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Moment Method Analysis of an Archimedean Spiral
Printed on a Layered Dielectric Sphere

Salam K. Khamas, Member, IEEE

Abstract—A method of moments model is presented to analyze
Archimedean spirals that are printed on a layered dielectric
sphere. The model is derived assuming an arbitrary location of the
spiral. Input impedance, current distribution and far-field results
are presented and are shown to be in good agreements with other
methods.

Index Terms—Method of moments (MoM), spherical antennas,
spiral antennas.

I. INTRODUCTION

O
VER THE LAST two decades spiral antennas have re-

ceived increased interest due to their wide bandwidths,

high efficiencies and circular polarization. Spiral antennas in

different shapes and configurations have been considered in the

literature. An Archimedean spiral radiating above a perfectly

conducting ground plane has been reported in [1]. A curl an-

tenna, which is a single arm spiral fed by a monopole has been

presented in [2]. Eccentric spirals that offer advantages of beam

steering have been reported in [3], [4]. Moment method and

FDTD have been used to model spirals printed on layered di-

electric substrates [5]–[7]. Most of these analysis and measure-

ments have been limited to planar geometries.

A conformal spiral has been reported in [8], [9], where a

single square spiral and an array of square spirals above and

in conformance with a perfectly conducting cylindrical ground

plane have been modelled and measured. A spherical array of

spirals has been reported in [10], the array elements are planar

Archimedean spirals placed around an imaginary spherical sur-

face to provide full-scan coverage.

Archimedean spirals that conform to a spherical surface or

that are printed on a layered dielectric sphere have not been

considered earlier. This study presents analysis of such antennas

using the method of moments (MoM) where the dyadic Green’s

functions have been used to model the effects of the sphere

[11]–[15]. Two configurations have been considered including

a conformal Archimedean spiral above a perfectly conducting

sphere and a spiral printed on a grounded spherical substrate.

For each spiral the input impedance, radiation pattern, gain and

axial ratio are presented. These results have been compared with

controls calculated using CST microwave studio [16]. The input

impedance of a spiral radiating next to a large sphere has been
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Fig. 1. (a) Archimedean spiral printed on a layered dielectric sphere. (b) Local
angles �, � and the spiral winding angle '.

calculated and compared with that of an equivalent planar spiral

above a flat substrate [1], [17].

II. THEORY AND FORMULATION

A. Spiral’s Geometry

Fig. 1(a) shows a conformal Archimedean spiral in a three-

layer media: the first layer is free space, the second is a spherical
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Fig. 2. Input impedance of a spiral above a 1.5 cm perfectly conducting sphere.

Fig. 3. Convergence of input impedance of a spiral above a 1.5 cm perfectly
conducting sphere at 6.5 GHz.

substrate and the third layer is a perfectly conducting sphere.

The spherical substrate has a dielectric constant of and a

thickness of , the perfectly conducting sphere has radius of

and the overall radius of the layered sphere is . The spiral’s

center is positioned at ( , , ).

To define the spiral arm the local angles and , which are

shown in Fig. 1(b), have been defined as

(1)

(2)

where , is the spiral constant, is the length of

the feed segment and is the winding angle of the spiral. The

local co-ordinates are

(3)

(4)

(5)

Fig. 4. Current’s distribution along one arm of a spiral above a perfectly con-
ducting sphere at 6.5 GHz.

By using vectors rotation [18], the required equations to define

a spiral arm can then be derived as

(6)

(7)

(8)

A unit tangent vector to the spiral arm can be obtained as [18]

(9)

Equation (9) can be expressed in a more convenient form as

(10)

where

(11)

(12)

(13)

(14)

(15)
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Fig. 5. Radiation pattern of a spiral antenna above a PEC sphere as a function
of � at 6.5 GHz (a) � = 0 plane, (b) � = 90 plane.

The length of a single spiral arm is given by

(16)

An alternative method to formulate the problem is to assume that

the spiral’s center is located on the -axis and then use Eulerian

angles to define the spiral’s co-ordinates anywhere on the sphere

[19].

Fig. 6. Axial ratio and gain of a spiral above a perfectly conducting sphere.

B. MoM Solution

By assuming the wire radius to be very small compared to

the wavelength, the thin wire approximation can be used. Since

there is no radial current component, the remaining current com-

ponents due to a current with amplitude are

(17)

where or .

Each spiral arm has been divided into curved segments of

length and curved sinusoidal current testing and expansion

functions have been chosen as

(18)

(19)

where the primes in (19) denote source co-ordinates.

Dyadic Green’s functions (DGF) have been used in the mo-

ment method analysis of a spiral radiating in the presence of a

sphere. Complete set of expressions of the dyadic Green’s func-

tions are given in [13] in form of an infinite summation of spher-

ical waves. When both the source and the field points are in free

space, the DGF is [13]

(20)

and the corresponding electric field of a thin wire is

(21)

where and refer to the location of field and source points

respectively.

The first term in (20) and (21), , represents the con-

tribution from a source radiating in an unbounded homogenous
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Fig. 7. Input impedance of a spiral printed on a 3 cm layered sphere.

Fig. 8. Current’s distribution along one arm of a spiral printed on a 3 cm layered
sphere at 6 GHz.

free space, and the second term represents the source contribu-

tion due to the presence of the sphere. When the source and field

points are very close to each other converges very

slowly, therefore the physical argument technique has been used

to express it using the much simpler free space Green’s function

[20]. Then the tangential field due to the th expansion current

pulse becomes

(22)

where , is the

field component due to the dyadic Green’s function

which can be expressed as

(23)

and

(24)

The DGF components in (24) are given by

(25)

(26)

(27)

(28)

where

(29)

(30)

(31)

(32)

(33)

(34)

is the spherical Hankel function of the second type,

is the Legendre function of degree and is

the associated Legendre function of the first kind with the order

2 and degree . Detailed expressions for and are given in

[13].

Finally the impedance matrix elements can then be calculated

as

(35)
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Fig. 9. Radiation pattern of a printed spiral as a function of � when h = 0:75 cm at 6 GHz (a) r = 3 cm, (b) r = 6 cm, (c) planar spiral.

C. Far-Zone Radiation Fields

Once the current distribution is determined, the far-field com-

ponents can be derived using the Hankel function asymptotic

expressions when , that is

This results are in the following:

(36)

(37)

where is the spherical Bessel function of order .

D. General Considerations

The equations derived in section II-A can be used to model

the spiral’s feed segment by modifying the local angles in (1),

(2), (14), and (15) to

(38)

and . The dyadic Green’s functions in

[13] have double summation expressions. For computation effi-
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ciency this has been reduced to a single summation by using the

addition theorem of Legendre polynomials [21]

(39)

where is 2 for and 1 for .

CST [16] has been used to validate the MoM code. For each

spiral the following CST settings have been used; 40 mesh lines

per wavelength and mesh line ratio limit of 30. A gap of 0.05

cm was made in the spiral’s feed segment to accommodate the

discrete excitation port. CST thin wire approximation and an

accuracy of -50dB have been chosen in the CST transient solver.

III. RESULTS

Two spiral geometries have been considered; the first is a

spiral above a perfectly conducting sphere and the second is a

spiral printed on a layered sphere. To ensure convergence of the

MoM code, each spiral arm has been divided into 25 curved seg-

ments except in the case of a spiral printed on a large dielectric

sphere where 130 curved segments have been used owing to the

spiral’s arm length. In all cases the spiral’s axis was located at

( , ) and a delta gap source has been used to feed

the antenna.

The free space Green’s function in (22) is singular when

. This is a well known problem which can be avoided by em-

ploying the thin wire approximation so that the minimum dis-

tance between the source and observation points is equal to the

wire radius. More accurate solution can be obtained by calcu-

lating the exact kernel [20]. In this study, the input impedance

has been calculated assuming the source point is located at

and the field point at , where is the wire radius

that has been chosen as 0.02 cm.

The infinite summation in (25)–(28) is convergent and for

a spiral printed on a dielectric sphere it has been truncated at

, where depends on the sphere radius, permittivity,

number of layers and the separation between source and field

points. For the case of a spiral above a perfectly conducting

sphere was sufficient to achieve convergence. In the

far field region convergence of (36) and (37) has been achieved

using for all spirals.

A. Spiral Above a PEC Sphere

The spiral in Fig. 1(a) has been modelled when , i.e.

the problem is reduced to that of an Archimedean spiral placed

at a height above a perfectly conducting sphere. The following

parameters have been used to model this spiral: feed wire length

of , a spiral constant of , a max-

imum winding angle of [1], a sphere radius

of and a height of . The spiral’s input

impedance has been calculated and shown in Fig. 2 as a func-

tion of frequency. Comparison with results obtained using CST

proves the accuracy of the presented MoM model. Fig. 3 shows

Fig. 10. Axial ratio and gain of a spiral printed on a 3 cm layered dielectric
sphere.

Fig. 11. Input impedance of a printed spherical spiral as a function of r at 6
GHz.

the convergence of input impedance with number of segments

when the spiral is modelled using curved and linear segmenta-

tion. Curved segmentation approach has improved the conver-

gence rate by a factor of . This should provide reductions

on the order of in computation time and in the required

memory space. The linear segmentation results have been ob-

tained using NEC [22]. The current distribution along the spiral

arm at 6.5 GHz is shown in Fig. 4 with a predominantly travel-

ling wave distribution. Radiated far fields have been calculated

and the right- and left-hand circularly polarized components are

shown in Fig. 5 in the and planes when com-

pared with those obtained using CST with good agreement. Gain

and axial ratio of this spiral are shown in Fig. 6 indicating that

the spiral has a gain of 6 dB and an axial ratio 3 dB bandwidth

of more than 40%. The same spiral has been modelled in the

absence of the PEC sphere at 6.5 GHz and its gain and axial

ratio have been calculated as 4.3 dB and 1.9 dB, respectively.
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Fig. 12. Axial ratio and gain of a printed spherical spiral as a function of r at
6 GHz.

This shows that the presence of the PEC sphere has improved

the spiral’s gain and circular polarization.

B. Spiral Printed on a Two-Layer Sphere

The spiral’s geometry shown in Fig. 1(a) has been modelled

again for the case when the dielectric substrate has a relative

permittivity of and a thickness of . The

radius of the perfectly conducting sphere has been chosen as

, so that the layered sphere has an outer radius of

. The spiral has been modelled using ,

a spiral constant of and .

The input impedance has been calculated using MoM and com-

pared with the CST results as shown in Fig. 7. The two sets

of results agree well with each other. The input impedance of

an equivalent spiral that is printed on an infinite flat substrate

has been calculated using a separate MoM code [6] as shown

in Fig. 7. A travelling wave current distribution along the spiral

arm can be seen in Fig. 8. Far-field components are shown in

Fig. 9 for different sphere radii in the and

planes, where it can be seen that back-lobes exist because of the

finite size perfectly conducting spherical core. The computed ra-

diation patterns agree well with those obtained using CST. Gain

and axial ratio as a function of frequency are shown in Fig. 10,

where it can be seen that the spherical spiral provides a gain of

6.3 dB at 6 GHz and an axial ratio with a 3 dB bandwidth of 28%

compared with a gain of 7 dB and an AR with a 3 dB bandwidth

of 30% for an identical planar spiral.

The significance of the perfectly conducting sphere radius,

, on the spiral’s radiation characteristics has been investigated

when and at an operating frequency of 6

GHz. From Fig. 11 it can be seen that when the input

impedance is approximately constant at compared

with for a printed planar spiral. The variations of the

gain and axial ratio with are shown in Fig. 12 where it can be

seen that for larger the gain is 6.5 dB and the axial ratio is 2

dB.

Fig. 13. Input impedance of a spiral above a large PEC sphere compared with
that of an equivalent planar spiral.

Fig. 14. Input impedance of a spiral printed on a 9 cm dielectric sphere com-
pared with that of an identical planar spiral.

C. Large Sphere Considerations

As a further verification of the model, spirals above large

spheres have been investigated. The input impedance of each

spiral has been calculated and compared with that of an equiv-

alent planar spiral.

A spherical spiral at a height of above a per-

fectly conducting sphere has been modelled using the dimen-

sions of a planar spiral given in [1]. The radius of the PEC sphere

has been chosen as so that the overall sphere ra-

dius is . The computed input impedance agrees well

with that of the planar spiral as shown in Fig. 13.

The input impedance of a spiral printed on a dielectric sphere

has been calculated using the normalized planar spiral dimen-

sions given in [17] at 6 GHz. In order to implement a valid

comparison with the geometry of [17], the radius of the con-

ducting spherical core has been reduced to , that is, the

problem is reduced to that of a spiral printed on a single layer

dielectric sphere. The overall sphere radius has been chosen as

. The calculated input impedance is shown in

Fig. 14, where it can be seen that the impedance of a spherical
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spiral approaches that of a planar spiral for a larger sphere ra-

dius.

IV. CONCLUSION

The method of moments has been used to analyze an

Archimedean spiral radiating in the presence of a layered

sphere. The results have been validated against those obtained

from CST for spirals above a perfectly conducting sphere and

spirals printed on a grounded spherical substrate. The correct-

ness of the model has been further verified by comparing the

input impedance of a spiral above a large sphere with that of

an equivalent planar spiral. Spirals conforming to a spherical

surface have maintained the characteristics of a planar spiral

such as circular polarization, gain and wide bandwidths. The

addition of further dielectric layers can be implemented easily

using the appropriate coefficients for the dyadic Green’s func-

tion given in [13]. The presented model can be used to analyze

other types of antennas that conform to a sphere by modifying

the local co-ordinates and . Spherical arrays can also be

modelled using the presented method since the model has

been developed for antennas that are located arbitrarily on the

spherical surface.
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