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1.   Introduction 

The wavelet transform [1,2] provides a powerful tool for analyzing and synthesizing signals. The 

wavelet transform has the property of localisation both in time and frequency. In wavelet analysis, the 

scale that can be used to look at data at different resolution levels plays a special role, because wavelet 

algorithms process data at different scales or resolutions. At a coarse resolution level, one would 

notice gross features. Similarly, at a fine resolution level, one would get detailed features. This enables 

us to see both the ‘forest’ and the ‘trees’, so to speak, and makes wavelets very useful [3] for data 

modelling and analysis in diverse fields including dynamical systems modelling [4-12], as well as 

random signal processing and analysis in for example statistical self-similarity detection and fractal 

property characterization [13-34].   

Numerous studies in the literature have shown that the dynamics of many time series in foreign 

exchange markets exhibit scaling behaviours [35-45].  For example, Muller et al. [35] and 

Guillaume1et al. [38] have shown that the mean absolute price changes over certain time intervals for 

foreign exchange rates obey scaling laws. Recently, Xu and Gencay [44] have shown that US dollar to 

Deutschemark (USD-DEM) returns present scaling and multifractal properties. 

The objective of this paper is to introduce a 

)(2 RL

simple new wavelet transform based approach to 

detect and evaluate the fractal self-similarity properties from observed time series. The new method 

involves the calculation of a continuous wavelet transform correlation function (WTCF), which plays 

a key role in linking the time-domain data with the associated scaling law properties that are explicitly 

presented by the wavelet scale (revolution) parameter. The introduction of the wavelet transform 

correlation function (WTCF) here is not original; it can be viewed as an extension of the commonly 

used second order moment of the associated transforms such as the wavelet cross-transform or cross-

coherence/correlation [16-21]. However, unlike most existing wavelet based methods where the 

continuous wavelet transform is adapted and developed to estimate the Hurst exponent for given 

fractal signals or where the standard dyadic discrete wavelet transform is used to estimate the 

associated scaling exponents, the proposed approach here uses the wavelet transform correlation 

function to directly calculate the power-law exponent parameter that is related to but different from the 

Hurst exponent.  

2.   The Wavelet Transform Correlation Method 

2.1 The wavelet transform 

Let f(t) be a square integrable function defined in . For a given mother wavelet ψ , the 

continuous wavelet transform (CWT) of the function  f(t) is defined as [1,2] 
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where )/)(()( 2/1
, abtatab −= − ψψ , +∈ Ra  and Rb∈ are the dilation (scale) and translation (shift) 

parameters, respectively. The over-bar above the function )(⋅ψ  indicates the complex conjugate. In 

order to guarantee (1) is invertible so that f can be reconstructed from ψ
fW , the following admissible 

condition is required 
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where ψ̂  is the Fourier transform of the function ψ .  

For a stochastic process f(t), the wavelet transform ),( abWf
ψ  can be viewed as a random field on 

the upper (positive) half plane. For a given scale parameter a, the transform ),( abWf
ψ  contains a piece 

of information of the original process at this given scale. Extensive research has been done in recent 

years to exploit the wavelet transform to analyze and determine the characteristics of random or fractal 

processes [24-34, 46-53]. 

2.2 The wavelet transform correlation function 

Let )(tx be a wide-sense (weak-sense) stationary random process that is square integrable in 

)(2 RL . For a chosen wavelet ψ , the wavelet transform correlation function (WTCF) of the 

signal )(tx , with respect to the locations 1b and 2b  at scales 1a and 2a , is defined as below 
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Note that ])()([),( 2121, ττττ xxER xx =  is the correlation function of )(tx . Using the property that 

),( 21, ττxxR  )0,( 12, ττ −= xxR )( 12 ττ −= xR ])()([ 12 ττ −+= txtxE ,  it can be derived from equation (3) 

that 
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where the symbol “∗ ” indicates the convolution of two functions.  
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Assume that the power spectrum )(ωxP of the signal )(tx exits. From Parseval’s theorem, which 

states that the inner product of two functions is equal to the inner product of the Fourier transforms of 

the two individual functions, as well as the convolution theorem that states that under suitable 

conditions the Fourier transform of a convolution is the pointwise product of the Fourier transforms of 

the two individual functions, it can then be further derived that  
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This shows that for the wide-sense stationary process )(tx , the wavelet transform correlation 

function ),;,( 2121, aabbxx
ψΦ , with respect to the locations 1b  and 2b  at given scales 1a and 2a , is a 

function of 1b  and 2b only through the difference )( 12 bb − . Here, the relationship between the time-

domain signal and the frequency-domain behaviour, presented by the spectra of the signal and the 

associated wavelet transform correlation, is derived by means of the Parseval’s theorem and the 

convolution theorem. 

2.3 The power-law case 

     As a special case of the wavelet transform correlation function, the wavelet transform 

autocorrelation function (WTAF) of the signal )(tx , at scale a , can be calculated from (5) by letting 

aaa == 21  and bbb == 12 ,  that is,  
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Now assume that the dynamics of the process )(tx  exhibits a power-law behaviour, that is, the power 

spectral density of the process has a power-law dependence in frequency as given below 

βωω −∝ ||)(xP                                                                                                                             (7) 

It can then be obtained from (6) that   
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2
1 . Equation (8) suggests that for a power-law signal x(t) that obeys 

the power-law given by (7), the wavelet transform autocorrelation function )(ax
ψΦ also obeys a power-

law with respect to the wavelet scale parameter a, and the value of the scaling exponent is exactly the 



 4 

same as in the original power-law presentation but with an opposite symbol, that is β− in (7) becomes 

β+  in (8). Therefore, the new introduced formulas (8) can be used to estimate the power-law 

exponent of the signal x(t). Note that the relationship between the power-law exponent β, the Hurst 

exponent H, and the fractal dimension D is given by DH 2512 −=+=β . For a self-affine 

process, 10 ≤≤ H , 21 ≤≤ D  and 31 << β ; for a Brownian motion, 5.0=H , 5.1=D  and 2=β .  

3.   Results for foreign exchange rates  

Monthly average dollar exchange rates, taken from the Federal Reserve Bank of St. Louis for a 

selection of twenty countries, were considered in this study, and these are shown in Table 1. Monthly 

average exchange rates are of more interest than daily exchange rates for at least four groups of 

investors [33]: program traders, investors who follow deterministic rules, investors who routinely 

accept exposure approximately one month or longer, and currency hedgers.  

The proposed wavelet algorithm was used to analyze the twenty datasets. The calculation 

procedure is as below: 

•   For each dataset, apply the continuous wavelet transform to calculate the wavelet coefficient 

),( abWx
ψ , where four different types of Daubechies’ wavelets of order 3, 6, 12 and 20 were 

respectively used, and the objective is to inspect whether the choice of wavelet basis would 

significantly affect the associated calculation results. The scale parameter a was allowed to vary 

from 1 to 16, and the shift parameter b was allowed to vary from 1 to N (N is the data length). 

•   For each single value of the scale (or resolution level) parameter a, calculate the expectation 

]|),([|)( 2abWEa xx
ψψ =Φ )],(var[ abWx

ψ= 2),( ><+ abWx
ψ , where ‘var’ indicates calculating the 

variance and ‘< >’ indicates taking the average of the relevant signal; )(ax
ψΦ  is a function of the 

scale parameter a.  

•    Plot the graph of )]([log2 ax
ψΦ  (vertical axis) versus )(log2 a (horizontal axis).  

•    Calculate the slope of the plot formed by )]([log2 ax
ψΦ  and )(log2 a ; the value of the slope can be 

viewed as an estimate of the power-law exponent β.  

The graphs of power-law exponent, calculated by using the Daubechies’ wavelet of order 20, for the 

twenty datasets are shown in Figure 1, where graphs are displayed, from left to right and from top to 

bottom, in the order that is exactly the same as in Table 1. Values of the power-law exponent β, 

calculated by using the four Daubechies’ wavelets, are given in Table 1, where the last two columns 

present the associated mean and standard deviation. For convenience of visual inspection and 

comparison, the values of the power-law exponent β calculated by using the four types of wavelets are 

also shown in a histogram, see Figure 2. For visualization purpose, the mean and the standard 

deviation of the power-law parameter produced by the four types of wavelets are shown in Figure 3 

and Figure 4 respectively.  The above calculation procedure was also performed over some daily 
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average dollar exchange rates for some countries and it has been observed that relevant results are very 

similar to those that were obtained for the associated monthly average cases. 

 

[ Table 1 is here ] 

[ Fig.1 is here ] 

[ Fig.2 is here ] 

[ Fig.3 is here ] 

[ Fig.4 is here 

•

] 

 

Note that in the above calculation the original datasets were directly used to test and evaluate the 

power-law properties of the foreign exchange rates; no data pre-processing procedure has been 

performed. Data normalization for example mean-removal might very slightly affect the estimation 

results.  

     From Table 1 and Figures 2 and 3, the following observations can be obtained: 

  The choice of wavelet basis affects the estimate of the power-law exponent, but the effect is not 

significant. In other words, different wavelet bases would lead to slightly different estimates for the 

power-law parameter.  
•   Among the twenty datasets considered here, the power-law parameter corresponding to the foreign 

currency exchange rate of Greece against the U.S. is the largest, with β =2.8873 (‘db20’) and 

β=2.9148 (mean), which is followed by the rate of Portugal against the U.S., with β =2.6922 

(‘db20’) and β=2.6345 (mean).  From fractal Brownian motion theory, these would suggest that 

there exist stronger persistence (or long-range positive correlation) in the two exchange rates 

compared with others, meaning that if the amplitude of such rates increases in an interval over a 

time horizon, then it is more likely to continue the increasing trend in the period immediately 

following.  
•   The power-law parameter β for many of the countries considered here is just slightly greater than 2, 

meaning that there exists weak persistence in these time series. 

•   There are some cases for example Switzerland where the corresponding power-law parameter β is 

very close to (or even less than) 2. This means that there exists no correlation or very weak long-

range correlation in the relevant time series.  This would suggest that the process exhibits some 

stochastic behaviour possessed by the Brownian motion.  

4.   Discussions and Conclusions 

The proposed wavelet transform correlation analysis method can be used to detect and evaluate the 

fractal scaling-law behaviours from observed time series. The proposed method has several 

advantages, for example, it is not necessary for this method to use a large number of observations to 

obtain accurate estimates of the power-law exponent; unlike traditional power spectral density 
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estimation methods which require data smoothing (windowing) and which are sensitive to the window 

‘shapes’, the new method does not need any windowing techniques. Moreover, this new non-

parametric method can be performed speedily and efficiently using existing tools for continuous 

wavelet transform calculation in Matlab. The presented results have shown that the foreign exchange 

rates, for the twenty countries considered, exhibit power-laws and thus belong to the class of fractal 

self-similarity processes. 

It should be pointed out that the analysis result here is not our final destination along this research 

direction, but rather this is only one preliminary stage and the presented result will be used as a basis 

for the next step.  For example, we plan to extend and adapt the recently developed nonlinear system 

and identification methods and algorithms including some wavelet based dynamical modelling  

approaches [7-12, 54] to forecast foreign exchange rates. One direct application of the result here is to 

aid the selection and determination of model variables using the value of the power-law parameter β  . 

It is known from Taken’s embedding theorem [55] that in order to sufficiently characterize a 

dynamical process, the embedding dimension (number of model variables)  should be d ≥ 2D+1 where 

D is the relevant fractal dimension. Using the embedding theorem and the result here, along with other 

variable selection methods [56], we can determine the best model variables used for constructing 

dynamical models that are suitable for predicting individual foreign exchange rates. It is also believed 

that the reported result has another potential application, that is, it can be used to aid the determination 

of wavelet scale parameters if dynamical multiscale or multiresolution wavelet models [7-12], which 

have been proved to be very effective for dynamical system modelling, are to be employed to model 

and forecast foreign exchange rates, where wavelet models for different individual exchange rates will 

require different wavelet scale parameters.  
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 Table 1  The power-law exponents estimated using the wavelet transform correlation function for the monthly 
               average dollar exchange rates of twenty countries. The data came from the Federal Reserve Bank of 
               St. Louis.  

 

Country 
Observation period of the 
rates  (dd/mm/yy) 

Data  
length 

Lowest and 
highest rates 

Power-law exponent β  

db3 db6 db12 db20 Mean Std 

Austria  01/01/1971—01/12/2001 372 9.72 / 25.873 2.0809 2.0824 2.0302 2.0113 2.0512 0.0360 

Belgium 01/01/1971—01/12/2001 372 27.96 / 66.31 2.1676 2.1620 2.1376 2.1235 2.1477 0.0207 

Brazil 01/01/1995—01/12/2007 156 0.84 /3.80 2.4512 2.4261 2.4671 2.4642 2.4522 0.0187 

Canada 01/01/1971—01/12/2007 444 0.96/1.60 2.1239 2.1189 2.0722 2.0544 2.0923 0.0344 

Denmark 01/01/1971—01/12/2007 444 5.08 /11.81 2.1212 2.1105 2.0751 2.0630 2.0924 0.0278 

Finland 01/01/1971—01/12/2001 372 3.49/6.96 2.2180 2.1976 2.2365 2.2413 2.2233 0.0199 

France 01/01/1971—01/12/2001 372 4.00 /10.09 2.2443 2.2300 2.2414 2.2331 2.2372 0.0068 

Germany 01/01/1971—01/12/2001 372 1.38/3.64 2.0874 2.0851 2.0329 2.0137 2.0548 0.0372 

Greece 01/01/1981—01/12/2000 237 53.18 /398.29 2.8976 2.9332 2.9410 2.8873 2.9148 0.0263 

India 01/01/1973—01/12/2007 420 7.27 /49.02 2.5134 2.4704 2.5803 2.5634 2.5319 0.0499 

Italy 01/01/1971—01/12/2001 372 265.26/2271 2.4575 2.4152 2.5316 2.5347 2.4848 0.0585 

Japan 01/01/1971—01/12/2007 444 83.69 /358.02 2.1381 2.1433 2.0618 2.0193 2.0906 0.0604 

Mexico 01/01/1993—01/12/2007 170 3.108 /11.52 2.2763 2.2678 2.3543 2.3566 2.3138 0.0483 

Netherlands 01/01/1971—01/12/2001 372 1.55 / 3.74 2.1222 2.1223 2.0764 2.0589 2.0949 0.0323 

Norway 01/01/1971—01/12/2007 444 4.82 /9.47 2.1324 2.1314 2.1075 2.1079 2.1198 0.0140 

Portugal 01/01/1973—01/12/2001 348 22.41 /235.17 2.5917 2.5436 2.7104 2.6922 2.6345 0.0800 

Spain 01/01/1973—01/12/2001 348 55.8 /195.17 2.3453 2.3066 2.4219 2.4333 2.3768 0.0610 

Sweden 01/01/1971—01/12/2007 444 3.92 /10.79 2.2080 2.2109 2.2329 2.2444 2.2241 0.0175 

Switzerland 01/01/1971—01/12/2007 444 1.12/4.31 2.0154 1.9670 1.9592 1.9271 1.9672 0.0365 

U.K. 01/01/1971—01/12/2007 444 1.09/2.62 2.0963 2.0973 2.0479 2.0470 2.0721 0.0285 

All the rates (except the last one) are defined to be the relevant currency against the US dollar.  The last one is defined to be 
Pound against Dollar.  
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Figure 1  Graphs of the wavelet transform correlation function defined by (8) for the twenty datasets of foreign 
exchange rates listed in Table 1 where Daubechies’ wavelet of order 20 was used. From left to right and from 
top to bottom, these are displayed in order that is exactly the same as in Table 1. In these graphs, the vertical axis 
is )]([log2 ax

ψΦ  and the horizontal axis is )(log2 a . 
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Figure 2  Values of the power-law exponent β  calculated by using Daubechies’ wavelets of order 3, 6, 12, and 
20, respectively, for each of the exchange rates of the twenty countries.  
 

 

Figure 3  The average of the power-law exponent β  calculated from the four types of Daubechies’ wavelets for 
each of the exchange rates of the twenty countries.  
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Figure 4  The standard deviation of the power-law exponent β  calculated from the four types of Daubechies’ 
wavelets for each of the exchange rates of the twenty countries.  
 

 

 

 

 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Aus
tria

 

Belg
ium

Braz
il

Cana
da

Denm
ark

Finl
an

d

Fran
ce

Germ
an

y

Gree
ce

Ind
ia

Ita
ly
Ja

pa
n

Mex
ico

Nethe
rla

nd
s

Norw
ay

Port
ug

al
Spa

in

Swed
en

Switz
erl

an
d

U.K
.


	1.pdf
	Wei_Power-law

