This is a repository copy of *Induced hypothermia preserves the functional enterocyte mass in a porcine multiple trauma model: Retracted.*

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/98293/

Version: Accepted Version

Article:
Frohlich, M, Maegele, M, Hildebrand, F et al. (8 more authors) (2016) Induced hypothermia preserves the functional enterocyte mass in a porcine multiple trauma model: Retracted. Shock. ISSN 1073-2322

https://doi.org/10.1097/SHK.0000000000000626

(c) 2016, the Shock Society. This is an author produced version of a paper published in Shock. Uploaded in accordance with the publisher’s self-archiving policy.

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Induced hypothermia preserves the functional enterocyte mass in a porcine multiple trauma model

Fröhlich Matthias1, 2; Maegele Marc1; Hildebrand Frank3; Weuster Matthias4; Mommsen Philipp5; Mohr Juliane6; Witte Ingo7; Pfeifer Roman3; Feichtinger Georg8,9; Keibl Claudia8; Flohé Sascha7; van Griensven Martijn10

1 Department of Orthopaedic Surgery, Traumatology and Sports Traumatology, Cologne-Merheim Medical Centre (CMMC), Witten/Herdecke University, Ostmerheimer Str. 200, D-51109 Cologne, Germany
2 IFOM – Institute for Research in Operative Medicine, Witten/Herdecke University, Germany
3 Department of Orthopaedic Trauma and Reconstructive Surgery, University Hospital Aachen, Germany
4 Department of Orthopaedic Trauma Surgery, University of Schleswig-Holstein, Kiel, Germany
5 Trauma Department, Hannover Medical School, Germany
6 Department of Orthopaedic Trauma Surgery, University of Magdeburg, Germany
7 Department of Traumatology, Orthopaedic- and Hand-Surgery, Hospital Solingen, Germany
8 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
9 Department of Oral Biology, St James’s University Hospital, University of Leeds, Leeds, UK
10 Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany

Corresponding author:
Matthias Fröhlich
Department of Trauma and Orthopedic Surgery,
University of Witten/Herdecke,
Cologne-Merheim Medical Center (CMMC),
Ostmerheimerstr. 200, D-51109 Cologne, Germany
Tel. 0049 177 5990307
e-mail: froehlichm@kliniken-koeln.de.

Conflicts of Interest and Source of Funding: The project was financed by the Foundation Else-Kroener-Fresenius, Grant number: 2009 A12. No further conflicts to declare.
Abstract – 250 words

Introduction: Multiple organ dysfunction syndrome (MODS) and the resulting multiple organ failure (MOF) following severe trauma are associated with increased morbidity and mortality. Due to intestinal mucosal lesions and gut barrier disorders, the intestine contributes decisively to how post-traumatic MOF develops. As mild therapeutic hypothermia has been found to have protective effects on post-traumatic organ injuries, we analysed its effects on the intestine.

Methods: In a porcine model, Forty pigs were assigned to four groups: sham or trauma groups each with two sub-groups receiving either hypothermia or normothermia. The trauma was a combined trauma of blunt chest trauma, liver laceration and haemorrhagic shock. Functional enterocyte mass and enterocyte necrosis were evaluated by measuring plasma citrulline and iFABP. Mucosal lesions were assessed using a semi-quantitative histological scoring system.

Results: In normothermic trauma animals, citrulline decreased significantly compared to both sham groups and to the hypothermic trauma group. However, citrulline levels did not differ significantly between the hypothermic trauma group and the hypothermic sham group. Although histological analysis demonstrated subepithelial lifting and mucosal oedema in the ileal mucosa of all trauma animals, the semi-quantitative score of the group treated with hypothermia was comparable to that of the hypothermic sham group. However, the score was significantly elevated in normothermic trauma animals in comparison to sham and hypothermic trauma animals.

Conclusion: Induced hypothermia preserves the functional enterocyte mass after severe trauma. Therefore induced hypothermia might represent a therapeutic strategy to avoid posttraumatic organ dysfunction, although further studies regarding the safety and long-term effects are required.

Level of Evidence: Level III; therapeutic study
Key words: Polytrauma, hemorrhagic shock, gut barrier, large animal model, pig, hypothermia
Introduction

Although the incidence of the posttraumatic multiple organ dysfunction syndrome (MODS) decreased during the last decade, MODS and multiple organ failure (MOF) are still associated with increased morbidity and mortality (1). Despite intense research, the pathogenesis of MODS has yet not been fully clarified. However, the gastrointestinal tract appears to contribute decisively to the development of MODS (2-5). In haemorrhagic shock, splanchnic hypoperfusion and subsequent alterations of the intestinal mucosa seem to be responsible for the derangement of the gut barrier and subsequent bacterial translocation (4-7). Particularly in the small bowel, gastrointestinal dysfunction has been linked to an acute reduction of enterocyte mass (8). Furthermore, a reperfused intestine contributes to an early systemic inflammatory response syndrome (SIRS) with the release of proinflammatory mediators leading to distant organ damages (2).

Plasma citrulline and “intestinal Fatty Acid Binding Protein” (iFABP) have been suggested as reliable biomarkers for assessing gut injury (8-14). Citrulline is an amino acid synthesized in small bowel enterocytes from glutamine and is constantly released to the blood (8). Decreased levels have been associated with a diminished mass of functional enterocytes due to different gut disorders (9, 10, 15, 16). iFABP is a cytoplasmic protein, exclusively expressed by enterocytes (14). While iFABP should not be detectable in healthy individuals, it is released into the blood as a consequence of enterocyte ischemia and damage (13, 14).

Different experimental studies have shown that induced hypothermia might be able to attenuate the inflammatory response, reduce organ damage, and improve the outcome of severe trauma (17-19). The important mechanisms associated with these beneficial effects are maintaining aerobic metabolism and reducing oxygen demand (20, 21). Similar mechanisms have also enabled induced hypothermia to improve oral and gastric mucosal microvascular oxygenation under hypoxic conditions (22). It has also attenuated microvascular inflammation in rat mesentery after haemorrhage and resuscitation (18).
Therefore we hypothesized that induced hypothermia has protective effects on the intestinal mucosa and on the integrity of the gut barrier following multiple trauma. The presented experimental study aimed to identify these effects in a porcine long-term model of combined trauma.
Material and Methods

In this experimental study, an established, clinically relevant model of combined trauma was used to analyse the effects of induced hypothermia on posttraumatic gut damage (23). The experiments for this study were performed at the Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria. Prior to initiation of the project, the Animal Welfare Committee in Vienna (Austria) approved the protocol (protocol number 5365/2010/13). The experimental protocol and other organ-specific analyses have been previously published in more detail (19, 23, 24). In line with the ethical 3Rs principle, we wanted to obtain as much data from the model and the experiment as possible. As a brief summary of the protocol, forty male pigs (German domestic pigs, Muenichsthal) were randomly assigned either to sham groups receiving only anaesthesia or to trauma groups receiving a triple trauma consisting of blunt chest injury, liver laceration, and haemorrhagic shock. Equal numbers of each group were then either kept normothermic or exposed to a mild hypothermia of 34°C. Accordingly, two sham groups (Sham – Normothermia: SN; Sham – Hypothermia: SH) and two trauma groups (Trauma – Normothermia: TN; Trauma – Hypothermia: TH) were generated, each consisting of 10 animals (Figure 1a). The pigs were 12 to 16 weeks old, and weighed 30 ± 3 kg. As pigs were randomly assigned, there were no significant differences in age and weight between the groups. The animals were fasted overnight and had free access to water. Anaesthesia was used during all surgical procedures.

Anaesthesia and Preparation

Animals were premedicated and anaesthetised with an intramuscular application of Zoletil-mixture. They were endotracheally intubated and kept in a supine position. General anaesthesia was maintained throughout the entire study period as a total intravenous anaesthesia with 2% midazolame, rocuroniumbromide (1mg/kg/hr) and sufentanyl (0.008mg/kg/h). The ventilation was volume-controlled (Draeger, Primus, Danvers, MA,
USA) with FiO₂ 30%, a tidal volume of 10ml/kg/body weight, and a positive endexspiratory pressure (PEEP) of 3cmH₂O and paCO₂ of 35–45 mmHg.

Induction of multiple trauma, resuscitation, and hypothermia

After preparation of venous and arterial lines, a triple trauma was induced. A blunt thoracic trauma was inflicted with a bolt shot on a leaden panel at the right dorsal lower chest (9x17, Dynamit Nobel AG, Troisdorf, Germany). Penetrating abdominal injury was induced by two incisions made to the right upper liver lobe. Pressure-controlled haemorrhagic shock was induced by withdrawing blood up to a maximum of 45% of total blood volume, targeting a mean arterial blood pressure (MAP) of 30 ± 5 mmHg. Mean blood loss was 880 ± 133 mL in group TN and 829 ± 162 mL in group TH. The difference was not statistically significant. Haemorrhagic shock was maintained for 90 minutes.

Fluid resuscitation was performed using colloids (HES 130/4, 6%, Voluven®, Fresenius Kabi GmbH, Graz, Austria) and crystalloids (Ringer®, Fresenius Kabi GmbH, Graz, Austria) in a 1:8 ratio, replacing four times the shed blood volume over 60 minutes. In SH and TH, mild hypothermia was induced using a central venous Icy catheter® and the CoolGard3000® (Zoll Circulation, Inc., Sunnyvale, CA, USA). The targeted body core temperature of 34°C was reached within one hour. Three hours after induction of mild hypothermia, animals were rewarmed at a rate of 1°C per hour, targeting a body temperature of 37-39°C (24). Animals were sacrificed 10 hours after rewarthing, which means 15.5 hours after trauma induction.

The experimental protocol is summarized in Figure 1b.

Blood analysis

Arterial lactate levels were measured at defined times using a radiometer ABL 800 FLEX (Drott, Vienna, Austria). At baseline and at the end of the observation period, arterial EDTA
blood was taken and centrifuged for 10 minutes at 1500 x g. Plasma aliquots were frozen immediately and stored at -80°C. Functional enterocyte mass, displayed by plasma citrulline, and enterocyte necrosis, displayed by intestinal Fatty Acid Binding Protein (iFABP) were assessed using an enzyme-linked immunoabsorbent assay (ELISA). The sample size was 50µl, the lower detection limit was 0.1ng/mL for porcine plasma citrulline and for iFABP (Blue Gene Biotech, Shanghai, China). Assays were performed according to the manufacturer’s protocol.

Histological analysis
At sacrifice, ileum biopsies taken about 10cm proximally to the Bauhin’s valve were immersed in 4% buffered formalin and embedded in paraffin wax. Samples were cut into 5µm sections and stained with haematoxylin-eosin. Five microscopic fields (400x) per sample were examined, blinded with respect to the treatment groups, and graded using the following scale: grade 0 = normal mucosa, grade 1 = development of subepithelial space at the apex of the villous with or without capillary congestion, grade 2 = extension of subepithelial space with moderate lifting of subepithelial layer from the lamina propria, grade 3 = massive epithelial lifting down the side of the villi and a few tips possibly denuded, grade 4 = denuded villi with lamina propria and dilated capillaries exposed, and grade 5 = digestion and disintegration of lamina propria, haemorrhage, and ulceration (25, 26).

Statistical Analysis
The statistical evaluation was accomplished using IBM SPSS Statistics, Version 22.0 (Chicago, IL, USA). Values are expressed as mean ± SEM. Data without repeated measurements were assessed using one-way analysis of variance (ANOVA), followed by a Tukey post hoc test for multiple comparisons. If a Shapiro-Wilk test did not reveal a normal distribution, data were analysed using a Kruskal-Wallis Test. We compared data of more than two groups and recorded over time using repeated measures two-way analysis of variance,
followed by a Tukey post hoc test for multiple comparisons. Statistical significance was considered to be at $p < 0.05$.
Results

All pigs survived the observation period. Combined trauma resulted in severe shock associated with a fourfold increase of lactate levels in both trauma groups (74.6 mg/dl vs. 18.6 mg/dl in the sham groups; p<0.001) (Figure 2). After resuscitation, lactate values decreased in both trauma groups and, four hours after trauma, were not significantly elevated compared to the respective sham groups. Lactate levels of group SH increased during hypothermia compared to SN (SH 33.1 ± 6.9 mg/dl vs. SN 10.6 ± 1.2 mg/dl; p=0.004). However, hypothermia did not result in a further increase of lactate levels in group TH. Towards the end of the study period, lactate levels demonstrated a secondary increase in both trauma groups. However, significant differences were only observed between groups TN and SN (TN 37.3 ± 12.89 mg/dl vs. SN 6.3 ± 0.3 mg/dl; p=0.044), whereas lactate levels did not significantly differ between hypothermic groups (TH 24.4 ± 9.4 mg/dl vs. SN 6.1 ± 0.2 mg/dl; p=0.38).

Another approach of this study concerning a detailed analysis of how induced hypothermia influences haemodynamics has been previously published (24). In brief, that work showed that MAP dropped significantly after trauma induction and normalized temporarily after volume resuscitation. Hypothermia neither influenced the MAP nor necessitated catecholamines (24). The induction of trauma and volume resuscitation led to haemodilution. Haemoglobin (Hb) and haematocrit (Hct) decreased significantly from baseline (Hb: TN 9.5 ± 0.3 g/dl; TH 9.1 ± 0.4 g/dl; Hct: TN 28.2 ± 2.9%; TH 28.1 ± 3.2%) to the initiation of cooling 2.5 hours after trauma (Hb: TN 5.4 ± 0.5 g/dl; TH 5.3 ± 0.6 g/dl; Hct: TN 15.6 ± 1.4%; TH 15.7 ± 1.8%). Neither parameter showed significant differences during hypothermia.

Citrulline values did not differ between the groups at baseline (SN 4.77 ± 1.12 ng/ml; SH 4.86 ± 0.29 ng/ml; TH 4.61 ± 0.29 ng/ml; SH 3.68 ± 0.23 ng/ml; p=0.83). At the end of the experimental protocol, citrulline decreased significantly in the animals subjected to trauma and normothermia (TN) compared to the respective sham group (TN 0.76 ± 0.19 ng/ml vs. SN
2.22 ± 0.25 ng/ml; p<0.001). In group TH, no significant difference compared to group SH was found (TH 1.65 ± 0.18 ng/ml vs. SH 2.40 ± 0.20 ng/ml; p=0.077). The citrulline levels of group TN were significantly lower than those of group TH (p=0.027) (Figure 3). Compared to baseline values, citrulline decreased in all groups during the observation period.

iFABP values were not normally distributed and were heteroscedastic. At baseline, iFABP values were comparable in all groups (SN 0.39 ± 0.29 ng/ml; SH 0.38 ± 0.20 ng/ml; TH 0.38 ± 0.21 ng/ml; SH 0.40 ± 0.25 ng/ml; p=0.68). At the end of the observation period, iFABP levels did not differ significantly between the trauma groups (TN 0.98 ± 1.36 ng/ml vs. TH 1.89 ± 1.78 ng/ml; p=1) (Figure 4). However, iFABP increased significantly in TH compared to SH (TH 1.89 ± 1.78 ng/ml vs. SH 0.23 ± 0.32 ng/ml; p=0.016), while the observed difference in TN compared to SN was not significant (TN 0.98 ± 1.36 ng/ml vs. SN 0.16 ± 0.23 ng/ml; p=0.186).

Histological sections of the ileal mucosa showed subepithelial lifting and mucosal oedema in all animals subjected to trauma (Figure 5). The semi-quantitative score indicated that the extent of histological damages in group TH was comparable to that of group SH (TH 1.78 ± 0.25 vs. SH 1.80 ± 0.21; p=1), whereas the score in group TN was significantly elevated compared to that of group SN (TN 2.80 ± 0.23 vs. SN 1.46 ± 0.27; p=0.002) (Figure 6). Furthermore, there was a significant difference in the amount of histological damages in group TN and group TH (p=0.02).
Discussion

The deleterious effects of posttraumatic haemorrhagic shock on the intestinal perfusion and function of the gut barrier have been previously described and represent a serious problem in the clinical care of severely injured patients (2, 4, 6). Induced hypothermia offers a promising approach to attenuating posttraumatic organ damage (19, 27). In particular, the microvascular mucosal oxygenation appears to be improved after severe traumatic insults (22, 28). However, the impact of induced hypothermia on the integrity of the intestinal mucosa following haemorrhagic shock and severe tissue trauma has not yet been examined.

The presented study revealed that following severe trauma, induced hypothermia attenuates intestinal histological damages and preserves the functional enterocyte mass displayed by citrulline levels close to that of sham group values. Herbers et al. introduced a relation between decreased plasma citrulline and a loss of the gut barrier function (11). The authors showed an association of low plasma citrulline concentration and bacteremia following high-dose chemotherapy (11). Further studies analysing citrulline kinetics in ICU patients revealed an increased rate of digestive bacterial translocation and nosocomial infections associated with decreased citrulline levels (10, 16), which translated into an increased mortality rate in critically ill patients (15, 16). Although decreased citrulline values 24 hours after admission showed the best association with mortality, critically ill patients in shock showed after 12 hours values similar to those after 24 hours (16). Therefore measuring the values 15.5 hours after shock in the presented study is justifiable. Citrulline decreased in all groups over the experimental course, which might show that anaesthesia and the strict supine position altered the enterocyte function. However, the observed differences in the TN and TH citrulline levels and the histologic analysis at the end of the observation period seem to indicate the protective potential of induced hypothermia since the loss of the gut barrier function contributes decisively to the development of an MODS (5).
Besides plasma citrulline as a marker for the functional enterocyte mass, iFABP has been described as a valid marker for enterocyte necrosis following shock (8, 9, 15, 29). In contrast to the expected decrease of plasma citrulline, iFABP did not increase significantly in TN. Surprisingly, we were not able to confirm results from other literature, which found that elevated iFABP correlates with both greater enterocyte damage and elevated lactate levels (12, 13). Although MAP and Hb are independently associated with increased iFABP levels (13), these parameters cannot explain any differences as they did not vary between the trauma groups. In line with Piton et al.’s recently proposed definition of acute intestinal failure in critically ill patients based on both markers (8), the observed alterations would appear to match an acute dysfunction associated with SIRS rather than to match necrosis following shock. However, in group TN, histologic characteristics of necrosis such as epithelial lifting and denuded villi were significantly pronounced, while the histologic score in TH did not differ from that of SH. Furthermore, lactate was elevated in TN towards the end of the observation period, which does not correspond to the iFABP elevation in TH but could explain the histologic findings. Therefore Piton et al.’s definition, which was developed from work with a mixed critically ill patient cohort, might not be applicable in this posttraumatic setting. Previously, iFABP has been described as increasing early after trauma (13) and as normalising rapidly between day two and three after admission (29). Therefore the increase of iFABP in TH might be due to a reduced metabolism with a prolonged increase under hypothermic conditions (20).

In the presented study, the trauma animals suffered a severe shock displayed by a fourfold increase of lactate levels. Interestingly, we observed elevated lactate levels during hypothermia in group SH. Furthermore, lactate seemed to decline more slowly in group TH. This observation is unlikely to have been caused by pronounced anaerobic metabolism since, due to relaxation, the animals did not shiver and the SvO2 was constantly high in the hypothermic sham group (24). In the context of elective surgery and after cardiac arrest,
different authors have described elevated lactate levels during induced hypothermia (21, 30). In a porcine haemorrhagic shock model, the induction of hypothermia resulted in metabolic acidosis, which persisted even after rewarming (31). The development of this metabolic acidosis was explained by an enhanced fat metabolism with increased free fatty acid concentrations and reduced carbohydrate oxidation. Polderman et al. emphasised that, due to this increased fat metabolism, a mild metabolic acidosis and an increased lactate up to 45 – 55 mg/dl have to be expected during induced hypothermia (32). Since induced hypothermia was shown to preserve energy rich phosphates and was not related to tissue hypoperfusion, a decreased hepatic clearance under hypothermic conditions might further contribute to elevated lactate levels (21, 30, 33). However, the underlying mechanism has not been fully clarified. Bergman et al. observed that elevated lactate levels during induced hypothermia do not correlate with patients’ outcome and that these elevated concentrations normalize soon after rewarming (30). Therefore the observed increase and the quick normalisation in group \(SH \) are in line with current literature.

Towards the end of the observation period, the lactate levels of group \(TH \) did not increase as fast as those in group \(TN \). This difference might be explained by the fact that induced hypothermia preserves the aerobic metabolism and reduces ATP utilization (20-22). As ATP depletion influences cell function and contributes to organ failure (34), hypothermic animals might benefit from these maintained energy storages, resulting in less cellular damage to the gut as reflected by reduced histological damage and plasma citrulline levels. However, further studies should examine whether the differences in lactate levels between both trauma groups persist even over a longer observation period.

The used shock model, combining thoracic and abdominal injuries in addition to haemorrhage, reflects a clinically relevant setting. The observation period of 15.5 hours under mechanical ventilation and intensive care monitoring represents the resuscitation and the early intensive
care period. The advantages of this porcine model and the severity of the trauma have been previously analysed (23). Nevertheless, the laboratory setting might have influenced our results. For animal welfare reasons, pigs were anaesthetized and intubated before the trauma was induced. During the experimental course, resuscitation fluids and further medications were used, which might have influenced the cellular response. To minimize such effects, we used a standardized resuscitation protocol, which is frequently used in pre-hospital care and is in line with the current European guidelines (35). The treatment was performed according to the recommendations of the ATLS® program.

Since, in the present study, induced hypothermia attenuated intestinal damages, this therapeutic process might decrease the risk of a posttraumatic multiple organ dysfunction and therefore could have a positive effect on the outcome of such a dysfunction. Doubtless, the long-term effects and potential risks of induced hypothermia have to be explored. The deleterious effects of accidental hypothermia on the coagulation system are well known. Alone or in the context of the lethal triad, accidental hypothermia contributes decisively to the development of acute traumatic coagulopathy. However, in contrast to the coagulopathic effect of the lethal triad, induced hypothermia has not been shown to significantly alter signs of coagulopathy (33, 36). In previous work using the presented porcine model, our group showed that induced hypothermia did not influence the maximum clot strength or conventional coagulation parameters such as prothrombin time (36). Although the clotting time was prolonged in thrombelastometry, no macroscopic or petechial bleeding occurred (36). Another important point is how induced hypothermia modulates the inflammatory response. Although this modulation is thought to cause the desirable protective effects during the posttraumatic course, a higher rate of infections following induced hypothermia has been discussed (33). As infectious complications were mostly seen after longer periods of profound hypothermia (10°C) and not following time-limited mild hypothermia, these effects appear
temperature and time dependent (33, 37). Further studies with different temperature protocols and a prolonged observation period are needed.

Conclusion

Induced hypothermia preserves the functional enterocyte mass and attenuates damages to the gut barrier after severe trauma. Therefore induced hypothermia might represent a potential therapeutic strategy for avoiding posttraumatic organ dysfunction, although further studies regarding risks and long-term effects are required.

Acknowledgements

The project was financially supported by the foundation Else Kroener Fresenius, Bad Homburg, Germany.

The authors would like to thank Prof. Redl and the Ludwig-Boltzmann-Institute for Experimental and Clinical Traumatology, Vienna, Austria. Special thanks go to Annette Richard and Karl Kropik for their excellent technical support.
Literature

Figure legends:

Figure 1: a) Group design (n=40 pigs) and b) flow chart of the experimental protocol (19).

Figure 2: Serum lactate, measured at defined time points of the experiment. Values are expressed as mean ± SEM. ** Significant difference between trauma and respective sham groups (p<0.01). § SH significantly elevated vs. SN (p=0.004). & TN significantly elevated vs. SN (p=0.04). (Similar published in (24))

Figure 3: Plasma citrulline, measured at the end of the experiment. Values are expressed as mean, min to max. * p<0.05, ** p<0.01, *** p<0.001.

Figure 4: Plasma intestinal Fatty Acid Binding Protein (iFABP), measured at the end of the experiment. Values are expressed as mean, min to max. * p<0.05, ** p<0.01, *** p<0.001.

Figure 5: Histological changes (HE) in the ileum exposed to 90 min haemorrhagic shock. a) Group SN b) Group SH c) Group TN d) Group TH. Arrows pointing at mucosal areas graded as follows: G0 = normal mucosa; G1 = development of subepithelial space at villous tips; G2 = extension of subepithelial space with moderate or; G3 = massive epithelial lifting down the side of the villi, few tips denuded; G4 = denuded villi with lamina propria exposed; G5 = digestion and disintegration of lamina propria, hemorrhage, and ulceration (not present in pictures above) (25, 26).

Figure 6: Histological scoring of the ileal mucosa. Scoring values are expressed as mean, min to max. * p<0.05, ** p<0.01, *** p<0.001.
Groups randomly assigned

- catheters
- anaesthesia

Sham animals

Sham normothermia – Group SN (n=10)
Sham hypothermia – Group SH (n=10)

2 hours hypothermia

Trauma animals

Trauma normothermia – Group TN (n=10)
Trauma hypothermia – Group TH (n=10)

Triple Trauma:
- blunt chest injury
- liver laceration
- haemorrhagic shock