1

13: Ω← Ω ∪ suppK(d)
14: Γ← Ω ∪ [Ω + L]∪, · · · ,∪[Ω + L(M − 1)]
15: If wl∈Γ = 0 (0 ≤ l ≤ML− 1) then

16: wl = max
j∈Γ

(wj);

17: Elseif wl∈Γ > 0
18: wl = wl × (1− α);
19: Else

20: wl = wl/max
j∈Γ

(wj);

21: End

22: If wl = 1 then

23: wl = 0;

24: End

25: z← (ΦWΓ)
†yi

26: d(l)←
∑M−1

m=0 |z(l+mL)|2, 0 ≤ l ≤ L− 1
27: Ω← suppK(d)
28: Γ← Ω ∪ [Ω + L]∪, · · · ,∪[Ω + L(M − 1)]
29: ĥΓ ← Φ†

Γyi
30: k ← k + 1
31: vk ← y− ΦH ĥ

32: end while

33: Output: The estimatied CIR vector ĥ

Note that d = [d(0), d(1), · · · , d(L − 1)]T , z =
[z(0), z(1), · · · , z(ML − 1)]T , vk denotes the residual at the

kth iteration. 0 < α < 1 is a user-selected parameter that

controls the decay rates of WΓ, where WΓ denotes the sub-

matrix collecting the columns of W according to Γ, and [Ω+a]
means adding a to each element of Ω.

Since we consider not only the original elements in Ŝ,

but also the elements in their vicinity, we initialize the set

Ω as Ω ← supp(W) in Line 8, instead of Ω ← Ŝ as the

traditional methods did [2]. Moreover, note that supp(W)
determines the paths that can be processed by the WSSP, while

the nonzero values in W affect the probabilities that whether

the corresponding paths could be included into the support Γ.

Hence, we adjust the weights W iteratively according to the

following three situations: 1) The l is one of the K largest
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magnitude entries of d, which means the lth path is selected

to be one of the possible nonzero paths by the WSSP, but the

current lth element in W is zero, indicating the lth path is

regarded to be zero according to the previous steps, then we

should assign wl to a relatively large value as wl = max
j∈Γ

(wj),

so that the lth path could be processed in the following WSSP

steps but with less influence (Line 16); 2) Otherwise, if the l
is one of the K largest magnitude entries of d and wl 6= 0,

which indicates that this index has already been considered

to be the nonzero path by the previous steps and is collected

again in the current step, implying it may belong to the correct

support of h with high probability, so we reduce the value of

wl at a rate α to encourage the lth element in h to remain

nonzero (Line 18); 3) For the other l′ which is not one of the

K largest magnitude entries of d but with wl′ > 0, we divide it

by max
j∈Γ

(wj) as a punishment, i.e., wl′ = wl′/max
j∈Γ

(wj) (Line

20). Due to this punishment, the maximum values of W will

increase to 1. Then, we set these elements to zeros since the

corresponding channel taps are zeros with high probabilities

(Line 23).

The main computational complexity of WSSP comes from

the matrix inversion operation required to obtain the path de-

lays (Line 25) during each iteration. Although WSSP requires

to process more columns of Φ in the first iteration than SSP

to ensure the accuracy of the estimated support, it will rule

out the redundant columns from Φ quickly by setting wl = 0
according to Line 232. After that, the complexity of WSSP

will be exactly the same as SSP. Moreover, owing to the

introduction of a priori information, the proposed WSSP could

converge in fewer iterations than that required by the SSP,

which could also decrease the total complexity. Therefore, it is

reasonable to say that the computational complexity of WSSP

is at the same order of SSP.

IV. SIMULATION RESULTS

In this section, simulation studies are conducted to in-

vestigate the performance of the proposed WSSP algorithm.

Consider a massive MIMO system with M = 8 BS antennas.

For the downlink transmission, N = 4096 OFDM subcarriers

are used. The maximum delay spread L = 200 is considered

with only K = 12 nonzero elements. The signal bandwidth

B is 7.56MHz and the maximum variance rate of the delays

within one uplink-downlink process is ν = ±0.5% [11].

Moreover, the decay rate α is 0.5 while the variance of the

Gaussian distribution σ2 = 0.6.

In Fig.2 we set the signal-to-noise ratio (SNR) to 25dB,

and compare the success rate of channel recovery between the

conventional SSP algorithm, ABSP as well as the proposed

WSSP, when a varying number of pilots Np is employed. The

success rate is defined as the ratio of the number of success

trails to the number of total trails, where a trail is recognized to

be successful when the MSE is better than 10−1. The number

of pilots Np is varied from 20 to 340, while 100 independent

trails are implemented for each Np. It can be seen from Fig.2

2In fact, WSSP could eliminate most of the redundant columns in the first
iteration.
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Fig. 2. Success rate comparisons between SSP, ABSP and WSSP.

that WSSP is superior to the other algorithms. Specifically, it

requires no more than 70 pilots to achieve the success rate

of 50% and 100 pilots for 100%. By contrary, the ABSP

and SSP require 240 pilots and 280 pilots respectively to

reach a 100% success rate. Moreover, it also can be seen that

the performance improvements of the proposed approach is

obvious when the same number of pilots is used. For example,

when Np = 100, the success rates of WSSP is 100%, while

that of the SSP and ABSP are 2% and 18%, respectively. Thus,

it can be concluded that the proposed approach could reduce

the pilot overhead significantly and thus improve the spectral

efficiency.

Next, we set Np = 128 and present the MSE comparison

between the proposed WSSP, the conventional SSP and ABSP

with ν = 0 and ν = ±0.5% in Fig.3 respectively. From

Fig.3(a) we can see that the MSE performance of ABSP

is just the same as WSSP, indicating its good performance

in the static channel where the path delays are invariant

during one uplink-downlink process. However, it suffers from

deterioration when ν = ±0.5% as shown in Fig.3(b), since the

the channel is time-varying. By contrary, WSSP could achieve

good performance in both of the static channel and the time-

varying channel, since it considers not only the original path

delays in the uplink but also their vicinity, which improves its

performance in the time-varying channel. Specifically, WSSP

outperforms ABSP by about 7dB in Fig.3(b) when the channel

estimation MSE 10−0.7 is considered. Moreover, it is obvious

that both of the ABSP and WSSP outperform the conventional

SSP, thanks to the use of a priori information.

Finally, we set ν = ±0.5% and Np = 300, and then plot the

MSE performance of different approaches in Fig.4. The exact

least square (LS) method which perfectly knows the channel

support is also included as the performance bound. It is

observed that all the approaches could achieve the performance

bound when both of the SNR and the number of pilots are

sufficient. However, when SNR < 15, only WSSP performs

as good as the exact LS method, which is superior to the other

conventional methods, indicating that it still tracks the correct

path delays although the SNR is low.
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V. CONCLUDING REMARKS

This paper considers the downlink channel estimation for

massive MIMO system. By extracting the probability informa-

tion of the path delays from the uplink channel, the weighted

SSP algorithm is proposed to efficiently solve the channel

estimation problem with only few pilots. Simulation results

have shown that the proposed scheme could achieve higher

spectral efficiency as well as more reliable performance over

the time-varying channel.
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