promoting access to White Rose research papers

Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in **Journal of Bacteriology**.

White Rose Research Online URL for this paper: <u>http://eprints.whiterose.ac.uk/9826</u>

Published paper

Husnain, S., Busby, S.J.W., Thomas, M.S. (2009) *Downregulation of the Escherichia coli guaB promoter by upstream-bound cyclic AMP receptor protein*, Journal of Bacteriology, 191 (19), pp.6094-6104 <u>http://dx.doi.org/10.1128/JB.00672-09</u>

White Rose Research Online eprints@whiterose.ac.uk

1	Downregulation of the Escherichia coli guaB promoter by upstream-
2	bound CRP
3	
4	Seyyed I. Husnain ^{1#} , Stephen J. W. Busby ² and Mark S. Thomas ¹ *
5	
6	
7	¹ School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill
8	Road, Sheffield S10 2RX, UK.
9	² School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15
10	2TT, UK.
11	
12	Running title: Regulation of the E. coli guaB promoter.
13	
14	
15	
16	
17	
18	
19	
20	
21	*Corresponding author. Tel: +44 (0)114 2712834. Fax: +44 (0)114 2713892. email:
22	m.s.thomas@shef.ac.uk
23	
24	[#] Present address: Department of Microbiology and Molecular Genetics, University of
25	Texas Medical School, 6431 Fannin Street, Houston, Texas, TX77030.

1 ABSTRACT

2	The <i>Escherichia coli guaB</i> promoter (P_{guaB}) is responsible for directing transcription
3	of the guaB and guaA genes that specify the biosynthesis of the nucleotide GMP.
4	P_{guaB} is subject to growth rate-dependent control (GRDC), and possesses an UP
5	element that is required for this regulation. In addition, P_{guaB} contains a discriminator,
6	three binding sites for the nucleoid-associated protein, FIS, and putative binding sites
7	for the regulatory proteins DnaA, PurR and CRP. Here, we show that the CRP.cAMP
8	complex binds to a site located over 100 bp upstream of the guaB transcription start
9	site, where it serves to downregulate P_{guaB} . The CRP-mediated repression of P_{guaB}
10	activity increases in media that support lower growth rates. Inactivation of the crp or
11	cyaA genes, or ablation/translocation of the CRP site, relieves repression by CRP and
12	results in loss of GRDC of P_{guaB} . Thus, GRDC of P_{guaB} involves a progressive
13	increase in CRP-mediated repression of the promoter as the growth rate decreases.
14	Our results also suggest that the CRP.cAMP complex does not direct GRDC at P_{guaB} ,
15	and that at least one other regulatory factor is required for conferring GRDC on this
16	promoter. However, PurR and DnaA are not required for this regulatory mechanism.
17	
18	
19	
20	
21	
22	
23	
24	
25	

1 INTRODUCTION

2 The *Escherichia coli guaB* promoter (P_{guaB}) regulates transcription of the guaBA 3 operon. The guaB and guaA genes encode inosine 5'-monophosphate dehydrogenase 4 and guanosine 5'-monophosphate synthetase, respectively, and are required for 5 synthesis de novo of guanosine 5'-monophosphate (GMP) from the common purine 6 precursor, inosine 5'-monophosphate (46, 75). P_{guaB} responds to a variety of physiological signals. For example, the activity of P_{guaB} increases as a function of the 7 8 cellular growth rate, such that guaBA mRNA forms an increasing fraction of total cell 9 mass at higher growth rates (16, 33, 34). This form of regulation is referred to as 10 growth rate-dependent control (GRDC) (17, 27). P_{guaB} is also subject to stringent 11 control (16, 71), growth phase-dependent regulation (34), purine repression (16, 70), 12 and its activity is coupled to the DNA replication cycle (73). 13 14 The multivalent regulation of P_{guaB} is reflected by the presence of a number of *cis*acting regulatory sites that overlap this promoter. An UP element, located 15 16 immediately upstream of the promoter -35 region, strongly enhances transcription and 17 is required for GRDC of this promoter (28, 33). Three binding sites for the nucleoid-18 associated protein, FIS, have been identified centred near positions -11, +8 and +29, 19 respectively, relative to the guaB transcription start site. Accordingly, FIS has been 20 shown to repress transcription from P_{guaB} in vitro. However, FIS is not required for 21 GRDC of P_{guaB} (34). P_{guaB} also contains a putative binding site for PurR that overlaps 22 the core promoter region (16, 31; see Fig. 1). Consistent with this, IMP 23 dehydrogenase activity is higher in a *purR* mutant strain and, unlike the situation in a 24 wild type strain, this activity is not repressed by growth in the presence of high 25 concentrations of guanine or guanosine (46, 48). Approximately 200 bp downstream

1 from the translation initiation codon for *guaB* is a consensus DnaA binding site that 2 has been shown to bind DnaA *in vitro* and is required for DnaA-mediated repression 3 of *guaB* transcription *in vivo* (73, 74). A second, non-consensus, DnaA site overlaps 4 the *guaB* promoter. Although it does not bind DnaA *in vitro*, it may be required in 5 concert with the downstream site for efficient DnaA-mediated downregulation of 6 P_{guaB} *in vivo* (73, 74).

7

The cyclic AMP receptor protein (CRP) is a cyclic AMP (cAMP)-dependent global 8 9 transcription regulator (for reviews, see 11, 45). It has been long established that, in 10 the absence of exogenous glucose, CRP activates the expression of a large number of 11 genes required for catabolism of alternative carbon sources by E. coli (for a review, 12 see 41). More recent genomic studies have shown that CRP also activates 13 transcription of genes that encode enzymes involved in central carbon metabolism and 14 transporters of various alternative carbon sources (26, 29, 85). CRP activates 15 transcription by binding to specific sites located upstream of promoters and contacting 16 RNAP (11). Promoters that utilise CRP as the sole activator are categorised either as 17 Class I or Class II (11). At Class I CRP-dependent promoters, homodimeric CRP 18 binds DNA sites centred near positions -61.5, -71.5, -82.5 or -92.5, with respect to the 19 transcription start site, and the downstream CRP monomer stimulates transcription by 20 contacting the C-terminal domain of the RNAP α subunit (α CTD) through a surface-21 exposed loop known as Activating Region 1 (AR1, residues 156-164). At Class II 22 CRP-dependent promoters, CRP binds to a site centred near position -41.5, and 23 transcription is stimulated through interactions between aCTD and AR1 of the 24 upstream CRP monomer, and between aNTD and an additional surface referred to as 25 Activating Region 2 (AR2, residues 19, 21, 96 and 101) on the downstream CRP

1	monomer (11, 24, 76). At Class III promoters, optimum transcription activation is
2	achieved by the binding of at least two CRP dimers or a combination of CRP and
3	other regulatory protein(s) (11). CRP has also been shown to repress transcription of
4	some genes, including the <i>crp</i> gene itself, and <i>cyaA</i> , encoding adenylate cyclase (2,
5	25, 26, 52, 85). Transcription repression by CRP can occur through the occupation of
6	DNA sites that overlap core promoter regions (69) or by stabilisation of a
7	transcriptional repressor or co-repressor bound to the promoter region (53, 77).
8	
9	A putative binding site for CRP has been identified centred at position -117.5 relative
10	to the start site for guaB transcription (Fig. 1). The CRP site matches the consensus at
11	17/22 positions, including 9/10 positions in the core binding motifs that are critical for
12	CRP binding (9, 30, 35). Consistent with this, CRP has been shown to bind to a ~300
13	bp DNA fragment that extends to position -253 with respect to the P_{guaB} transcription
14	start site (35). These authors proposed that CRP functions as an activator at P_{guaB} . In a
15	separate transcriptomic study, guaB was identified as one of a number of genes that
16	are subject to "CRP-dependent glucose activation" (26). We have previously shown
17	that sequences located between positions -133 and -100, that include the putative CRP
18	site, are required for GRDC of P_{guaB} (33). To resolve the apparent inconsistencies
19	between some of these observations, we have carried out an investigation into the role
20	of CRP at P_{guaB} . Here, we show that CRP binds to the putative CRP site located
21	upstream of P_{guaB} , whereupon it serves to decrease promoter activity. Moreover,
22	occupancy of this site by CRP is required for GRDC of P_{guaB} .
23	
24	

1 MATERIALS AND METHODS

2

3 Strains and plasmids

4	Bacterial strains and plasmids used in this study are listed in Table 1. Promoter
5	fragments were constructed by standard PCR techniques. Oligonucleotide primer
6	sequences are shown in Supplementary Table 1. For promoter activity measurements
7	in vivo, strains containing single copy promoter-lacZ transcriptional fusions were
8	employed. All transcriptional fusions were carried on λ prophages and were
9	constructed in the VH1000 genetic background using a system based on $\lambda imm21$ (59,
10	68). Apart from P_{guaB} (-253 to +10), all P_{guaB} -lacZ fusions contained downstream
11	endpoints at +36 with respect to the guaB transcription start site. The cya1400::kan,
12	crp::cat and purR6::Tn10 alleles were transferred into lysogenic VH1000 derivative
13	strains by P1 transduction (51).

14

15 Measurement of transcription in vivo

Logarithmically growing cells containing chromosomally integrated P_{guaB} -lacZ 16 17 transcriptional fusions were employed in the measurement of promoter activity as a 18 function of growth rate. Cells from overnight cultures grown in medium supporting 19 the lowest growth rate were inoculated to a starting OD600 of 0.02 into different 20 media that supported a range of growth rates, and were grown with aeration at 37 °C. 21 The set of culture media used for growing strains containing wild-type crp and cyaA 22 alleles was based on M9 minimal medium and is referred to here as 'standard media' 23 (33). The set of media used to grow strains containing deletions in the crp and/or cyaA 24 genes is referred to as 'CRP media', and was M9 minimal medium containing one of 25 the following (in order of increasing growth rate supported for wild-type strains):

1	0.4% (w/v) fructose, 0.4% (w/v) glucose, 0.4% (w/v) fructose + 20 amino acids, 0.4%
2	(w/v) fructose + 1% (w/v) casamino acids, 0.4% (w/v) glucose + 20 amino acids or
3	0.4% (w/v) glucose + 0.8% (w/v) casamino acids. 20 amino acids comprised each
4	amino acid at a final concentration of 20 μ g/ml. All growth media also contained 5
5	μ g/ml thiamine. Strains containing plasmids derived from pLG339 (i.e., pLG339 Δ BS,
6	pLG339CRP, pLG339CRP159L and pLG339CRP101E) were grown in the presence
7	of 25 μ g/ml kanamycin, and strains containing plasmids derived from pBR322 (i.e.,
8	pDU9, pDCRP and pHA7) were grown in the presence of 100 μ g/ml ampicillin.
9	cAMP sodium monohydrate (Sigma-Aldrich) was added to a final concentration of 5
10	mM, where included. Cultures were grown until OD600 0.40-0.45, whereupon the β -
11	galactosidase activity was measured following disruption of cells by sonication (51,
12	80). [For measuring the effect of the $\Delta purR$ allele on transcription from P_{guaB}
13	derivatives in bacteria growing in M9 medium containing glucose, cells were
14	permeabilised by chloroform-SDS treatment.] All data points on GRDC plots
15	represent the mean β -galactosidase activity (in Miller units) and mean growth rate
16	from three independent experiments.
17	

18 Measurement of transcription in vitro

For measurement of transcription *in vitro*, supercoiled plasmid DNA was used
containing either the P_{guaB} (-133 to +36) promoter carried by plasmid pRLG770, or the
synthetic CRP-dependent class II promoter, *CC*(-41.5), carried by plasmid pSR.
Multiple-round transcription reactions were performed as previously described, in the
presence or absence of CRP, except that KCl was used at a concentration of 100 mM
(33). Template was preincubated with 10 nM RNAP holoenzyme (Epicentre), 20 nM
CRP, 200 μM cAMP, 200 μM each of CTP, and either ATP or GTP, and 10 uM UTP

1	for 10 minutes at 30 °C. The reaction commenced after addition of the initiating
2	nucleotide (200 μ M GTP for P _{guaB} , or 200 μ M ATP for the CC(-41.5) promoter), and
3	was allowed to proceed for 10 minutes at 30 °C. Reactions were terminated with an
4	equal volume of stop solution (95% deionised formamide, 20 mM EDTA, 0.05%
5	bromophenol blue, 0.05% xylene cyanol). Samples were fractionated in a 5.5%
6	acrylamide gel containing 7 M urea, and transcript abundance was quantified using a
7	FujiFilm FLA3000 phosphorimager
8	
9	Electrophoretic mobility shift assay (EMSA)
10	DNA fragments containing P_{guaB} sequences were amplified from pUC19 by PCR
11	using flanking pUC19-specific primers, as described previously (34). PCR products
12	were digested with <i>Hin</i> dIII, and purified by crush-soaking in a solution containing 0.2
13	M NaCl, 20 mM Tris-HCl (pH 8.0) and 1 mM EDTA (pH 8.0), following
14	electrophoresis in a 6% polyacrylamide gel (50). Fragments were labelled at the
15	<i>Hin</i> dIII end using $[\alpha^{-32}P]$ -dATP (3000 Ci [1.11 x 10 ¹⁴ Bq]/mmol, MP Biomedicals)
16	and DNA polymerase I Klenow fragment. Labelled DNA (final concentration 0.4 nM)
17	was incubated at room temperature for 30 minutes in 10 μ l of a buffer containing 20
18	mM HEPES (pH 8.0), 5 mM MgCl ₂ , 50 mM potassium glutamate, 1 mM DTT, 10%
19	(v/v) glycerol and, 20 μ g ml ⁻¹ sonicated calf thymus DNA (GE Healthcare) and,
20	where appropriate, 200 μ M cAMP, in the absence or presence of 200 nM CRP.
21	Samples were loaded onto a 6% polyacrylamide gel (37.5:1 acrylamide:bis-
22	acrylamide) containing 7.5% (v/v) glycerol and 200 μM cAMP while running at ~15
23	V/cm, and electrophoresed for ~1 hour at 4 $^{\circ}$ C. Radiolabelled DNA was visualised
24	using a FujiFilm FLA3000 phosphorimager.
25	

1 **DNase I footprinting**

2 DNase I footprinting was performed as described previously, using an EcoRI-XhoI 3 DNA fragment isolated from plasmid pBSG-253 (extending from positions -253 to 4 +36 of the guaB promoter) and labelled at the XhoI end of the template strand with γ -³²P]ATP (>7000Ci/mmol; MP Biomedicals) using T4 polynucleotide kinase (34). To 5 6 facilitate CRP binding to DNA, reaction samples, each containing a final 7 concentration of 2.5% (w/v) glycerol, were incubated with binding buffer (20 mM 8 HEPES (pH 8.0), 5 mM MgCl₂, 50 mM potassium glutamate, 1 mM DTT, 20 µg ml⁻¹ 9 sonicated calf thymus DNA) at room temperature for 30 minutes in the presence or 10 absence of CRP at 200 nM and/or cAMP at 200 µM, and this was followed by 11 digestion with DNase I. Samples were purified by phenol-chloroform extraction and 12 ethanol precipitation, and DNA fragments were separated in a 6% poly?acrylamide-7 13 M urea sequencing gel. A Maxam-Gilbert G+A sequencing ladder was run alongside. 14 Footprints were visualised using a FujiFilm FLA3000 phosphorimager.

15

16 SDS-PAGE and western blotting

17 Sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) was carried 18 out using a 12% resolving gel (29:1 acrylamide-bisacrylamide). Western blotting was 19 carried out to measure CRP levels in strain VH1000G-133. A derivative strain 20 (VH1000G-133*Acrp*) that contained a deletion in the *crp* gene served as a negative 21 control. For western blotting, cells were grown in media supporting different growth 22 rates, and the OD600nm was measured periodically. Logarithmically growing cells at 23 an OD600nm of ~0.35-0.45 were harvested by centrifugation, disrupted by sonication 24 and the total protein concentration in the soluble fraction was determined using the 25 RC DC protein assay kit (Bio-Rad). 2.4 µg of total protein was fractionated by SDS-

1	PAGE and transferred to a PVDF membrane by electroblotting. The membrane was
2	blocked with StartingBlock PBS buffer (Pierce), and detection was performed using
3	rabbit anti-CRP antiserum (a gift from H. Aiba), a secondary antibody conjugated to
4	HRP (Caltag) and SuperSignal West Pico chemiluminescent substrate (Pierce).
5	Protein bands corresponding to CRP were detected by autoradiography, and their
6	intensity was quantified densitometrically.
7	
8	RESULTS
9	
10	Analysis of CRP binding to P_{guaB}
11	DNase I footprinting was employed to determine whether the putative CRP site
12	located at position -117.5 is bound by purified CRP protein. The results show that
13	CRP protects a region from -107 to -128 relative to the guaB transcription start site
14	and this is consistent with the location of the predicted CRP site (Fig. 2). No other
15	sequences between positions -253 to +36 were protected by CRP (result not shown).
16	
17	Role of the CRP site in GRDC of P _{guaB}
18	A P_{guaB} promoter fragment with an upstream endpoint at -133 and a downstream
19	endpoint at +36 with respect to the transcription start site (P_{guaB} (-133 to +36)),
20	contains all the DNA sequence elements required for full GRDC of P_{guaB} (Fig. 1) (33).
21	To determine whether the CRP site centred at position -117.5 is required for GRDC,
22	cells containing single copy P_{guaB} -lacZ fusions in which the CRP site was present
23	$(P_{guaB} (-133 \text{ to } +36))$ or absent $(P_{guaB} (-117 \text{ to } +36))$ were grown at different growth
24	rates, and the β -galactosidase activity was measured.

1	In agreement with previous observations, transcription from P_{guaB} (-133 to +36)
2	increased in media supporting higher growth rates (16) (Fig. 3A). As previously
3	noted, this corresponded to a ~1.8-fold increase in promoter activity for a doubling of
4	the growth rate (33). In contrast, the activity of P_{guaB} (-117 to +36) was maintained at
5	a similar high level at each growth rate tested (Fig. 3B). The reason for this was due to
6	a higher activity of P_{guaB} (-117 to +36), relative to P_{guaB} (-133 to +36), in bacteria
7	growing in medium supporting low growth rates. This observation suggests that
8	residues between positions -133 and -118, which includes the CRP binding site,
9	contributes in some way to GRDC of P_{guaB} .
10	
11	To determine whether the CRP binding site is required for GRDC of P_{guaB} , promoter
12	derivatives containing single base pair mutations in the CRP site were analysed. CRP
13	exhibits a high degree of specificity for a G base at position 7 (corresponding to a C at
14	position 16) of the 22 bp consensus CRP site (aaaTGTGAtctagaTCACAttt) (core
15	binding site in upper case; positions 7 and 16 underlined). Substitution of this residue
16	by a C results in a large reduction in CRP binding to the consensus CRP site (30).
17	Therefore, we introduced a G to C point mutation at the equivalent position in the
18	P_{guaB} CRP site (i.e., position -122 relative to the guaB transcription start site) giving
19	rise to P_{guaB} (-133 to +36, G-122C). Our results show that introduction of this
20	substitution led to a complete loss of GRDC (Fig. 3C). Similar to the situation with
21	P_{guaB} (-117 to +36), abolition of GRDC was due to an increase in P_{guaB} (-133 to +36,
22	G-122C) activity, relative P_{guaB} (-133 to +36), which was most pronounced at low
23	growth rates. CRP binding to the mutant site was assessed by EMSA. This showed
24	that the substitution caused a significantly reduced CRP- P_{guaB} interaction (Fig. 3E).
25	Our results strongly suggest that binding of CRP to the site located at -117.5 is

1 required for repression of P_{guaB} at low growth rates and that this plays a role in GRDC 2 of P_{guaB} .

3

4 In a complementary experiment, an A to C point mutation was introduced at position 5 18 in the P_{guaB} CRP site (i.e., P_{guaB} (-133 to +36, A-111C)), generating a consensus 6 core CRP binding site (Fig. 1). Stronger binding of CRP to P_{guaB} (-133 to +36, A-7 111C) was confirmed by EMSA (Fig. 3E). The stronger binding of CRP to the 8 consensus CRP site resulted in a 30-50% decrease in P_{guaB} activity, depending on the 9 growth rate (Fig. 3D). However, the fold change in activity of this promoter as a 10 function of growth rate was not significantly different to that of P_{guaB} (-133 to +36). 11 Thus, whereas for the wild type guaB promoter there was a ~1.8-fold increase in 12 promoter activity as the growth rate doubled, a ~2-fold increase in activity was 13 observed for the A-111C derivative. This result is consistent with our proposal that 14 binding of CRP to the P_{guaB} upstream region serves to downregulate transcription. 15

16 Role of CRP and its activating regions in GRDC of P_{guaB}

17 To confirm that GRDC of P_{guaB} requires CRP, the activity of P_{guaB} (-133 to +36) in response to growth rate was measured in a Δcrp strain. In the absence of CRP, P_{guaB} 18 19 exhibited an increase in activity at low growth rates relative to wild type cells, and 20 there was no longer a positive correlation between the promoter activity and the 21 growth rate (Fig. 4A). Moreover, as observed previously, the presence of the Δcrp 22 allele resulted in a slow growth phenotype in all media tested (for example, see 15, 23 18, 56, 82). Normal GRDC of P_{guaB} was restored following introduction of a low copy 24 number plasmid specifying CRP (Fig. 4B). These results are consistent with the 25 observation that a functional CRP site is required for positive GRDC of P_{guaB}.

1
-

2	To ascertain the requirement for the RNAP contact sites on CRP, plasmids harbouring
3	mutant crp alleles that encode derivatives containing inhibitory amino acid
4	substitutions in AR1 or AR2, were introduced into the Δcrp strain harbouring P_{guaB}
5	(-133 to +36), and the growth rate dependence of the promoter was measured. Control
6	experiments with the CRP AR1 and AR2 variants demonstrated that this system could
7	be used to measure the effects of inactivation of AR1 and AR2 at class I and class II
8	CRP-dependent promoters in vivo, in the same strain background (results not shown;
9	12, 81). Our results show that inactivation of AR1 resulted in a decrease in P_{guaB}
10	activity at all growth rates (Fig. 4C), whereas disruption of AR2 function gave rise to
11	a more modest decrease in the activity of this promoter (Fig. 4D). However, the
12	presence of either mutant CRP protein did not result in a significant change in GRDC
13	of P_{guaB} in comparison to wild-type CRP. This is more obvious in plots of relative
14	promoter activity versus growth rate (Supplementary Fig. 1).
15	

16 Importance of CRP site location for GRDC of P_{guaB}

17 To test whether the location of the CRP site is important for repression of P_{guaB} and GRDC, the CRP site in P_{guaB} (-133 to +36) was translocated to a position centred at -18 19 106.5 (approximately one helical turn downstream of the original location) or -128.5 20 (approximately one helical turn upstream of the original location). In each case, the 21 original CRP site was disrupted by point mutations in the core region that are 22 unfavourable for CRP binding (Table 1) and the repositioned CRP site retained the 22 23 bp sequence of the original. The activity of these guaB promoter derivatives in 24 bacteria growing at different rates was then measured in a wild type strain background. The results show that moving the P_{guaB} CRP site by one helical turn 25

upstream or downstream of the original location led to a complete loss of GRDC (Fig.
4E and 4F; see also Supplementary Fig. 1). This suggests that the distance between
the CRP site and the P_{guaB} core promoter elements is important for repression of P_{guaB}
(and GRDC) and/or that an adjacent or overlapping binding site for another
transcription factor, that has been disrupted by re-positioning of the CRP site, may
also play an important role in regulation of P_{guaB}.

7

8 Intracellular CRP concentration as a function of bacterial growth rate

9 If the cAMP·CRP complex acts as the primary sensor of growth rate for P_{guaB} , an 10 inverse correlation between the intracellular concentration of CRP and/or cAMP and 11 the cellular growth rate would be expected. For example, it has been shown 12 previously that the intracellular concentration of CRP is lower in E. coli cells growing 13 in the presence of glucose in comparison to cells utilising glycerol as sole carbon 14 source (37). To examine whether the intracellular concentration of CRP varies with 15 growth rate, western blotting was employed. The results show that at growth rates of 16 <1.0 doubling per hour, the intracellular concentration of CRP is approximately 17 twofold higher than at higher growth rates (Supplementary Fig. 2). However, as there 18 does not appear to be a smooth inverse relationship between CRP abundance and 19 growth rate, it is unlikely that the CRP concentration functions as a sensor of changes 20 in the cellular growth rate for P_{guaB} .

21

22 In a complementary experiment, we asked whether artificially increasing the

23 intracellular concentration of CRP can influence GRDC of P_{guaB} . To do this, we

24 overexpressed the crp gene from its native promoter (plasmid pDCRP) and,

25 separately, from the constitutive *bla* promoter (plasmid pHA7) in a Δcrp strain, and

1	measured the activity of P_{guaB} (-133 to +36) over a range of different growth rates.
2	[Unlike the native crp promoter, the bla promoter is not subject to feedback regulation
3	by CRP, or downregulation in the presence of glucose (36, 54).] P_{guaB} (-133 to +36)
4	activity was also measured in cells containing a plasmid that lacked the crp gene
5	(pDU9). Consistent with our previous observation, positive GRDC of P_{guaB} was not
6	observed in the absence of crp (Fig. 5A). Overexpression of crp from pDCRP resulted
7	in the restoration of normal GRDC to P_{guaB} (compare Fig. 5B and 5D). Thus, higher
8	than normal levels of CRP do not result in repression of guaB promoter activity
9	relative to that observed in wild type cells. Placing CRP under the control of the bla
10	promoter also conferred GRDC on P_{guaB} , although the observed slope was steeper
11	than for cells containing pDCRP (compare Fig. 5C and 5D). These results
12	demonstrate that constitutively increased expression of crp does not result in
13	constitutive repression of P_{guaB} activity.
14	
15	Effect of manipulation of the intracellular cAMP concentration on GRDC of
16	\mathbf{P}_{guaB}
17	Previous studies indicate that addition of increasing concentrations of cAMP to the
18	growth medium results in progressively increased CRP-mediated repression or
19	activation of target promoters (20, 43, 62). This indicates that the intracellular
20	concentration of cAMP can be manipulated by altering the amount of cAMP added to
21	the medium. Various experimental observations suggest that an exogenous cAMP
22	concentration of 0.5-1.0 mM restores intracellular cAMP to a physiologically
22	
22	functional level in adenylate cyclase-deficient, cAMP phosphodiesterase-proficient
22 23 24	functional level in adenylate cyclase-deficient, cAMP phosphodiesterase-proficient (i.e. $\Delta cyaA$, cpd^+) strains, whereas addition of 5-10 mM cAMP to the culture medium

1 Therefore, to examine a possible role for the intracellular cAMP concentration in 2 influencing regulation of P_{guaB} , we measured the activity of P_{guaB} (-133 to +36) in 3 response to growth rate in a $\Delta cyaA$ strain growing in the absence and presence of 5 4 mM cAMP.

5

6 As expected, the presence of the $\Delta cyaA$ allele resulted in an increase in P_{guaB} activity 7 at low growth rates relative to the wild-type strain background, and this abolished the 8 positive correlation between P_{guaB} activity and the growth rate (Fig. 6A). Deletion of 9 the cyaA gene also caused a reduction in the growth rates, as observed previously (1, 10 15, 22, 55). Addition of 5mM cAMP to media supporting the lowest growth rates 11 caused $\Delta cyaA$ bacteria to grow faster than in cAMP-free media, whereas addition to 12 media supporting the highest growth rates resulted in a decrease in the growth rate 13 relative to cAMP-free media (similar observations have been reported previously (38, 14 43, 66, 83)). This gave rise to a more restricted range of growth rates (Fig. 6B). 15 Despite the decreased range of growth rates, it is apparent that the relationship 16 between the growth rate and P_{guaB} activity is similar to that observed in wild type cells 17 growing in the absence of added cAMP (compare Fig. 6B with Fig. 5D). This 18 observation suggests that although the CRP.cAMP complex is required for repression 19 of P_{guaB} , and GRDC, variation in the intracellular concentration of cAMP in response 20 to the prevailing carbon source is unlikely to dictate GRDC of this promoter. 21 22 cAMP did not restore normal GRDC to the P_{guaB} (-133 to +36, G-122C) promoter, 23 which lacked a functional CRP site, nor did it result in repression of this promoter at

24 low growth rates (compare Fig. 6C and 6D). Plots of relative activity of the wild type

and mutant guaB promoters in response to cAMP clearly show that the mutant

promoter is essentially unresponsive to cAMP (compare Supplementary Fig. 3A and 3B). These results confirm that the cAMP-dependent effects observed at P_{guaB} (-133 to +36) are mediated by CRP binding to the P_{guaB} CRP site.

4

5 Effect of CRP on P_{guaB} activity in vitro

6 Disruption of CRP binding to P_{guaB} results in derepression of P_{guaB} activity in medium 7 supporting low growth rates and concomitantly abolishes GRDC. To determine 8 whether CRP.cAMP is able to regulate P_{guaB} in the absence of other factors, 9 transcription was measured in vitro from P_{guaB} (-133 to +36), in the presence and 10 absence of purified CRP.cAMP. Results from multiple-round transcription assays 11 show that P_{guaB} (-133 to +36) activity was not influenced by CRP.cAMP in the 12 absence of other regulatory factors (Fig. 7). Varying the concentrations of the 13 transcription initiating nucleotide (GTP), salt (KCl) or CRP did not enhance the 14 responsiveness of P_{guaB} to CRP in multiple- or single-round reactions (results not 15 shown). In control experiments, CRP.cAMP was able to activate transcription ~10-16 fold from the CRP-dependent CC(-41.5) promoter under the same conditions (Fig. 7). 17 The impotence of CRP.cAMP in the *in vitro* system suggests that an additional factor 18 is required for CRP-dependent downregulation of P_{guaB} .

19

20 Role of PurR in the regulation of P_{guaB}

A putative binding site for the regulatory protein, PurR, overlaps the *guaB* promoter
(Fig. 1) (31, 48). Moreover, the activity of the *guaB* gene product, IMP
dehydrogenase, in bacteria growing under conditions of purine repression is 3-fold
higher in strains harbouring a null mutation in the gene encoding the PurR repressor
(48). To assess the role of the PurR repressor in GRDC of the *guaB* promoter, we first

1	confirmed that P_{guaB} activity is repressed by this regulator. Thus, purine-mediated
2	repression of P_{guaB} (-253 to +36), P_{guaB} (-37 to +36) or P_{guaB} (-253 to +10) were
3	assessed in vivo. All three promoters were shown to be repressed by ~50% in the
4	presence of high levels of exogenously added guanine, and this repression was
5	entirely dependent on the presence of a functional <i>purR</i> gene (Fig. 8A and 8B). This
6	result confirms that transcription of the guaBA operon is repressed by PurR and it is
7	consistent with the predicted location of the PurR binding site. The activity of P_{guaB} (-
8	253 to +36) in response to growth rate was then measured in the <i>purR</i> mutant
9	background. The results show that there was no significant difference in GRDC of
10	P_{guaB} in the presence or absence of PurR (Fig. 8C and 8D).
11	
12	
13	DISCUSSION
14	
15	In this study, we have demonstrated that the CRP.cAMP complex binds to a site
16	centred at position -117.5 relative to the P_{guaB} transcription start site, and we have
17	shown that this interaction serves to downregulate P_{guaB} . Moreover, the degree of
18	CRP-mediated repression progressively increases as the bacterial growth rate
19	decreases. Thus, in a <i>crp</i> or <i>cya</i> mutant strain, or in a strain in which the P_{guaB} CRP
20	site has been inactivated, P_{guaB} exhibits a marked increase in activity at low growth
21	rates. As glucose supports relatively high growth rates, these results are consistent
22	with a previous transcriptomic analysis in which it was observed that guaB
23	transcription is subject to "CRP-dependent glucose activation" (26). However, our
24	observation is not in agreement with a previous proposal that CRP activates P_{guaB}
25	(35). The latter proposal was based on nutrient downshift experiments in which cells

1	were transferred, after washing, from a complex nutrient-rich medium to a glycerol-
2	based medium containing casamino acids. In these experiments, the authors observed
3	a rapid but short-lived increase in P_{guaB} activity following the downshift. This did not
4	occur in a Δcrp strain. These experiments are difficult to interpret because the
5	nutrient-rich medium also contains a source of purines, so cells are having to readjust
6	not only to a change in carbon source, but also to purine availability. To avoid the
7	possibility that purine repression would complicate interpretation of our results, we
8	avoided use of media containing purines when examining the effect of media
9	supporting different growth rates on P_{guaB} activity. In addition, our measurements
10	were performed during steady state growth of the bacteria.
11	
12	As the supply of guanine nucleotides must satisfy the demand for rRNA and tRNA
13	biosynthesis, which are themselves subject to very tight growth rate-dependent control
14	and constitute as much as 85% of the total RNA synthesised at high growth rates, it is
15	not surprising that transcription of the guaBA operon should be subject to a growth
16	rate-dependent control mechanism (10, 16, 33). However, the observed inverse
17	relationship between CRP-mediated repression of P_{guaB} and the bacterial growth rate
18	prompted us to reexamine whether P_{guaB} was in fact regulated according to the carbon
19	source rather than as a function of the growth rate. Promoters that are subject to
20	GRDC exhibit the same activity in cells growing at the same growth rate, irrespective
21	of the nature of the carbon source. Supplementary Fig. 4 shows the activity of P_{guaB} in
22	the presence of different carbon sources. As some of the carbon sources used give rise
23	to a similar growth rate and P_{guaB} activity, it is clear that the activity of this promoter
24	is influenced by the growth rate rather than the carbon source.

1	Our results also suggest that E. coli makes use of a mechanism that is distinct from
2	that acting at stable RNA promoters, to confer growth rate dependence on P_{guaB} .
3	Unlike the situation at rRNA and tRNA promoters, the mechanism at P_{guaB} employs
4	CRP, and requires the participation of the UP element, thereby implying a role for
5	α CTD in this process (33). However, our results do not suggest that GRDC of P _{guaB} is
6	dictated by the intracellular concentration of the CRP.cAMP complex. Thus,
7	manipulating the intracellular cAMP or CRP levels so that they remain constant at
8	different growth rates does not abolish GRDC. This observation suggests the
9	involvement of another factor that dictates GRDC of P_{guaB} . Furthermore, our <i>in vitro</i>
10	results also suggest that at least one other factor is required for CRP-mediated
11	repression of P_{guaB} . This is consistent with a model in which CRP-mediated repression
12	and GRDC are facets of the same mechanism that requires at least one other
13	regulatory factor.

How might binding of the CRP.cAMP complex to a site far upstream of the P_{guaB} core 15 16 promoter region repress transcription? There are no known examples where CRP, 17 acting alone or in concert with an UP element, modulates transcription from a site 18 located more than 100 bp upstream of the transcription start site. However, there are 19 examples where CRP bound at such distances has been shown to contact RNAP and 20 regulate transcription at promoters that require the participation of additional 21 regulatory proteins (i.e. Class III CRP-dependent promoters). For example, CRP can 22 contact α CTD when bound at position -102.5/-103.5 at synthetic Class III promoters 23 (8, 72). Moreover, at acsP2, a naturally occurring Class III promoter, the promoter-24 distal CRP site (CRP II) is centred at position -122.5, and CRP bound to this site can interact with α CTD (6). However, the CRP site at P_{guaB} is located on the opposite face 25

1	of the DNA helix in comparison to the CRP sites at these Class III promoters.
2	Therefore, it is not clear that CRP would be in a position to interact with RNAP at
3	P_{guaB} . Moreover, unlike the examples discussed above, the role of CRP at P_{guaB} is to
4	downregulate transcription. One possibility is that CRP (with the aid of an unknown
5	regulatory factor) competes with the UP element for α CTD, thereby recruiting α CTD
6	to a location that is unfavourable for transcription from P_{guaB} . However, we
7	demonstrated that GRDC of P_{guaB} was not altered significantly in strains producing
8	AR1-defective CRP, and an alanine scanning analysis of α CTD did not implicate the
9	AR1 contact site on α CTD (i.e. the 287 determinant) in regulation of this promoter
10	(32, 63). In addition, the AR1 substitution exerted a repressive effect on P_{guaB} ,
11	something that would not be expected if the AR1- α CTD interaction was required to
12	downregulate P_{guaB} . Furthermore, displacement of the CRP site from its native
13	position by one turn of the DNA helix in either direction completely abolishes GRDC
14	at P_{guaB} . At many promoters where CRP binding to upstream sites serves to regulate
15	transcription by contacting α CTD, displacement of the CRP site by one helical turn
16	from its optimal position does not completely abolish CRP activity (8, 12, 24, 44, 72).
17	Thus, it is unlikely that direct interactions between CRP and RNAP play a role in
18	GRDC of P_{guaB} .

An alternative possibility is that the 'missing factor' contacts RNAP at P_{guaB} in a
manner that requires CRP. For example, it has been demonstrated that at some CRPregulated promoters CRP can participate in cooperative interactions with other
regulatory proteins that activate or repress transcription (14, 53, 79). Thus, at P_{guaB},
CRP could serve as a nucleation site for the assembly of a complex of transcription
factors on the DNA, or it could allow remodelling of such an assembly, that sterically

1	blocks access to the UP element by α CTD. Steric hindrance of UP element utilisation
2	as a regulatory mechanism has been observed previously for LexA at the P_{rstA}
3	promoter of phage CTX Φ (58). Our results suggest that such a mechanism would not
4	be dependent upon interactions between AR1 and the other regulatory protein(s), as
5	has been observed at other promoters (47, 79). The previous observation that
6	maximum guaB promoter activity can be achieved in the absence of sequences
7	located upstream of -59 is inconsistent with a mechanism whereby CRP occludes an
8	adjacent or overlapping binding site for a transcription factor that activates P_{guaB} (33).
9	

10 Putative binding sites for the regulatory proteins DnaA and PurR have been identified 11 within the core region of the guaB promoter (16, 31, 74). PurR mediates repression of 12 genes required for the biosynthesis of purines in the presence of the corepressors 13 guanine or hypoxanthine (49). It has been shown that the presence of guanine in the culture medium results in a similar degree of repression of P_{guaB} at all growth rates, 14 15 and a *purR* mutation results in increased activity of the *guaB* gene product, IMP 16 dehydrogenase, suggesting that PurR regulates P_{guaB} (16, 48). However, while 17 confirming that PurR is responsible for guanine-mediated repression of PguaB, our 18 results rule out a role for PurR in GRDC at this promoter. Regarding DnaA, a second 19 binding site for this protein, located in the guaB coding region, is also required for 20 DnaA-mediated repression of P_{guaB} (73, 74). As the promoters used for assessment of 21 GRDC in the current study contained only the upstream DnaA binding site, which 22 does not serve to repress P_{guaB} in the absence of the downstream site, this argues 23 against a role for DnaA in GRDC. Thus, the missing factor is unlikely to be PurR or 24 DnaA.

25

1	The expression of many genes, including those encoding components of the
2	translation apparatus, the RNAP-associated protein RapA, and Dam methylase, is
3	subject to positive GRDC, a phenomenon characterised by an increase in the gene
4	product/bacterial mass ratio as the growth rate increases (13, 19, 57, 60, 78).
5	However, the responsiveness of individual growth rate-regulated promoters to the
6	growth rate varies. Accordingly, there appear to be diverse mechanisms for
7	implementing GRDC, and in some cases it is exerted at a post-transcriptional level (5,
8	13, 19, 57, 65). However, a complete understanding of the mechanism of GRDC at
9	any single promoter remains elusive. In conclusion, our results implicate a role for the
10	CRP.cAMP complex in GRDC of P_{guaB} , and highlights the diversity of mechanisms
11	that can serve to modulate gene expression in response to growth rate.
12	
13	ACKNOWLEDGMENTS
14	We are indebted to W. Ross, T. Gaal, H. Murray and R. L. Gourse (University of
15	Wisconsin-Madison), and D. Browning, D. Grainger and D. Lee (University of
16	Birmingham) for purified CRP protein, strains, plasmids and helpful discussions. We
17	also thank H. Aiba (Nagoya University) for anti-CRP antiserum, strains and plasmids.
18	This work was supported by a project grant awarded by the Wellcome Trust (grant
19	number 073917) and a family Ph.D. sponsorship awarded to S.I.H., kindly provided
20	by S. M. Husnain.
21	
22	REFERENCES
23	
24	1. Ahmad, D., and E. B. Newman. 1988. A deficiency in cyclic AMP results in
25	pH-sensitive growth of Escherichia coli K-12. J. Bacteriol. 170:3443-3447.

1	2.	Aiba, H. 1983. Autoregulation of the Escherichia coli crp gene: CRP is a
2		transcriptional repressor for its own gene. Cell 32: 141-149.
3	3.	Aiba, H., S. Fujimoto, and N. Ozaki. 1982. Molecular cloning and nucleotide
4		sequencing of the gene for E. coli cAMP receptor protein. Nucleic Acids Res.
5		10: 1345-1361.
6	4.	Alting-Mees, M. A., and J. M. Short. 1989. pBluescript II: gene mapping
7		vectors. Nucleic Acids Res. 17:9494.
8	5.	Baker, H. V., and R. E. Wolf. 1983. Growth rate-dependent regulation of 6-
9		phosphogluconate dehydrogenase level in <i>Escherichia coli</i> K-12: β-galactosidase
10		expression in gnd-lac operon fusion strains. J. Bacteriol. 153:771-781.
11	6.	Beatty, C. M., D. F. Browning, S. J. W. Busby, and A. J. Wolfe. 2003. CRP-
12		dependent activation of the Escherichia coli acsP2 promoter by a synergistic
13		class III mechanism. J. Bacteriol. 185:5148-5157.
14	7.	Bell, A., K. Gaston, R. Williams, K. Chapman, A. Kolb, H. Buc, S. Minchin,
15		J. Williams, and S. Busby. 1990. Mutations that alter the ability of the
16		Escherichia coli cyclic AMP receptor protein to activate transcription. Nucleic
17		Acids Res. 18:7243-7250.
18	8.	Belyaeva, T. A., V. A. Rhodius, C. L. Webster, and S. J. W. Busby. 1998.
19		Transcription activation at promoters carrying tandem DNA sites for the
20		Escherichia coli cyclic AMP receptor protein: organisation of the RNA
21		polymerase α subunits. J. Mol. Biol. 277:789-804.
22	9.	Berg, O. G., and von P. H. Hippel. 1988. Selection of DNA binding sites by
23		regulatory proteins. II. The binding specificity of cyclic AMP receptor protein to
24		recognition sites. J. Mol. Biol. 200:709-723.

1	10.	Bremer, H., and P. P. Dennis. 1996. Modulation of chemical composition and
2		other parameters of the cell by growth rate, p.1553-1569. In F. C. Neidhardt, R.
3		Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. Reznikoff, M.
4		Riley, M. Schaechter and H. E. Umbarger (eds.), Escherichia coli and
5		Salmonella: cellular and molecular biology. American Society for Microbiology,
6		Washington, D.C.
7	11.	Busby, S., and R. H. Ebright. 1999. Transcription activation by catabolite
8		activator protein (CAP). J. Mol. Biol. 293:199-213.
9	12.	Busby, S., D. West, M. Lawes, C. Webster, A. Ishihama, and A. Kolb. 1994.
10		Transcription activation by the Escherichia coli cyclic AMP receptor protein.
11		Receptors bound in tandem at promoters can interact synergistically. J. Mol. Biol.
12		241: 341-352.
13	13.	Cabrera, J. E., and D. J. Jin. 2001. Growth phase and growth rate regulation of
14		the rapA gene, encoding the RNA polymerase-associated protein RapA in
15		Escherichia coli. J. Bacteriol. 183:6126-6134.
16	14.	Chahla, M., J. Wooll, T. Laue, N. Nguyen, and D. Senear. 2003. Role of
17		protein-protein bridging interactions on cooperative assembly of DNA-bound
18		CRP-CytR-CRP complex and regulation of the Escherichia coli CytR regulon.
19		Biochemistry 42: 3812-3825.
20	15.	D'ari, R., A. Jaffe, P. Bouloc, and A. Robin. 1988. Cyclic AMP and cell
21		division in Escherichia coli. J. Bacteriol. 170:65-70.
22	16.	Davies, I. J., and W. T. Drabble. 1996. Stringent and growth-rate-dependent
23		control of the gua operon of Escherichia coli K-12. Microbiology 142:2429-
24		2437.

1	17.	Dennis, P. P., M. Ehrenber, and H. Bremer. 2004. Control of rRNA synthesis
2		in Escherichia coli: a systems biology approach. Microbiol. Mol. Biol. Rev.
3		68: 639-668.
4	18.	De Robertis, Jr., E. M., N. D. Judewicz, and H. N. Torres. 1973. On the
5		control mechanism of bacterial growth by cyclic adenosine 3', 5'-monophosphate.
6		Biochem. Biophys. Res. Comm. 55:758-764.
7	19.	Dong, H., L. A. Kirsebom, and L. Nilsson. 1996. Growth rate regulation of 4.5
8		S RNA and M1 RNA the catalytic subunit of <i>Escherichia coli</i> RNase P. J. Mol.
9		Biol. 261: 303-308.
10	20.	Epstein, W., L. B. Rothman-Denes, and J. Hesse. 1975. Adenosine 3':5'-cyclic
11		monophosphate as mediator of catabolite repression in Escherichia coli. Proc.
12		Natl. Acad. Sci., USA 72:2300-2304.
13	21.	Estrem, S. T., T. Gaal, W. Ross, and R. L. Gourse. 1998. Identification of an
14		UP element consensus sequence for bacterial promoters. Proc. Natl. Acad. Sci.
15		USA 95: 9761-9766.
16	22.	Ezzel, J. W., and W. Dobrogosz. 1975. Altered hexose transport and salt
17		sensitivity in cyclic adenosine 3',5'-monophosphate-deficient Escherichia coli. J.
18		Bacteriol. 124: 815-824.
19	23.	Gaal, T., M. S. Bartlett, W. Ross, C. L. Turnbough, Jr., and R. L. Gourse.
20		1997. Transcription regulation by initiating NTP concentration: rRNA synthesis
21		in bacteria. Science 278: 2092-2097.
22	24.	Gaston, K., A. Bell, A. Kolb, H. Buc, and S. Busby. 1990. Stringent spacing
23		requirements for transcription activation by CRP. Cell 62:733-743.

1	25.	Gonzalez-Gil, G., R. Kahmann, and G. Muskhelishvili. 1998. Regulation of
2		crp transcription by oscillation between distinct nucleoprotein complexes. EMBO
3		J. 17: 2877-2885.
4	26.	Gosset, G., Z. Zhang, S. Nayyar, W. A. Cuevas, and M. H. Saier, Jr. 2004.
5		Transcriptome analysis of Crp-dependent catabolite control of gene expression in
6		Escherichia coli. J. Bacteriol. 186:3516-3524.
7	27.	Gourse, R. L., T. Gaal, M. S. Bartlett, J. A. Appleman, and W. Ross. 1996.
8		rRNA transcription and growth rate-dependent regulation of ribosome synthesis
9		in Escherichia coli. Annu. Rev. Microbiol. 50:645-677.
10	28.	Gourse, R. L., W. Ross, and T. Gaal. 2000. UPs and downs in bacterial
11		transcription initiation: the role of the alpha subunit of RNA polymerase in
12		promoter recognition. Mol. Microbiol. 37:687-695.
13	29.	Grainger, D. C., D. Hurd, M. Harrison, J. Holdstock, and S. J. Busby. 2005.
14		Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA
15		polymerase along the E. coli chromosome. Proc. Natl. Acad. Sci. USA
16		102: 17693-17698.
17	30.	Gunasekera, A., Y. W. Ebright, and R. H. Ebright. 1992. DNA sequence
18		determinants for binding of the Escherichia coli catabolite gene activator protein.
19		J. Biol. Chem. 267: 14713-14720.
20	31.	He, B., K. Y. Choi, and H. Zalkin. 1993. Regulation of Escherichia coli glnB,
21		prsA, and speA by the purine repressor. J. Bacteriol. 175:3598-3606.
22	32.	Husnain, S. I. 2005. Ph.D. thesis, University of Sheffield.
23	33.	Husnain, S. I., and M. S. Thomas. 2008a. The UP element is necessary but not
24		sufficient for growth rate-dependent control of the Escherichia coli guaB
25		promoter. J. Bacteriol. 190:2450-2457.

1	34.	Husnain, S. I., and M. S. Thomas. 2008b. Downregulation of the Escherichia
2		coli guaB promoter by FIS. Microbiology 154:1729-1738.
3	35.	Hutchings, M. I., and W. T. Drabble. 2000. Regulation of the divergent guaBA
4		and xseA promoters of Escherichia coli by the cyclic AMP receptor protein.
5		FEMS Microbiol. Lett. 187:115-122.
6	36.	Ishizuka, H., A. Hanamura, T. Inada, and H. Aiba. 1994. Mechanism of the
7		down-regulation of cAMP receptor protein by glucose in Escherichia coli: role of
8		autoregulation of the crp gene. EMBO J. 13:3077-3082.
9	37.	Ishizuka, H., A. Hanamura, T. Kunimura, and H. Aiba. 1993. A lowered
10		concentration of cAMP receptor protein caused by glucose is an important
11		determinant for catabolite repression in <i>Escherichia coli</i> . Mol. Microbiol. 10:341-
12		350.
13	38.	Judewicz, N. D., E. M. De Robertis Jr., and H. N. Torres. 1973. Inhibition of
14		Escherichia coli growth by cyclic adenosine 3',5'-monophosphate. Biochem.
15		Biophys. Res. Commun. 52: 1257-1262.
16	39.	Kilstrup, M., L. M. Meng, J. Neuhard, and P. Nygaard. 1989. Genetic
17		evidence for a repressor of synthesis of cytosine deaminase and purine
18		biosynthesis enzymes in Escherichia coli. J. Bacteriol. 171:2124-2127.
19	40.	Kim, J., S. Adhya, and S. Garges. 1992. Allosteric changes in the cAMP
20		receptor protein of Escherichia coli: hinge reorientation. Proc. Natl. Acad. Sci.
21		USA 89: 9700-9704.
22	41.	Kolb, A., S. Busby, H. Buc, S. Garges, and S. Adhya. 1993. Transcriptional
23		regulation by cAMP and its receptor protein. Annu. Rev. Biochem. 62:749-795.

1	42.	Kolb, A., D. Kotlarz, S. Kusan, and A. Ishihama. 1995. Selectivity of the
2		<i>Escherichia coli</i> RNA polymerase $E\sigma^{38}$ for overlapping promoters and ability to
3		support CRP activation. Nucleic Acids Res. 23:819-826.
4	43.	Kuhlman, T., Z. Zhang, M. H. Saier Jr., and T. Hwa. 2007. Combinatorial
5		transcriptional control of the lactose operon of Escherichia coli. Proc. Natl. Acad.
6		<i>Sci. USA</i> 104: 6043-6048.
7	44.	Law, E. C., N. J. Savery, and S. J. W. Busby. 1999. Interactions between the
8		Escherichia coli cAMP receptor protein and the C-terminal domain of the α
9		subunit of RNA polymerase at Class I promoters. Biochem. J. 337:415-423.
10	45.	Lawson, C. L., D. Swigon, K. Murakami, S. A. Darst, H. M. Berman, and R.
11		H. Ebright. 2004. Catabolite activator protein: DNA binding and transcription
12		activation. Curr. Opin. Struct. Biol. 14:10-20.
13	46.	Mehra, R. K., and W. T. Drabble. 1981. Dual control of the gua operon of
14		Escherichia coli K12 by adenine and guanine nucleotides. J. Gen. Microbiol.
15		123: 27-37.
16	47.	Meibom, K. L., L. Søgaard-Andersen, A. S. Mironov, and P. Valentin-
17		Hansen. 1999. Dissection of a surface-exposed portion of the cAMP-CRP
18		complex that mediates transcription activation and repression. Mol. Microbiol.
19		32 :497-504.
20	48.	Meng, L. M., M. Kilstrup, and P. Nygaard. 1990. Autoregulation of PurR
21		repressor synthesis and involvement of <i>purR</i> in the regulation of <i>purB</i> , <i>purC</i> ,
22		purL, purMN and guaBA expression in Escherichia coli. Eur. J. Biochem.
23		187: 373-379.

1	49.	Meng, L. M., and P. Nygaard. 1990. Identification of hypoxanthine and guanine
2		as the co-repressor for the purine regulon genes of Escherichia coli. Mol.
3		Microbiol. 4: 2187-2182.
4	50.	Meng, W., N. J. Savery, S. J. W. Busby, and M. S. Thomas. 2000. The
5		<i>Escherichia coli</i> RNA polymerase α subunit linker: length requirements for
6		transcription activation at CRP-dependent promoters. EMBO J. 19:1555-1566.
7	51.	Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor
8		Laboratory Press, Cold Spring Harbor, NewYork.
9	52.	Mori, K., and H.Aiba. 1985. Evidence for negative control of cya transcription
10		by cAMP and cAMP receptor protein in intact Escherichia coli cells. J. Biol.
11		Chem. 260: 14838-14843.
12	53.	Nasser, W., R. Schneider, A. Travers, and G. Muskhelishvili. 2001. CRP
13		modulates fis transcription by alternate formation of activating and repressing
14		nucleoprotein complexes. J. Biol. Chem. 276:17878-17886.
15	54.	Okamoto, K., S. Hara, R. Bhasin, and M. Freundlich. 1988. Evidence in vivo
16		for autogenous control of the cyclic AMP receptor protein gene (crp) in
17		Escherichia coli by divergent RNA. J. Bacteriol. 170:5076-5079.
18	55.	Perlman, R. L., and I. Pastan. 1969. Pleiotropic deficiency of carbohydrate
19		utilization in an adenyl cyclase deficient mutant of Escherichia coli. Biochem.
20		Biophys. Res. Comm. 37: 151-157.
21	56.	Perrenoud, A., and U. Sauer. 2005. Impact of global transcriptional regulation
22		by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in
23		Escherichia coli. J. Bacteriol. 187:3171-3179.
24	57.	Pokholok, D. K., M. Redlak, C. L. Turnbough, Jr., S. Dylla, and W. M.
25		Holmes. 1999. Multiple mechanisms are used for growth rate and stringent

1 control of <i>leuV</i> transcriptional initiation in <i>Escherichia coli</i> . J. Bacter
--

181:5771-5782.

3	58.	Quinones, M., H. K. Kimsey, W. Ross, R. L. Gourse, and M. K. Waldor.
4		2006. LexA represses CTX Φ transcription by blocking access of the α C-terminal
5		domain of RNA polymerase to promoter DNA. J. Biol. Chem. 281:39407-39412.
6	59.	Rao, L., W. Ross, J. A. Appleman, T. Gaal, S. Leirmo, P. J. Schlax, M. T.
7		Record Jr., and R. L. Gourse. 1994. Factor independent activation of <i>rrnB</i> P1.
8		An "extended" promoter with an upstream element that dramatically increases
9		promoter strength. J. Mol. Biol. 235:1421-1435.
10	60.	Rasmussen, L. J., A. Lobner-Olesen, and M. G. Marinus. 1995. Growth-rate-
11		dependent transcription initiation from the <i>dam</i> P2 promoter. Gene 157: 213-215.
12	61.	Ross, W., J. F. Thompson, J. T. Newlands, and R. L. Gourse. 1990. E. coli Fis
13		protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J.
14		9: 3733-3742.
15	62.	Sa, J. H., M. A. Namgung, C. J. Lim, and J. A. Fuchs. 1997. Expression of the
16		Escherichia coli thioredoxin gene is negatively regulated by cyclic AMP.
17		Biochem. Biophys. Res. Commun. 234:564-567.
18	63.	Savery, N. J., G. S. Lloyd, S. J. W. Busby, M. S. Thomas, R. H. Ebright, and
19		R. L. Gourse. 2002. Determinants of the C-terminal domain of the Escherichia
20		coli RNA polymerase alpha subunit important for transcription at class I cyclic
21		AMP receptor protein-dependent promoters. J. Bacteriol. 184:2273-2280.
22	64.	Savery, N. J., G. S. Lloyd, M. Kainz, T. Gaal, W. Ross, R. H. Ebright, R. L.
23		Gourse, and S. J. W. Busby. 1998. Transcription activation at Class II CRP-
24		dependent promoters: identification of determinants in the C-terminal domain of
25		the RNA polymerase α subunit. EMBO J. 12: 3439-3447.

1	65.	Schneider, D. A., W. Ross, and R. L. Gourse. 2003. Control of rRNA	
2		expression in Escherichia coli. Curr. Opin. Microbiol. 6:151-156.	
3	66.	Setty, Y., A. E. Mayo, M. G. Surette, and U. Alon. 2003. Detailed map of a cis-	
4		regulatory input function. Proc. Natl. Acad. Sci. USA 100:7702-7707.	
5	67.	Shah, S., and A. Peterkofsky. 1991. Characterisation and generation of	
6		Escherichia coli adenylate cyclase deletion mutants. J. Bacteriol. 173:3238-3242.	
7	68.	Simons, R. W., F. Houman, and N. Kleckner. 1987. Improved single and	
8		multicopy lac-based cloning vectors for protein and operon fusions. Gene 53:85-	
9		96.	
10	69.	Spassky, A., S. Busby, and H. Buc. 1984. On the action of cyclic AMP-cyclic	
11		AMP receptor protein complex at the E. coli lactose and galactose promoter	
12		regions. EMBO J. 3: 43-50.	
13	70.	Spibey, N., and W. T. Drabble. 1981. Construction and characterization of	
14		guaB-lacZ fusions in Escherichia coli K12. J. Gen. Microbiol. 126:497-501.	
15	71.	Srivatsan, A., and J. D. Wang. 2008. Control of bacterial transcription,	
16		translation and replication by (p)ppGpp. Curr. Opin. Microbiol. 11:100-105.	
17	72.	Tebbutt, J., V. A. Rhodius, C. L. Webster, and S. J. W. Busby. 2002.	
18		Architectural requirements for optimal activation by tandem CRP molecules at a	
19		class I CRP-dependent promoter. FEMS Microbiol. Lett. 210:55-60.	
20	73.	Tesfa-Selase, F., and W. T. Drabble. 1992. Regulation of the gua operon of	
21		Escherichia coli by the DnaA protein. Mol. Gen. Genet. 231:256-264.	
22	74.	Tesfa-Selase, F., and W. T. Drabble. 1996. Specific binding of DnaA protein to	
23		a DnaA box in the guaB gene of Escherichia coli K12. Eur. J. Biochem. 241:411-	
24		416.	

1	75.	Tiedeman, A. A., and J. M. Smith. 1984. Isolation and characterization of
2		regulatory mutations affecting the expression of the guaBA operon of Escherichia
3		coli K-12. Mol. Gen. Genet. 195:77-82.
4	76.	Ushida, C., and H. Aiba. 1990. Helical phase dependent action of CRP: effect of
5		the distance between the CRP site and the -35 region on promoter activity.
6		Nucleic Acids Res. 18:6325-6330.
7	77.	Valentin-Hansen, P., L. Sogaard-Andersen, and H. Pedersen. 1996. A flexible
8		partnership: the CytR anti-activator and the cAMP-CRP activator protein,
9		comrades in transcription control. Mol. Microbiol. 20:461-466.
10	78.	Van Delft, J. H., H. M. Verbeek, P. J. De Jong, D. S. Schmidt, A. Talens, and
11		L. Bosch. 1988. Control of the tRNA-tufB operon in Escherichia coli 1. rRNA
12		gene dosage effects and growth-rate-dependent regulation. Eur. J. Biochem.
13		175: 355-362.
14	79.	Wade, J. T., T. A. Belyaeva, E. I. Hyde, and S. J. W. Busby. 2001. A simple
15		mechanism for co-dependence on two activators at an Escherichia coli promoter.
16		EMBO J. 20: 7160-7167.
17	80.	Wanner, B. L., R. Kodaira, and F. C. Neidhardt. 1977. Physiological
18		regulation of a decontrolled <i>lac</i> operon. J. Bacteriol. 130:212-222.
19	81.	West, D., R. Williams, V. Rhodius, A. Bell, N. Sharma, C. Zou, N. Fujita, A.
20		Ishihama, and S. Busby. 1993. Interactions between the Escherichia coli cyclic
21		AMP receptor protein and RNA polymerase at class II promoters. Mol.
22		Microbiol. 10: 789-797.
23	82.	Wright, L. F., and C. J. Knowles. 1977. The interrelated effects of cyclic AMP
24		and growth rate on the respiratory system and glycolytic enzyme synthesis of
25		Escherichia coli K-12. FEMS Microbiol. Lett. 1:259-263.

1	83.	Wright, J. M., and S. M. Boyle. 1982. Negative control of ornithine
2		decarboxylase and arginine decarboxylase by adenosine-3',5'-cyclic
3		monophosphate in Escherichia coli. Mol. Gen. Genet. 186:482-487.
4	84.	Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage
5		cloning vectors and host strains: nucleotide sequences of the M13mp18 and
6		pUC19 vectors. Gene 33: 103-119.
7	85.	Zheng, D., C. Constantinidou, J. L. Hobman, and S. D. Minchin. 2004.
8		Identification of the CRP regulon using in vitro and in vivo transcriptional
9		profiling. Nucleic Acids Res. 32:5874-5893.
10		
11		
12		

Strain or plasmid	Genotype/Description ^a	Promoter designation ^b	Source or reference
Bacterial strains			
DM0068	MC1655 Asymptot		40
SØ5052	1001000000000000000000000000000000000	-	40
SØ3032 SØ850	$\frac{111}{1000} \frac{1110}{1000} \frac{1100}{1000} \frac{1100}{1000} \frac{1100}{1000} \frac{1100}{1000} \frac{1100}{1000} \frac{11000}{1000} \frac{11000}{100$	-	59 67
VH1000	E14- TetAT sp011 2Cya1400kan int-1 MC1655 lacZ lacI myrF ⁺	-	23
VH1000G 253	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	P = (253 to 136)	23
VII1000C 252 AmurP	$V \Pi 1000/\lambda [\Gamma_{guaB}(-255 t0 + 50)]$ - $tacZ$ $\mu tr B (Tr 10 dorivative of VH1000C 253)$	$P_{guaB}(-253 \text{ to } +36)$	J4 This study
VH1000G-2532purk	$\mu \mu K_{0.1}$ III 0 derivative of VIII0000-255	$P_{guaB}(-253 \text{ to } +30)$	
VIII000G-25310 A	VH1000/ λ [P _{guaB} (-255 to +10)]- <i>lac2</i>	$P_{guaB}(-2.53 \text{ to } +10)$	21 This study
VH1000G-25310 <i>Dpurk</i>	puro:: 1nTO derivative of VH1000G-255	$P_{guaB}(-253 \ 10 + 10)$	
VH1000G-133	VH1000/ λ [P _{guaB} (-133 to +36)]- <i>lacZ</i>	P_{guaB} (-133 to +36)	34
VH1000G-133G7C	VH1000/ λ [P _{guaB} (-133 to +36, G-122C)]-lacZ	P_{guaB} (-133 to +36, G-122C)	This study
VH1000G-133A18C	VH1000/ λ [P _{guaB} (-133 to +36, A-111C)]-lacZ	P_{guaB} (-133 to +36, A-111C)	This study
VH1000G-133CRPUP	VH1000/ λ harbouring P _{guaB} (-133 to +36)- <i>lacZ</i> , with CRP site displaced 11 base pairs further upstream ^{c,d}	$P_{guaB} (CRP - 128.5)$	This study
VH1000G-133CRPDN	VH1000/ λ harbouring P _{guaB} (-133 to +36)- <i>lacZ</i> , with CRP site displaced 11 base pairs further downstream ^d	P _{guaB} (CRP -106.5)	This study
VH1000G-133 <i>Acrp</i>	<i>crp::cat</i> derivative of VH1000G-133	P_{auaB} (-133 to +36)	This study
VH1000G-133 <i>Acva</i>	<i>cva1400::kan</i> derivative of VH1000G-133	P_{auaB} (-133 to +36)	This study
VH1000G-133G7C/cva	<i>cva1400::kan</i> derivative of VH1000G-133G7C	P_{auaB} (-133 to +36, G-122C)	This study
VH1000G-117	VH1000/ λ [P _{mm} (-117 to +36)]- <i>lac</i> Z	$P_{aug}(-117 \text{ to } +36)$	This study
VH1000G-37	$VH1000/\lambda$ [P	P_{guap} (-37 to +36)	34
$VH1000G_{-37}$ ApurR	$pur6$ $\cdot\cdot\cdot Tn 10$ derivative of VH1000G-37	P_{guab} (-37 to +36)	This study
Plasmids			This study
pBluescript II KS	<i>E. coli</i> -specific cloning vector (Ap^{R})	-	4
pUC19	<i>E. coli</i> -specific cloning vector (Ap^{R})	-	84

pMSB1	Derivative of promoter cloning plasmid, pRS1553, for construction of $lacZ$ fusions (Ap ^R)	-	59
pRLG770	Derivative of pKM2 for <i>in vitro</i> transcription reactions (Ap ^R)	-	61
pSR	pBR322 derivative for <i>in vitro</i> transcription reactions (Ap ^R)	-	42
pBSG-253	pBluescript II KS containing P_{guaB} (-253 to +36)		
pRLGgua-133	pRLG770 containing P_{guaB} (-133 to +36)	$P_{guaB}(-133 \text{ to } +36)$	34
pSR/CC(-41.5)	pSR containing Class II CRP-dependent promoter CC(-41.5)	CC(-41.5)	64
pLG339∆BS	pLG339 derivative containing <i>Bam</i> HI- <i>Eco</i> RI-SalI linker (Km ^R)	-	7
pLG339CRP	pLG339ABS derivative containing <i>crp</i>	-	7
pLG339CRP159L	pLG339ABS derivative containing <i>crpH159L</i>	-	81
pLG339CRP101E	pLG339ABS derivative containing <i>crpK101E</i>	-	12
pDCRP	pBR322 derivative carrying wild-type <i>crp</i> gene under the control of the <i>crp</i> promoter (Ap^{R})	-	7
pDU9	Derivative of pDCRP with <i>crp</i> gene deleted	-	7
pHA7	pBR322 derivative carrying wild-type <i>crp</i> under the control of the <i>bla</i> promoter (Ap^{R})	-	3

^aAp^R, ampicillin resistance. Km^R, kanamycin resistance. Architecture of promoters are shown within square brackets. SUB sequence is a DNA sequence that

contributes minimally to transcription through contacts with α CTD (21).

^bDesignations of promoter derivatives referred to in the text are given, where appropriate. Coordinates are relative to the *guaB* transcription start site.

^cAlthough derived from P_{guaB} (-133 to +36), upstream displacement of the CRP site in this promoter derivative means that native P_{guaB} sequences extend to

position -117 and the upstream boundary of the CRP site is located 139 bp upstream of the transcription start site.

^d Sequences corresponding to the original CRP upstream half-site in P_{guaB} (CRP -106.5) (positions -125 through to -121), or the original CRP

downstream half-site in PguaB (CRP -128.5) (positions -114 to -110) were inactivated by substitution with the sequence 5'-GACTG-3'. In each

case, wild type P_{guaB} sequences flanking the inactivated half site and the repositioned CRP site were not altered.

FIGURE LEGENDS

FIG. 1. DNA sequence of the *E. coli guaB* promoter. The sequence of P_{guaB} from positions -180 to +40 relative to the *guaB* transcription start site is shown. A putative CRP binding site centred at position -117.5, and the UP element are shown in bold and underlined. The putative binding site for PurR centred at -24.5, and the discriminator are underlined. The core promoter elements (-35 and -10 regions) and the initiating nucleotide are shown in bold. The core binding motifs in the CRP site that contribute most strongly to the interaction with CRP are overlined (30). Positions of single base changes pertinent to this study are indicated by an 'X' below the substituted base, with the introduced base shown below the X. For clarity, binding sites for FIS and DnaA are not shown.

FIG. 2. Identification of the CRP binding site at P_{guaB} by DNase I footprinting. DNase I footprinting was performed using a DNA fragment containing P_{guaB} (-253 to +36) radiolabelled at the downstream end (relative to the *guaB* transcription start site) on the template strand. DNase I footprinting was performed in the presence or absence of CRP with or without cAMP, as indicated. The region protected by CRP is indicated by the grey bar to the right of the gel. A G+A DNA sequencing ladder was run alongside DNase I-treated samples. Nucleotide positions are shown relative to the *guaB* transcription start site.

FIG. 3. Requirement of the CRP site for GRDC of P_{guaB} . GRDC of (A) a wild type P_{guaB} derivative, with endpoints at -133 and +36, compared to (B) a derivative with an upstream endpoint at -117 (P_{guaB} (-117 to +36)), (C) a derivative with an inactivating G to C point mutation at position 7 of the CRP site (P_{guaB} (-133 to +36, G-122C)) or

(D) a derivative with an improved CRP site harbouring an A to C mutation at position 18 of the CRP site (P_{guaB} (-133 to +36, A-111C)). Strains harbouring fusions of these promoters to *lacZ* were grown at different growth rates using the 'standard media' set, whereupon the β -galactosidase activity was determined. The standard errors (not shown) were no more than 10% in each case. (E) CRP-DNA interactions at each of the above promoters was probed by EMSA. Promoter designations are as follows: - 133, P_{guaB} (-133 to +36); -117, P_{guaB} (-117 to +36); G-122C, P_{guaB} (-133 to +36, G-122C); A-111C, P_{guaB} (-133 to +36, A-111C).

FIG. 4. Involvement of CRP in GRDC of P*guaB***.** The activity of P*guaB* in response to growth rate was measured in a *crp* deletion strain harbouring a P*guaB* (-133 to +36)-*lacZ* fusion and (A) a plasmid lacking a *crp* gene (pLG339ΔBS), or a plasmid encoding (B) wild type CRP (pLG339CRP), (C) CRPH159L (pLG339CRP159L) or (D) CRPK101E (pLG339CRP101E). Cells were grown using 'CRP media', whereupon the β-galactosidase activity was determined. The effect of the bacterial growth rate on the activity of P*guaB* derivatives harbouring a CRP site displaced by (E) 11 bp downstream of the original location (P*guaB* (CRP -106.5)), or (F) 11 bp upstream of the original location (P*guaB* (CRP -128.5)), was determined in the wild type strain background (VH1000), using 'standard media'.

FIG. 5. Effect of CRP overproduction on GRDC of P_{guaB} . The activity of P_{guaB} (-133 to +36) was measured in a Δ*crp* strain containing (A) a plasmid that did not encode CRP (pDU9), or a plasmid expressing *crp* under the control of (B) the *crp* promoter (pDCRP) or (C) the *bla* promoter (pHA7), growing in 'CRP media', whereupon the β-galactosidase activity was determined. For comparison, GRDC of the same P_{guaB} derivative was measured in a crp^+ strain (D), growing under the same conditions.

FIG. 6. Effect of exogenously added cAMP on GRDC of P_{guaB}. The effect of growth rate on the activity of P_{guaB} (-133 to +36) was measured in a Δ*cyaA* background, in (A) the absence or (B) presence of exogenously added cAMP (5 mM). In control experiments, the effect of growth rate on a promoter lacking a functional CRP site (i.e., P_{guaB} (-133 to +36, G-122C)) was assessed under identical conditions (panels C and D). Cells were grown at different cellular growth rates using 'CRP media', whereupon the β-galactosidase activity was determined.

FIG. 7. Effect of CRP on P_{guaB} activity *in vitro*. Multiple-round transcription reactions were performed on P_{guaB} (-133 to +36) and on the Class II CRP-dependent promoter, *CC*(-41.5), using 10 nM RNAP holoenzyme in the presence or absence of 20 nM CRP and 200 μ M cAMP, as indicated. Transcripts are indicated by the arrows shown on the left of the transcription gel. P_{guaB} activities were determined from the transcript abundance under each condition and are presented in a bar graph as the mean (with standard deviation) relative to P_{guaB} in the absence of CRP (activity = 1). The mean was calculated using data from three independent experiments.

FIG. 8. Role of PurR in regulation of P_{guaB} . The wild type *E. coli* strain (A) and an isogenic strain harbouring a deletion within the *purR* gene (B), each containing *lacZ* fusions to P_{guaB} (-37 to +36), P_{guaB} (-253 to +10), or P_{guaB} (-253 to +36), as indicated, were grown in M9 minimal medium with 0.2% (w/v) glucose and 5 µg/ml thiamine in the presence (grey bars) or absence (black bars) of 60 µg/ml guanine. At mid-

exponential growth phase the β -galactosidase activity was determined. Each bar represents the mean β -galactosidase activity (with standard deviation) in Miller units, and was calculated using data obtained from three independent experiments. The effect of growth rate on the activity of P_{guaB} (-253 to +36) was measured in the wild type strain (C) and in the *purR* mutant (D) growing in. "standard media'.