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ABSTRACT 1 

The Escherichia coli guaB promoter (PguaB) is responsible for directing transcription 2 

of the guaB and guaA genes that specify the biosynthesis of the nucleotide GMP. 3 

PguaB is subject to growth rate-dependent control (GRDC), and possesses an UP 4 

element that is required for this regulation. In addition, PguaB contains a discriminator, 5 

three binding sites for the nucleoid-associated protein, FIS, and putative binding sites 6 

for the regulatory proteins DnaA, PurR and CRP. Here, we show that the CRP.cAMP 7 

complex binds to a site located over 100 bp upstream of the guaB transcription start 8 

site, where it serves to downregulate PguaB. The CRP-mediated repression of PguaB 9 

activity increases in media that support lower growth rates. Inactivation of the crp or 10 

cyaA genes, or ablation/translocation of the CRP site, relieves repression by CRP and 11 

results in loss of GRDC of PguaB. Thus, GRDC of PguaB involves a progressive 12 

increase in CRP-mediated repression of the promoter as the growth rate decreases. 13 

Our results also suggest that the CRP.cAMP complex does not direct GRDC at PguaB, 14 

and that at least one other regulatory factor is required for conferring GRDC on this 15 

promoter. However, PurR and DnaA are not required for this regulatory mechanism. 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 
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INTRODUCTION 1 

The Escherichia coli guaB promoter (PguaB) regulates transcription of the guaBA 2 

operon. The guaB and guaA genes encode inosine 5’-monophosphate dehydrogenase 3 

and guanosine 5’-monophosphate synthetase, respectively, and are required for 4 

synthesis de novo of guanosine 5’-monophosphate (GMP) from the common purine 5 

precursor, inosine 5’-monophosphate (46, 75). PguaB responds to a variety of 6 

physiological signals. For example, the activity of PguaB increases as a function of the 7 

cellular growth rate, such that guaBA mRNA forms an increasing fraction of total cell 8 

mass at higher growth rates (16, 33, 34). This form of regulation is referred to as 9 

growth rate-dependent control (GRDC) (17, 27). PguaB is also subject to stringent 10 

control (16, 71), growth phase-dependent regulation (34), purine repression (16, 70), 11 

and its activity is coupled to the DNA replication cycle (73). 12 

 13 

The multivalent regulation of PguaB is reflected by the presence of a number of cis-14 

acting regulatory sites that overlap this promoter. An UP element, located 15 

immediately upstream of the promoter -35 region, strongly enhances transcription and 16 

is required for GRDC of this promoter (28, 33). Three binding sites for the nucleoid-17 

associated protein, FIS, have been identified centred near positions -11, +8 and +29, 18 

respectively, relative to the guaB transcription start site. Accordingly, FIS has been 19 

shown to repress transcription from PguaB in vitro. However, FIS is not required for 20 

GRDC of PguaB (34). PguaB also contains a putative binding site for PurR that overlaps 21 

the core promoter region (16, 31; see Fig. 1). Consistent with this, IMP 22 

dehydrogenase activity is higher in a purR mutant strain and, unlike the situation in a 23 

wild type strain, this activity is not repressed by growth in the presence of high 24 

concentrations of guanine or guanosine (46, 48). Approximately 200 bp downstream 25 
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from the translation initiation codon for guaB is a consensus DnaA binding site that 1 

has been shown to bind DnaA in vitro and is required for DnaA-mediated repression 2 

of guaB transcription in vivo (73, 74). A second, non-consensus, DnaA site overlaps 3 

the guaB promoter. Although it does not bind DnaA in vitro, it may be required in 4 

concert with the downstream site for efficient DnaA-mediated downregulation of 5 

PguaB in vivo (73, 74). 6 

 7 

The cyclic AMP receptor protein (CRP) is a cyclic AMP (cAMP)-dependent global 8 

transcription regulator (for reviews, see 11, 45). It has been long established that, in 9 

the absence of exogenous glucose, CRP activates the expression of a large number of 10 

genes required for catabolism of alternative carbon sources by E. coli (for a review, 11 

see 41). More recent genomic studies have shown that CRP also activates 12 

transcription of genes that encode enzymes involved in central carbon metabolism and 13 

transporters of various alternative carbon sources (26, 29, 85). CRP activates 14 

transcription by binding to specific sites located upstream of promoters and contacting 15 

RNAP (11). Promoters that utilise CRP as the sole activator are categorised either as 16 

Class I or Class II (11). At Class I CRP-dependent promoters, homodimeric CRP 17 

binds DNA sites centred near positions -61.5, -71.5, -82.5 or -92.5, with respect to the 18 

transcription start site, and the downstream CRP monomer stimulates transcription by 19 

contacting the C-terminal domain of the RNAP α subunit (αCTD) through a surface-20 

exposed loop known as Activating Region 1 (AR1, residues 156-164). At Class II 21 

CRP-dependent promoters, CRP binds to a site centred near position -41.5, and 22 

transcription is stimulated through interactions between αCTD and AR1 of the 23 

upstream CRP monomer, and between αNTD and an additional surface referred to as 24 

Activating Region 2 (AR2, residues 19, 21, 96 and 101) on the downstream CRP 25 
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monomer (11, 24, 76). At Class III promoters, optimum transcription activation is 1 

achieved by the binding of at least two CRP dimers or a combination of CRP and 2 

other regulatory protein(s) (11). CRP has also been shown to repress transcription of 3 

some genes, including the crp gene itself, and cyaA, encoding adenylate cyclase (2, 4 

25, 26, 52, 85). Transcription repression by CRP can occur through the occupation of 5 

DNA sites that overlap core promoter regions (69) or by stabilisation of a 6 

transcriptional repressor or co-repressor bound to the promoter region (53, 77). 7 

 8 

A putative binding site for CRP has been identified centred at position -117.5 relative 9 

to the start site for guaB transcription (Fig. 1). The CRP site matches the consensus at 10 

17/22 positions, including 9/10 positions in the core binding motifs that are critical for 11 

CRP binding (9, 30, 35). Consistent with this, CRP has been shown to bind to a ~300 12 

bp DNA fragment that extends to position -253 with respect to the PguaB transcription 13 

start site (35). These authors proposed that CRP functions as an activator at PguaB. In a 14 

separate transcriptomic study, guaB was identified as one of a number of genes that 15 

are subject to "CRP-dependent glucose activation" (26). We have previously shown 16 

that sequences located between positions -133 and -100, that include the putative CRP 17 

site, are required for GRDC of PguaB (33). To resolve the apparent inconsistencies 18 

between some of these observations, we have carried out an investigation into the role 19 

of CRP at PguaB. Here, we show that CRP binds to the putative CRP site located 20 

upstream of PguaB, whereupon it serves to decrease promoter activity. Moreover, 21 

occupancy of this site by CRP is required for GRDC of PguaB. 22 

 23 

 24 

 25 
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MATERIALS AND METHODS 1 

 2 

Strains and plasmids 3 

Bacterial strains and plasmids used in this study are listed in Table 1. Promoter 4 

fragments were constructed by standard PCR techniques. Oligonucleotide primer 5 

sequences are shown in Supplementary Table 1. For promoter activity measurements 6 

in vivo, strains containing single copy promoter-lacZ transcriptional fusions were 7 

employed. All transcriptional fusions were carried on λ prophages and were 8 

constructed in the VH1000 genetic background using a system based on λimm21 (59, 9 

68). Apart from PguaB (-253 to +10), all PguaB-lacZ fusions contained downstream 10 

endpoints at +36 with respect to the guaB transcription start site. The cya1400::kan, 11 

crp::cat and purR6::Tn10 alleles were transferred into lysogenic VH1000 derivative 12 

strains by P1 transduction (51). 13 

 14 

Measurement of transcription in vivo 15 

Logarithmically growing cells containing chromosomally integrated PguaB-lacZ 16 

transcriptional fusions were employed in the measurement of promoter activity as a 17 

function of growth rate. Cells from overnight cultures grown in medium supporting 18 

the lowest growth rate were inoculated to a starting OD600 of 0.02 into different 19 

media that supported a range of growth rates, and were grown with aeration at 37 °C. 20 

The set of culture media used for growing strains containing wild-type crp and cyaA 21 

alleles was based on M9 minimal medium and is referred to here as 'standard media' 22 

(33). The set of media used to grow strains containing deletions in the crp and/or cyaA 23 

genes is referred to as 'CRP media', and was M9 minimal medium containing one of 24 

the following (in order of increasing growth rate supported for wild-type strains): 25 
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0.4% (w/v) fructose, 0.4% (w/v) glucose, 0.4% (w/v) fructose + 20 amino acids, 0.4% 1 

(w/v) fructose + 1% (w/v) casamino acids, 0.4% (w/v) glucose + 20 amino acids or 2 

0.4% (w/v) glucose + 0.8% (w/v) casamino acids. 20 amino acids comprised each 3 

amino acid at a final concentration of 20 µg/ml. All growth media also contained 5 4 

µg/ml thiamine. Strains containing plasmids derived from pLG339 (i.e., pLG339∆BS, 5 

pLG339CRP, pLG339CRP159L and pLG339CRP101E) were grown in the presence 6 

of 25 µg/ml kanamycin, and strains containing plasmids derived from pBR322 (i.e., 7 

pDU9, pDCRP and pHA7) were grown in the presence of 100 µg/ml ampicillin. 8 

cAMP sodium monohydrate (Sigma-Aldrich) was added to a final concentration of 5 9 

mM, where included. Cultures were grown until OD600 0.40-0.45, whereupon the β-10 

galactosidase activity was measured following disruption of cells by sonication (51, 11 

80). [For measuring the effect of the ∆purR allele on transcription from PguaB 12 

derivatives in bacteria growing in M9 medium containing glucose, cells were 13 

permeabilised by chloroform-SDS treatment.] All data points on GRDC plots 14 

represent the mean β-galactosidase activity (in Miller units) and mean growth rate 15 

from three independent experiments.  16 

 17 

Measurement of transcription in vitro 18 

For measurement of transcription in vitro, supercoiled plasmid DNA was used 19 

containing either the PguaB (-133 to +36) promoter carried by plasmid pRLG770, or the 20 

synthetic CRP-dependent class II promoter, CC(-41.5), carried by plasmid pSR. 21 

Multiple-round transcription reactions were performed as previously described, in the 22 

presence or absence of CRP, except that KCl was used at a concentration of 100 mM 23 

(33). Template was preincubated with 10 nM RNAP holoenzyme (Epicentre), 20 nM 24 

CRP, 200 µM cAMP, 200 µM each of CTP, and either ATP or GTP, and 10 uM UTP 25 
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for 10 minutes at 30 °C. The reaction commenced after addition of the initiating 1 

nucleotide (200 µM GTP for PguaB, or 200 µM ATP for the CC(-41.5) promoter), and 2 

was allowed to proceed for 10 minutes at 30 °C. Reactions were terminated with an 3 

equal volume of stop solution (95% deionised formamide, 20 mM EDTA, 0.05% 4 

bromophenol blue, 0.05% xylene cyanol). Samples were fractionated in a 5.5% 5 

acrylamide gel containing 7 M urea, and transcript abundance was quantified using a 6 

FujiFilm FLA3000 phosphorimager  7 

 8 

Electrophoretic mobility shift assay (EMSA) 9 

DNA fragments containing PguaB sequences were amplified from pUC19 by PCR 10 

using flanking pUC19-specific primers, as described previously (34). PCR products 11 

were digested with HindIII, and purified by crush-soaking in a solution containing 0.2 12 

M NaCl, 20 mM Tris-HCl (pH 8.0) and 1 mM EDTA (pH 8.0), following 13 

electrophoresis in a 6% polyacrylamide gel (50). Fragments were labelled at the 14 

HindIII end using [α-32P]-dATP (3000 Ci [1.11 x 1014 Bq]/mmol, MP Biomedicals) 15 

and DNA polymerase I Klenow fragment. Labelled DNA (final concentration 0.4 nM) 16 

was incubated at room temperature for 30 minutes in 10 µl of a buffer containing 20 17 

mM HEPES (pH 8.0), 5 mM MgCl2, 50 mM potassium glutamate, 1 mM DTT, 10% 18 

(v/v) glycerol and, 20 µg ml-1 sonicated calf thymus DNA (GE Healthcare) and, 19 

where appropriate, 200 µM cAMP, in the absence or presence of 200 nM CRP. 20 

Samples were loaded onto a 6% polyacrylamide gel (37.5:1 acrylamide:bis-21 

acrylamide) containing 7.5% (v/v) glycerol and 200 µM cAMP while running at ~15 22 

V/cm, and electrophoresed for ~1 hour at 4 oC. Radiolabelled DNA was visualised 23 

using a FujiFilm FLA3000 phosphorimager. 24 

 25 
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DNase I footprinting 1 

DNase I footprinting was performed as described previously, using an EcoRI-XhoI 2 

DNA fragment isolated from plasmid pBSG-253 (extending from positions -253 to 3 

+36 of the guaB promoter) and labelled at the XhoI end of the template strand with [γ-4 

32P]ATP (>7000Ci/mmol; MP Biomedicals)  using T4 polynucleotide kinase (34). To 5 

facilitate CRP binding to DNA, reaction samples, each containing a final 6 

concentration of 2.5% (w/v) glycerol, were incubated with binding buffer (20 mM 7 

HEPES (pH 8.0), 5 mM MgCl2, 50 mM potassium glutamate, 1 mM DTT, 20 µg ml-1 8 

sonicated calf thymus DNA) at room temperature for 30 minutes in the presence or 9 

absence of CRP at 200 nM and/or cAMP at 200 µM, and this was followed by 10 

digestion with DNase I. Samples were purified by phenol-chloroform extraction and 11 

ethanol precipitation, and DNA fragments were separated in a 6% poly?acrylamide-7 12 

M urea sequencing gel. A Maxam-Gilbert G+A sequencing ladder was run alongside. 13 

Footprints were visualised using a FujiFilm FLA3000 phosphorimager. 14 

 15 

SDS-PAGE and western blotting 16 

Sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) was carried 17 

out using a 12% resolving gel (29:1 acrylamide-bisacrylamide). Western blotting was 18 

carried out to measure CRP levels in strain VH1000G-133. A derivative strain 19 

(VH1000G-133∆crp) that contained a deletion in the crp gene served as a negative 20 

control. For western blotting, cells were grown in media supporting different growth 21 

rates, and the OD600nm was measured periodically. Logarithmically growing cells at 22 

an OD600nm of ~0.35-0.45 were harvested by centrifugation, disrupted by sonication 23 

and the total protein concentration in the soluble fraction was determined using the 24 

RC DC protein assay kit (Bio-Rad). 2.4 µg of total protein was fractionated by SDS-25 
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PAGE and transferred to a PVDF membrane by electroblotting. The membrane was 1 

blocked with StartingBlock PBS buffer (Pierce), and detection was performed using 2 

rabbit anti-CRP antiserum (a gift from H. Aiba), a secondary antibody conjugated to 3 

HRP (Caltag) and SuperSignal West Pico chemiluminescent substrate (Pierce). 4 

Protein bands corresponding to CRP were detected by autoradiography, and their 5 

intensity was quantified densitometrically. 6 

 7 

RESULTS 8 

 9 

Analysis of CRP binding to PguaB 10 

DNase I footprinting was employed to determine whether the putative CRP site 11 

located at position -117.5 is bound by purified CRP protein. The results show that 12 

CRP protects a region from -107 to -128 relative to the guaB transcription start site 13 

and this is consistent with the location of the predicted CRP site (Fig. 2). No other 14 

sequences between positions -253 to +36 were protected by CRP (result not shown). 15 

 16 

Role of the CRP site in GRDC of PguaB 17 

A PguaB promoter fragment with an upstream endpoint at -133 and a downstream 18 

endpoint at +36 with respect to the transcription start site (PguaB (-133 to +36)), 19 

contains all the DNA sequence elements required for full GRDC of PguaB (Fig. 1) (33). 20 

To determine whether the CRP site centred at position -117.5 is required for GRDC, 21 

cells containing single copy PguaB-lacZ fusions in which the CRP site was present 22 

(PguaB (-133 to +36)) or absent (PguaB (-117 to +36)) were grown at different growth 23 

rates, and the β-galactosidase activity was measured. 24 

 25 
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In agreement with previous observations, transcription from PguaB (-133 to +36) 1 

increased in media supporting higher growth rates (16) (Fig. 3A). As previously 2 

noted, this corresponded to a ~1.8-fold increase in promoter activity for a doubling of 3 

the growth rate (33). In contrast, the activity of PguaB (-117 to +36) was maintained at 4 

a similar high level at each growth rate tested (Fig. 3B). The reason for this was due to 5 

a higher activity of PguaB (-117 to +36), relative to PguaB (-133 to +36), in bacteria 6 

growing in medium supporting low growth rates. This observation suggests that 7 

residues between positions -133 and -118, which includes the CRP binding site, 8 

contributes in some way to GRDC of PguaB. 9 

 10 

To determine whether the CRP binding site is required for GRDC of PguaB, promoter 11 

derivatives containing single base pair mutations in the CRP site were analysed. CRP 12 

exhibits a high degree of specificity for a G base at position 7 (corresponding to a C at 13 

position 16) of the 22 bp consensus CRP site (aaaTGTGAtctagaTCACAttt) (core 14 

binding site in upper case; positions 7 and 16 underlined). Substitution of this residue 15 

by a C results in a large reduction in CRP binding to the consensus CRP site (30). 16 

Therefore, we introduced a G to C point mutation at the equivalent position in the 17 

PguaB CRP site (i.e., position -122 relative to the guaB transcription start site) giving 18 

rise to PguaB (-133 to +36, G-122C). Our results show that introduction of this 19 

substitution led to a complete loss of GRDC (Fig. 3C). Similar to the situation with 20 

PguaB (-117 to +36), abolition of GRDC was due to an increase in PguaB (-133 to +36, 21 

G-122C) activity, relative PguaB (-133 to +36), which was most pronounced at low 22 

growth rates. CRP binding to the mutant site was assessed by EMSA. This showed 23 

that the substitution caused a significantly reduced CRP-PguaB interaction (Fig. 3E). 24 

Our results strongly suggest that binding of CRP to the site located at -117.5 is 25 
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required for repression of PguaB at low growth rates and that this plays a role in GRDC 1 

of PguaB. 2 

 3 

In a complementary experiment, an A to C point mutation was introduced at position 4 

18 in the PguaB CRP site (i.e., PguaB (-133 to +36, A-111C)), generating a consensus 5 

core CRP binding site (Fig. 1). Stronger binding of CRP to PguaB (-133 to +36, A-6 

111C) was confirmed by EMSA (Fig. 3E). The stronger binding of CRP to the 7 

consensus CRP site resulted in a 30-50% decrease in PguaB activity, depending on the 8 

growth rate (Fig. 3D). However, the fold change in activity of this promoter as a 9 

function of growth rate was not significantly different to that of PguaB (-133 to +36). 10 

Thus, whereas for the wild type guaB promoter there was a ~1.8-fold increase in 11 

promoter activity as the growth rate doubled, a ~2-fold increase in activity was 12 

observed for the A-111C derivative. This result is consistent with our proposal that 13 

binding of CRP to the PguaB upstream region serves to downregulate transcription. 14 

 15 

Role of CRP and its activating regions in GRDC of PguaB 16 

To confirm that GRDC of PguaB requires CRP, the activity of PguaB (-133 to +36) in 17 

response to growth rate was measured in a ∆crp strain. In the absence of CRP, PguaB 18 

exhibited an increase in activity at low growth rates relative to wild type cells, and 19 

there was no longer a positive correlation between the promoter activity and the 20 

growth rate (Fig. 4A). Moreover, as observed previously, the presence of the ∆crp 21 

allele resulted in a slow growth phenotype in all media tested (for example, see 15, 22 

18, 56, 82). Normal GRDC of PguaB was restored following introduction of a low copy 23 

number plasmid specifying CRP (Fig. 4B). These results are consistent with the 24 

observation that a functional CRP site is required for positive GRDC of PguaB. 25 
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 1 

To ascertain the requirement for the RNAP contact sites on CRP, plasmids harbouring 2 

mutant crp alleles that encode derivatives containing inhibitory amino acid 3 

substitutions in AR1 or AR2, were introduced into the ∆crp strain harbouring PguaB  4 

(-133 to +36), and the growth rate dependence of the promoter was measured. Control 5 

experiments with the CRP AR1 and AR2 variants demonstrated that this system could 6 

be used to measure the effects of inactivation of AR1 and AR2 at class I and class II 7 

CRP-dependent promoters in vivo, in the same strain background (results not shown; 8 

12, 81). Our results show that inactivation of AR1 resulted in a decrease in PguaB 9 

activity at all growth rates (Fig. 4C), whereas disruption of AR2 function gave rise to 10 

a more modest decrease in the activity of this promoter (Fig. 4D). However, the 11 

presence of either mutant CRP protein did not result in a significant change in GRDC 12 

of PguaB in comparison to wild-type CRP. This is more obvious in plots of relative 13 

promoter activity versus growth rate (Supplementary Fig. 1). 14 

 15 

Importance of CRP site location for GRDC of PguaB 16 

To test whether the location of the CRP site is important for repression of PguaB and 17 

GRDC, the CRP site in PguaB (-133 to +36) was translocated to a position centred at -18 

106.5 (approximately one helical turn downstream of the original location) or -128.5 19 

(approximately one helical turn upstream of the original location). In each case, the 20 

original CRP site was disrupted by point mutations in the core region that are 21 

unfavourable for CRP binding (Table 1) and the repositioned CRP site retained the 22 22 

bp sequence of the original. The activity of these guaB promoter derivatives in 23 

bacteria growing at different rates was then measured in a wild type strain 24 

background. The results show that moving the PguaB CRP site by one helical turn 25 
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upstream or downstream of the original location led to a complete loss of GRDC (Fig. 1 

4E and 4F; see also Supplementary Fig. 1). This suggests that the distance between 2 

the CRP site and the PguaB core promoter elements is important for repression of PguaB 3 

(and GRDC) and/or that an adjacent or overlapping binding site for another 4 

transcription factor, that has been disrupted by re-positioning of the CRP site, may 5 

also play an important role in regulation of PguaB. 6 

  7 

Intracellular CRP concentration as a function of bacterial growth rate 8 

If the cAMP⋅CRP complex acts as the primary sensor of growth rate for PguaB, an 9 

inverse correlation between the intracellular concentration of CRP and/or cAMP and 10 

the cellular growth rate would be expected. For example, it has been shown 11 

previously that the intracellular concentration of CRP is lower in E. coli cells growing 12 

in the presence of glucose in comparison to cells utilising glycerol as sole carbon 13 

source (37). To examine whether the intracellular concentration of CRP varies with 14 

growth rate, western blotting was employed. The results show that at growth rates of 15 

<1.0 doubling per hour, the intracellular concentration of CRP is approximately 16 

twofold higher than at higher growth rates (Supplementary Fig. 2). However, as there 17 

does not appear to be a smooth inverse relationship between CRP abundance and 18 

growth rate, it is unlikely that the CRP concentration functions as a sensor of changes 19 

in the cellular growth rate for PguaB. 20 

 21 

In a complementary experiment, we asked whether artificially increasing the 22 

intracellular concentration of CRP can influence GRDC of PguaB. To do this, we 23 

overexpressed the crp gene from its native promoter (plasmid pDCRP) and, 24 

separately, from the constitutive bla promoter (plasmid pHA7) in a ∆crp strain, and 25 
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measured the activity of PguaB (-133 to +36) over a range of different growth rates. 1 

[Unlike the native crp promoter, the bla promoter is not subject to feedback regulation 2 

by CRP, or downregulation in the presence of glucose (36, 54).] PguaB (-133 to +36) 3 

activity was also measured in cells containing a plasmid that lacked the crp gene 4 

(pDU9). Consistent with our previous observation, positive GRDC of PguaB was not 5 

observed in the absence of crp (Fig. 5A). Overexpression of crp from pDCRP resulted 6 

in the restoration of normal GRDC to PguaB (compare Fig. 5B and 5D). Thus, higher 7 

than normal levels of CRP do not result in repression of guaB promoter activity 8 

relative to that observed in wild type cells. Placing CRP under the control of the bla 9 

promoter also conferred GRDC on PguaB, although the observed slope was steeper 10 

than for cells containing pDCRP (compare Fig. 5C and 5D). These results 11 

demonstrate that constitutively increased expression of crp does not result in 12 

constitutive repression of PguaB activity.  13 

 14 

Effect of manipulation of the intracellular cAMP concentration on GRDC of 15 

PguaB 16 

Previous studies indicate that addition of increasing concentrations of cAMP to the 17 

growth medium results in progressively increased CRP-mediated repression or 18 

activation of target promoters (20, 43, 62). This indicates that the intracellular 19 

concentration of cAMP can be manipulated by altering the amount of cAMP added to 20 

the medium. Various experimental observations suggest that an exogenous cAMP 21 

concentration of 0.5-1.0 mM restores intracellular cAMP to a physiologically 22 

functional level in adenylate cyclase-deficient, cAMP phosphodiesterase-proficient  23 

(i.e. ∆cyaA, cpd+) strains, whereas addition of 5-10 mM cAMP to the culture medium 24 

results in higher than normal intracellular concentrations of cAMP (43, 83). 25 



 16 

Therefore, to examine a possible role for the intracellular cAMP concentration in 1 

influencing regulation of PguaB, we measured the activity of PguaB (-133 to +36) in 2 

response to growth rate in a ∆cyaA strain growing in the absence and presence of 5 3 

mM cAMP. 4 

 5 

As expected, the presence of the ∆cyaA allele resulted in an increase in PguaB activity 6 

at low growth rates relative to the wild-type strain background, and this abolished the 7 

positive correlation between PguaB activity and the growth rate (Fig. 6A). Deletion of 8 

the cyaA gene also caused a reduction in the growth rates, as observed previously (1, 9 

15, 22, 55). Addition of 5mM cAMP to media supporting the lowest growth rates 10 

caused ∆cyaA bacteria to grow faster than in cAMP-free media, whereas addition to 11 

media supporting the highest growth rates resulted in a decrease in the growth rate 12 

relative to cAMP-free media (similar observations have been reported previously (38, 13 

43, 66, 83)). This gave rise to a more restricted range of growth rates (Fig. 6B). 14 

Despite the decreased range of growth rates, it is apparent that the relationship 15 

between the growth rate and PguaB activity is similar to that observed in wild type cells 16 

growing in the absence of added cAMP (compare Fig. 6B with Fig. 5D). This 17 

observation suggests that although the CRP.cAMP complex is required for repression 18 

of PguaB, and GRDC, variation in the intracellular concentration of cAMP in response 19 

to the prevailing carbon source is unlikely to dictate GRDC of this promoter. 20 

 21 

cAMP did not restore normal GRDC to the PguaB (-133 to +36, G-122C) promoter, 22 

which lacked a functional CRP site, nor did it result in repression of this promoter at 23 

low growth rates (compare Fig. 6C and 6D). Plots of relative activity of the wild type 24 

and mutant guaB promoters in response to cAMP clearly show that the mutant 25 
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promoter is essentially unresponsive to cAMP (compare Supplementary Fig. 3A and 1 

3B). These results confirm that the cAMP-dependent effects observed at PguaB (-133 to 2 

+36) are mediated by CRP binding to the PguaB CRP site. 3 

 4 

Effect of CRP on PguaB activity in vitro 5 

Disruption of CRP binding to PguaB results in derepression of PguaB activity in medium 6 

supporting low growth rates and concomitantly abolishes GRDC. To determine 7 

whether CRP.cAMP is able to regulate PguaB in the absence of other factors, 8 

transcription was measured in vitro from PguaB (-133 to +36), in the presence and 9 

absence of purified CRP.cAMP. Results from multiple-round transcription assays 10 

show that PguaB (-133 to +36) activity was not influenced by CRP.cAMP in the 11 

absence of other regulatory factors (Fig. 7). Varying the concentrations of the 12 

transcription initiating nucleotide (GTP), salt (KCl) or CRP did not enhance the 13 

responsiveness of PguaB to CRP in multiple- or single-round reactions (results not 14 

shown). In control experiments, CRP.cAMP was able to activate transcription ~10-15 

fold from the CRP-dependent CC(-41.5) promoter under the same conditions (Fig. 7). 16 

The impotence of CRP.cAMP in the in vitro system suggests that an additional factor 17 

is required for CRP-dependent downregulation of PguaB. 18 

 19 

Role of PurR in the regulation of PguaB 20 

A putative binding site for the regulatory protein, PurR, overlaps the guaB promoter 21 

(Fig. 1) (31, 48). Moreover, the activity of the guaB gene product, IMP 22 

dehydrogenase, in bacteria growing under conditions of purine repression is 3-fold 23 

higher in strains harbouring a null mutation in the gene encoding the PurR repressor 24 

(48). To assess the role of the PurR repressor in GRDC of the guaB promoter, we first 25 
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confirmed that PguaB activity is repressed by this regulator. Thus, purine-mediated 1 

repression of PguaB (-253 to +36), PguaB (-37 to +36) or PguaB (-253 to +10) were 2 

assessed in vivo. All three promoters were shown to be repressed by ~50% in the 3 

presence of high levels of exogenously added guanine, and this repression was 4 

entirely dependent on the presence of a functional purR gene (Fig. 8A and 8B). This 5 

result confirms that transcription of the guaBA operon is repressed by PurR and it is 6 

consistent with the predicted location of the PurR binding site. The activity of PguaB (-7 

253 to +36) in response to growth rate was then measured in the purR mutant 8 

background. The results show that there was no significant difference in GRDC of 9 

PguaB in the presence or absence of PurR (Fig. 8C and 8D). 10 

 11 

 12 

DISCUSSION 13 

 14 

In this study, we have demonstrated that the CRP.cAMP complex binds to a site 15 

centred at position -117.5 relative to the PguaB transcription start site, and we have 16 

shown that this interaction serves to downregulate PguaB. Moreover, the degree of 17 

CRP-mediated repression progressively increases as the bacterial growth rate 18 

decreases. Thus, in a crp or cya mutant strain, or in a strain in which the PguaB CRP 19 

site has been inactivated, PguaB exhibits a marked increase in activity at low growth 20 

rates. As glucose supports relatively high growth rates, these results are consistent 21 

with a previous transcriptomic analysis in which it was observed that guaB 22 

transcription is subject to "CRP-dependent glucose activation" (26). However, our 23 

observation is not in agreement with a previous proposal that CRP activates PguaB 24 

(35). The latter proposal was based on nutrient downshift experiments in which cells 25 
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were transferred, after washing, from a complex nutrient-rich medium to a glycerol-1 

based medium containing casamino acids. In these experiments, the authors observed 2 

a rapid but short-lived increase in PguaB activity following the downshift. This did not 3 

occur in a ∆crp strain. These experiments are difficult to interpret because the 4 

nutrient-rich medium also contains a source of purines, so cells are having to readjust 5 

not only to a change in carbon source, but also to purine availability. To avoid the 6 

possibility that purine repression would complicate interpretation of our results, we 7 

avoided use of media containing purines when examining the effect of media 8 

supporting different growth rates on PguaB activity. In addition, our measurements 9 

were performed during steady state growth of the bacteria. 10 

 11 

As the supply of guanine nucleotides must satisfy the demand for rRNA and tRNA 12 

biosynthesis, which are themselves subject to very tight growth rate-dependent control 13 

and constitute as much as 85% of the total RNA synthesised at high growth rates, it is 14 

not surprising that transcription of the guaBA operon should be subject to a growth 15 

rate-dependent control mechanism (10, 16, 33). However, the observed inverse 16 

relationship between CRP-mediated repression of PguaB and the bacterial growth rate 17 

prompted us to reexamine whether PguaB was in fact regulated according to the carbon 18 

source rather than as a function of the growth rate. Promoters that are subject to 19 

GRDC exhibit the same activity in cells growing at the same growth rate, irrespective 20 

of the nature of the carbon source. Supplementary Fig. 4 shows the activity of PguaB in 21 

the presence of different carbon sources. As some of the carbon sources used give rise 22 

to a similar growth rate and PguaB activity, it is clear that the activity of this promoter 23 

is influenced by the growth rate rather than the carbon source. 24 

 25 



 20 

Our results also suggest that E. coli makes use of a mechanism that is distinct from 1 

that acting at stable RNA promoters, to confer growth rate dependence on PguaB. 2 

Unlike the situation at rRNA and tRNA promoters, the mechanism at PguaB employs 3 

CRP, and requires the participation of the UP element, thereby implying a role for 4 

αCTD in this process (33). However, our results do not suggest that GRDC of PguaB is 5 

dictated by the intracellular concentration of the CRP.cAMP complex. Thus, 6 

manipulating the intracellular cAMP or CRP levels so that they remain constant at 7 

different growth rates does not abolish GRDC. This observation suggests the 8 

involvement of another factor that dictates GRDC of PguaB. Furthermore, our in vitro 9 

results also suggest that at least one other factor is required for CRP-mediated 10 

repression of PguaB. This is consistent with a model in which CRP-mediated repression 11 

and GRDC are facets of the same mechanism that requires at least one other 12 

regulatory factor. 13 

 14 

How might binding of the CRP.cAMP complex to a site far upstream of the PguaB core 15 

promoter region repress transcription? There are no known examples where CRP, 16 

acting alone or in concert with an UP element, modulates transcription from a site 17 

located more than 100 bp upstream of the transcription start site. However, there are 18 

examples where CRP bound at such distances has been shown to contact RNAP and 19 

regulate transcription at promoters that require the participation of additional 20 

regulatory proteins (i.e. Class III CRP-dependent promoters). For example, CRP can 21 

contact αCTD when bound at position -102.5/-103.5 at synthetic Class III promoters 22 

(8, 72). Moreover, at acsP2, a naturally occurring Class III promoter, the promoter-23 

distal CRP site (CRP II) is centred at position -122.5, and CRP bound to this site can 24 

interact with αCTD (6). However, the CRP site at PguaB is located on the opposite face 25 
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of the DNA helix in comparison to the CRP sites at these Class III promoters. 1 

Therefore, it is not clear that CRP would be in a position to interact with RNAP at 2 

PguaB. Moreover, unlike the examples discussed above,  the role of CRP at PguaB is to 3 

downregulate transcription. One possibility is that CRP (with the aid of an unknown 4 

regulatory factor) competes with the UP element for αCTD, thereby recruiting αCTD 5 

to a location that is unfavourable for transcription from PguaB. However, we 6 

demonstrated that GRDC of PguaB was not altered significantly in strains producing 7 

AR1-defective CRP, and an alanine scanning analysis of αCTD did not implicate the 8 

AR1 contact site on αCTD (i.e. the 287 determinant) in regulation of this promoter 9 

(32, 63). In addition, the AR1 substitution exerted a repressive effect on PguaB, 10 

something that would not be expected if the AR1-αCTD interaction was required to 11 

downregulate PguaB. Furthermore, displacement of the CRP site from its native 12 

position by one turn of the DNA helix in either direction completely abolishes GRDC 13 

at PguaB. At many promoters where CRP binding to upstream sites serves to regulate 14 

transcription by contacting αCTD, displacement of the CRP site by one helical turn 15 

from its optimal position does not completely abolish CRP activity (8, 12, 24, 44, 72). 16 

Thus, it is unlikely that direct interactions between CRP and RNAP play a role in 17 

GRDC of PguaB. 18 

 19 

An alternative possibility is that the 'missing factor' contacts RNAP at PguaB in a 20 

manner that requires CRP. For example, it has been demonstrated that at some CRP-21 

regulated promoters CRP can participate in cooperative interactions with other 22 

regulatory proteins that activate or repress transcription (14, 53, 79). Thus, at PguaB, 23 

CRP could serve as a nucleation site for the assembly of a complex of transcription 24 

factors on the DNA, or it could allow remodelling of such an assembly, that sterically 25 
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blocks access to the UP element by αCTD. Steric hindrance of UP element utilisation 1 

as a regulatory mechanism has been observed previously for LexA at the PrstA 2 

promoter of phage CTXΦ (58). Our results suggest that such a mechanism would not 3 

be dependent upon interactions between AR1 and the other regulatory protein(s), as 4 

has been observed at other promoters (47, 79). The previous observation that 5 

maximum guaB promoter activity can be achieved in the absence of sequences 6 

located upstream of -59 is inconsistent with a mechanism whereby CRP occludes an 7 

adjacent or overlapping binding site for a transcription factor that activates PguaB (33). 8 

 9 

Putative binding sites for the regulatory proteins DnaA and PurR have been identified 10 

within the core region of the guaB promoter (16, 31, 74). PurR mediates repression of 11 

genes required for the biosynthesis of purines in the presence of the corepressors 12 

guanine or hypoxanthine (49). It has been shown that the presence of guanine in the 13 

culture medium results in a similar degree of repression of PguaB at all growth rates, 14 

and a purR mutation results in increased activity of the guaB gene product, IMP 15 

dehydrogenase, suggesting that PurR regulates PguaB (16, 48). However, while 16 

confirming that PurR is responsible for guanine-mediated repression of PguaB, our 17 

results rule out a role for PurR in GRDC at this promoter. Regarding DnaA, a second 18 

binding site for this protein, located in the guaB coding region, is also required for 19 

DnaA-mediated repression of PguaB (73, 74). As the promoters used for assessment of 20 

GRDC in the current study contained only the upstream DnaA binding site, which 21 

does not serve to repress PguaB in the absence of the downstream site, this argues 22 

against a role for DnaA in GRDC. Thus, the missing factor is unlikely to be PurR or 23 

DnaA. 24 

 25 
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The expression of many genes, including those encoding components of the 1 

translation apparatus, the RNAP-associated protein RapA, and Dam methylase, is 2 

subject to positive GRDC, a phenomenon characterised by an increase in the gene 3 

product/bacterial mass ratio as the growth rate increases (13, 19, 57, 60, 78). 4 

However, the responsiveness of individual growth rate-regulated promoters to the 5 

growth rate varies. Accordingly, there appear to be diverse mechanisms for 6 

implementing GRDC, and in some cases it is exerted at a post-transcriptional level (5, 7 

13, 19, 57, 65). However, a complete understanding of the mechanism of GRDC at 8 

any single promoter remains elusive. In conclusion, our results implicate a role for the 9 

CRP.cAMP complex in GRDC of PguaB, and highlights the diversity of mechanisms 10 

that can serve to modulate gene expression in response to growth rate. 11 

 12 
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TABLE 1. Bacterial strains and plasmids 

Strain or plasmid Genotype/Descriptiona Promoter designationb Source or reference 

Bacterial strains    

DM0068 MG1655∆crp::cat - 40 
SØ5052 thi- lacZ608 purR6::Tn10 rpsL999 - 39 
SP850 E14- relA1 spoT1 ∆cya1400::kan thi-1 - 67 
VH1000 MG1655 lacZ lacI pyrE+ - 23 
VH1000G-253 VH1000/λ [PguaB (-253 to +36)]-lacZ         PguaB (-253 to +36) 34 
VH1000G-253∆purR purR6::Tn10 derivative of VH1000G-253 PguaB (-253 to +36) This study 
VH1000G-25310 VH1000/λ [PguaB (-253 to +10)]-lacZ PguaB (-253 to +10) 27 
VH1000G-25310∆purR pur6::Tn10 derivative of VH1000G-253 PguaB (-253 to +10) This study 
VH1000G-133 VH1000/λ [PguaB (-133 to +36)]-lacZ         PguaB (-133 to +36) 34 
VH1000G-133G7C VH1000/λ [PguaB (-133 to +36, G-122C)]-lacZ PguaB (-133 to +36, G-122C) This study 
VH1000G-133A18C VH1000/λ [PguaB (-133 to +36, A-111C)]-lacZ PguaB (-133 to +36, A-111C) This study 
VH1000G-133CRPUP VH1000/λ harbouring PguaB (-133 to +36)-lacZ, with CRP site displaced 11 

base pairs further upstream c,d 
PguaB (CRP -128.5) This study 

VH1000G-133CRPDN VH1000/λ harbouring PguaB (-133 to +36)-lacZ, with CRP site displaced 11 
base pairs further downstreamd 

PguaB (CRP -106.5) This study 

VH1000G-133∆crp crp::cat derivative of VH1000G-133 PguaB (-133 to +36) This study 
VH1000G-133∆cya cya1400::kan derivative of VH1000G-133 PguaB (-133 to +36) This study 
VH1000G-133G7C∆cya cya1400::kan derivative of VH1000G-133G7C PguaB (-133 to +36, G-122C) This study 
VH1000G-117 VH1000/λ [PguaB (-117 to +36)]-lacZ         PguaB (-117 to +36) This study 
VH1000G-37 VH1000/λ [PguaB (-37 to +36)]-lacZ PguaB (-37 to +36) 34 
VH1000G-37∆purR pur6::Tn10 derivative of VH1000G-37 PguaB (-37 to +36) This study 

Plasmids 
 

  

pBluescript II KS E. coli-specific cloning vector (ApR) - 4 
pUC19 E. coli-specific cloning vector (ApR) - 84 
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pMSB1 Derivative of promoter cloning plasmid, pRS1553, for construction of lacZ 
fusions (ApR) 

- 59 

pRLG770 Derivative of pKM2 for in vitro transcription reactions (ApR) - 61 
pSR pBR322 derivative for in vitro transcription reactions (ApR) - 42 
pBSG-253 pBluescript II KS containing PguaB (-253 to +36)   
pRLGgua-133 pRLG770 containing PguaB (-133 to +36) PguaB (-133 to +36) 34 
pSR/CC(-41.5) pSR containing Class II CRP-dependent promoter CC(-41.5) CC(-41.5) 64 
pLG339∆BS pLG339 derivative containing BamHI-EcoRI-SalI linker (KmR) - 7 
pLG339CRP pLG339∆BS derivative containing crp - 7 
pLG339CRP159L pLG339∆BS derivative containing crpH159L - 81 
pLG339CRP101E pLG339∆BS derivative containing crpK101E - 12 
pDCRP pBR322 derivative carrying wild-type crp gene under the control of the crp 

promoter (ApR) 
- 7 

pDU9 Derivative of pDCRP with crp gene deleted  - 7 
pHA7 pBR322 derivative carrying wild-type crp under the control of the bla 

promoter (ApR) 
- 3 

aApR, ampicillin resistance. KmR, kanamycin resistance. Architecture of promoters are shown within square brackets. SUB sequence is a DNA sequence that 

contributes minimally to transcription through contacts with αCTD (21).  

bDesignations of promoter derivatives referred to in the text are given, where appropriate. Coordinates are relative to the guaB transcription start site. 

cAlthough derived from PguaB (-133 to +36), upstream displacement of the CRP site in this promoter derivative means that native PguaB sequences extend to 

position -117 and the upstream boundary of the CRP site is located 139 bp upstream of the transcription start site. 

d Sequences corresponding to the original CRP upstream half-site in PguaB (CRP -106.5) (positions -125 through to -121), or the original CRP 

downstream half-site in PguaB (CRP -128.5) (positions -114 to -110) were inactivated by substitution with the sequence 5’-GACTG-3’. In each 

case, wild type PguaB sequences flanking the inactivated half site and the repositioned CRP site were not altered.
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FIGURE LEGENDS 

 

FIG. 1. DNA sequence of the E. coli guaB promoter. The sequence of PguaB from 

positions -180 to +40 relative to the guaB transcription start site is shown.  A putative 

CRP binding site centred at position -117.5, and the UP element are shown in bold 

and underlined. The putative binding site for PurR centred at -24.5, and the 

discriminator are underlined. The core promoter elements (-35 and -10 regions) and 

the initiating nucleotide are shown in bold. The core binding motifs in the CRP site 

that contribute most strongly to the interaction with CRP are overlined (30). Positions 

of single base changes pertinent to this study are indicated by an 'X' below the 

substituted base, with the introduced base shown below the X. For clarity, binding 

sites for FIS and DnaA are not shown. 

 

FIG. 2. Identification of the CRP binding site at PguaB by DNase I footprinting. 

DNase I footprinting was performed using a DNA fragment containing PguaB (-253 to 

+36) radiolabelled at the downstream end (relative to the guaB transcription start site) 

on the template strand. DNase I footprinting was performed in the presence or 

absence of CRP with or without cAMP, as indicated. The region protected by CRP is 

indicated by the grey bar to the right of the gel. A G+A DNA sequencing ladder was 

run alongside DNase I-treated samples. Nucleotide positions are shown relative to the 

guaB transcription start site.  

 

FIG. 3. Requirement of the CRP site for GRDC of PguaB. GRDC of (A) a wild type 

PguaB derivative, with endpoints at -133 and +36, compared to (B) a derivative with an 

upstream endpoint at -117 (PguaB (-117 to +36)), (C) a derivative with an inactivating 

G to C point mutation at position 7 of the CRP site (PguaB (-133 to +36, G-122C)) or 
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(D) a derivative with an improved CRP site harbouring an A to C mutation at position 

18 of the CRP site (PguaB (-133 to +36, A-111C)). Strains harbouring fusions of these 

promoters to lacZ were grown at different growth rates using the 'standard media' set, 

whereupon the β-galactosidase activity was determined. The standard errors (not 

shown) were no more than 10% in each case. (E) CRP-DNA interactions at each of 

the above promoters was probed by EMSA. Promoter designations are as follows: -

133, PguaB (-133 to +36); -117, PguaB (-117 to +36); G-122C, PguaB (-133 to +36, G-

122C); A-111C, PguaB (-133 to +36, A-111C). 

 

FIG. 4. Involvement of CRP in GRDC of PguaB. The activity of PguaB in response to 

growth rate was measured in a crp deletion strain harbouring a PguaB (-133 to +36)-

lacZ fusion and (A) a plasmid lacking a crp gene (pLG339∆BS), or a plasmid 

encoding (B) wild type CRP (pLG339CRP), (C) CRPH159L (pLG339CRP159L) or 

(D) CRPK101E (pLG339CRP101E). Cells were grown using 'CRP media', 

whereupon the β-galactosidase activity was determined. The effect of the bacterial 

growth rate on the activity of PguaB derivatives harbouring a CRP site displaced by (E) 

11 bp downstream of the original location (PguaB (CRP -106.5)), or (F) 11 bp upstream 

of the original location (PguaB (CRP -128.5)), was determined in the wild type strain 

background (VH1000), using 'standard media'. 

 

FIG. 5. Effect of CRP overproduction on GRDC of PguaB. The activity of PguaB (-

133 to +36) was measured in a ∆crp strain containing (A) a plasmid that did not 

encode CRP (pDU9), or a plasmid expressing crp under the control of (B) the crp 

promoter (pDCRP) or (C) the bla promoter (pHA7), growing in 'CRP media', 

whereupon the β-galactosidase activity was determined. For comparison, GRDC of 
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the same PguaB derivative was measured in a crp+ strain (D), growing under the same 

conditions. 

 

FIG. 6. Effect of exogenously added cAMP on GRDC of PguaB. The effect of 

growth rate on the activity of PguaB (-133 to +36) was measured in a ∆cyaA 

background, in (A) the absence or (B) presence of exogenously added cAMP (5 mM). 

In control experiments, the effect of growth rate on a promoter lacking a functional 

CRP site (i.e., PguaB (-133 to +36, G-122C)) was assessed under identical conditions 

(panels C and D). Cells were grown at different cellular growth rates using 'CRP 

media', whereupon the β-galactosidase activity was determined.  

 

FIG. 7. Effect of CRP on PguaB activity in vitro. Multiple-round transcription 

reactions were performed on PguaB (-133 to +36) and on the Class II CRP-dependent 

promoter, CC(-41.5), using 10 nM RNAP holoenzyme in the presence or absence of 

20 nM CRP and 200 µM cAMP, as indicated. Transcripts are indicated by the arrows 

shown on the left of the transcription gel. PguaB activities were determined from the 

transcript abundance under each condition and are presented in a bar graph as the 

mean (with standard deviation) relative to PguaB in the absence of CRP (activity = 1). 

The mean was calculated using data from three independent experiments.  

 

FIG. 8. Role of PurR in regulation of PguaB. The wild type E. coli strain (A) and an 

isogenic strain harbouring a deletion within the purR gene (B), each containing lacZ 

fusions to PguaB (-37 to +36), PguaB (-253 to +10), or PguaB (-253 to +36), as indicated, 

were grown in M9 minimal medium with 0.2% (w/v) glucose and 5 µg/ml thiamine in 

the presence (grey bars) or absence (black bars) of 60 µg/ml guanine. At mid-
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exponential growth phase the β-galactosidase activity was determined. Each bar 

represents the mean β-galactosidase activity (with standard deviation) in Miller units, 

and was calculated using data obtained from three independent experiments. The 

effect of growth rate on the activity of PguaB (-253 to +36) was measured in the wild 

type strain (C) and in the purR mutant (D) growing in.''standard media'. 
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