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We describe a facile approach for nanopatterning of photosynthetic light-

harvesting complexes over macroscopic areas, and use optical spectroscopy

to demonstrate retention of native properties by both site-specifically and

non-specifically attached photosynthetic membrane proteins. A Lloyd’s

mirror dual-beam interferometer was used to expose self-assembled mono-

layers of amine-terminated alkylthiolates on gold to laser irradiation.

Following exposure, photo-oxidized adsorbates were replaced by oligo(ethy-

lene glycol) terminated thiols, and the remaining intact amine-functionalized

regions were used for attachment of the major light-harvesting chlorophyll–

protein complex from plants, LHCII. These amine patterns could be derivatized

with nitrilotriacetic acid (NTA), so that polyhistidine-tagged bacteriochloro-

phyll–protein complexes from phototrophic bacteria could be attached with

a defined surface orientation. By varying parameters such as the angle between

the interfering beams and the laser irradiation dose, it was possible to vary the

period and widths of NTA and amine-functionalized lines on the surfaces;

periods varied from 1200 to 240 nm and linewidths as small as 60 nm (l/4)

were achieved. This level of control over the surface chemistry was reflected

in the surface topology of the protein nanostructures imaged by atomic force

microscopy; fluorescence imaging and spectral measurements demonstrated

that the surface-attached proteins had retained their native functionality.
1. Introduction
Diagnostic devices [1,2], biomaterials, tissue engineering [3,4], proteomics [5],

medical diagnostics [6] and many other applications require the controlled attach-

ment of interacting biomolecules to solid substrates. In particular, the fabrication

of bioinspired photovoltaic devices, which ultimately requires the directed immo-

bilization of chlorophyll–protein complexes onto a variety of substrates, is of

special interest [7–13]. The well-characterized and relatively simple photosynthetic

apparatus of purple phototrophic bacteria is an ideal starting point for such work.

The light-absorbers in these organisms are bacteriochlorophyll and carotenoid

pigments that bind non-covalently to transmembrane polypeptides, forming

ring-like antenna structures. Energy absorbed by arrays of light-harvesting LH2

complexes migrates to the LH1 complex, which surrounds the reaction centre

complex where absorbed energy is transiently stored in a series of electron transfer

reactions [14–16]. In plants, the LHCII complex absorbs solar energy, which

migrates to the photosystem II reaction centre [17–21].

Several studies report the attachment of these and other photosynthetic com-

plexes to various surfaces [7–13,22–25]. A number of techniques such as dip-pen
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nanolithography [26–31], scanning near-field lithography

[32–35], electron beam lithography [36,37] and nanoimprint-

ing [38–40] can achieve nanopatterning. Previous studies

using the LH2 complex from the photosynthetic bacterium

Rhodobacter (Rba.) sphaeroides and the LHCII complex from

spinach have already shown that scanning near-field photo-

lithography [41] and nanoimprinting [5,42,43] can direct the

nanoscale surface patterning of these complexes, and that

80-nm-wide lines of LH2 exhibit long-range (micrometre

scale) energy transport [44]. However, the ability to easily

change the size and the period of nanostructures, and to fabri-

cate them over very large (cm2 and larger) areas, still presents a

challenge. Here, interferometric lithography (IL) [45] offers a

very promising, low-cost, reliable and scalable technology for

fabricating nanoscale periodic patterns over large (cm2) areas.

In this work, we used IL to photopattern self-assembled

monolayers (SAMs) deposited on gold substrates [46,47].

Exposure of amine-terminated SAMs in a dual-beam interfe-

rometer led to periodic photo-oxidation of thiolate head

groups, enabling replacement of oxidized molecules by con-

trasting oligo(ethylene glycol) functionalized adsorbates.

Derivatization of intact amine-terminated adsorbates either

with an imido-ester cross-linker or with nitrilotriacetic acid

(NTA) enabled the specific immobilization of either native or

polyhistidine-tagged light-harvesting complexes. Proteins

were bound specifically to the Ni2þ–NTA regions with very

little non-specific adsorption. The periodicity of the interfer-

ence pattern was controlled by varying the angle between the

two interfering beams, and the width of the modified regions

of the SAM was broadened by increasing the exposure to the

laser irradiation. We show that polyhistidine (His)-tagged

RC-LH1-PufX complexes from Rba. sphaeroides and LHCII

complexes from spinach can be precisely immobilized to

form parallel lines of predetermined widths and periodicities.

In situ fluorescence emission spectroscopy confirmed the

retained functionality of these nanopatterned complexes.
2. Material and methods
2.1. Chemicals
11-Amino-undecanethiol hydrochloride (99%), triethyleneglycol

mono-11-mercaptoundecyl ether (95%; OEG-thiol) and 25% glutar-

aldehyde solution were purchased from Sigma Aldrich. Ethanol

(HPLC grade) was purchased from Fisher Scientific Limited

(Loughborough, UK). N-(5-amino-1-carboxypentyl) iminodiacetic

acid (AB-NTA) was purchased from DoJindo Molecular Technol-

ogies. All aqueous solutions used in the preparation of NTA

surfaces for protein attachment were prepared using ultrapure

water (Elga LabWater Systems).

2.2. Patterning of His-tagged and native proteins
by interferometric lithography

The scheme in figure 1 illustrates the steps involved in the

preparation of IL-patterned lines of NTA for immobilizing

His-tagged RC-LH1-PufX and native LHCII proteins. SAMs of

amine-functionalized thiols on either 200-nm-thick epitaxial gold

layer (Phasis Sárl, Switzerland) or 30-nm-thick polycrystalline

gold were formed by immersing these substrates in a dilute

(2 mM) ethanolic solution of 11-amino-1-undecanethiol hydro-

chloride for 18 h at room temperature. After the reaction, the

surfaces were rinsed with pure ethanol and blown dry with a nitro-

gen stream prior to IL photopatterning, which was carried out
using a Coherent Innova 300C FreD frequency-doubled argon

ion laser (Coherent UK, Ely, UK) emitting at 244 nm with a maxi-

mum power of 100 mW. An expanded collimated laser beam was

directed onto a Lloyd’s mirror configuration [46,48] (figure 2) with

a 908 sample and mirror geometry such that half of the beam

directly irradiated the sample. The other half of the beam was

incident onto the mirror and was reflected back onto the sample.

Interference between the two halves of the beam produces an

interference pattern of lines with a period d

d ¼ l

2 sin u
, (2:1)

where l is the wavelength of the incident laser beam and u is the

half-angle between the two interfering half-beams.

In order to vary the period of the linear nanopatterns, u was

adjusted to 68, 138, 188 or 308, and a series of amine-functiona-

lized surfaces was exposed to a laser beam for 10 min at a

power density of 64 J cm22.

In order to vary the linewidth of functionalized linear nanopat-

terns, surfaces with functionalized monolayers were exposed to

laser irradiation for various lengths of time ranging from 2 to

15 min (corresponding to an irradiation dose of 14–105 J cm22) at

u values of 68, 138, 188, 308. After the photo-oxidation step, the

exposed regions of the gold surface were re-functionalized by

immersing the surfaces in a dilute (2 mM) ethanolic solution of

OEG-thiol for 10 min, then washed with fresh ethanol and dried

with a stream of nitrogen.

In order to create NTA functionalities at the surfaces, patterned

surfaces were immersed in an aqueous solution of 200–300 mM

glutaraldehyde for 20 min, then washed extensively and repeatedly

(five or six times) with a spray of ultrapure water and ethanol. The

surfaces were then dipped in an aqueous solution of AB-NTA

(pH ¼ 5.2) for 2 h and washed with ultrapure water. Finally, sur-

faces were immersed in an aqueous solution of 10 mM NiSO4 for

8–10 min and then washed extensively with water and blown

dry with a stream of nitrogen.

2.2.1. Amine surfaces
The procedure outlined in figure 1 was used, but, after photopat-

terning, the surfaces were not treated with glutaraldehyde and

AB-NTA; instead, the samples were immersed in a 2 mM ethano-

lic solution of OEG-thiol to produce a protein-resistant layer on

the light-exposed regions. These patterned samples were then

soaked in phosphate-buffered saline (PBS) for 30 min prior to

protein adsorption.

2.2.2. Protein immobilization
NTA-functionalized nanopatterned substrates were incubated with

a dilute solution of the His-tagged RC-LH1-PufX complex at a final

concentration of approximately 75 nM in imaging buffer (20 mM

HEPES, pH 8.3, with 0.03% n-dodecyl-beta-maltoside (b-DDM))

for 5–7 min, then extensively rinsed in imaging buffer. For the

immobilization of LHCII complexes, the amine-functionalized sub-

strates were treated with 15–20 mM dimethyl suberimidate (DMS)

solubilized in buffer containing 20 mM HEPES, pH 8.3, for 30–

40 min. After extensive rinsing, the substrates were incubated with

LHCII complexes diluted in buffer containing 20 mM HEPES, pH

8.3, and 0.03% b-DDM for 5–7 min at a final protein concentration

of 50–100 nM. Samples were stored in imaging buffer at 48C for

atomic force microscopy (AFM) and fluorescence imaging.

2.3. Atomic force microscopy
A MultiMode 8 atomic force microscope (Bruker) was used for ima-

ging SAMs and the topology of patterned proteins. Lateral force

microscopy (LFM) imaging of photopatterned SAMs was con-

ducted in air at ambient conditions using triangular SNL probes

(Bruker) with a nominal spring constant of approximately

0.12 Nm21 and a nominal resonant frequency of around 23 kHz.
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Figure 1. Schematic diagram illustrates the sequence of steps used for immobilizing light-harvesting proteins on gold substrates.
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Figure 2. Schematic diagram of the Lloyd’s mirror configurations used for IL.
u is the half-angle between the two interfering beams.
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Immobilized nanopatterned RC-LH1-PufX and LHCII complexes

were imaged in PeakForceTapping mode at nearly physiological

conditions in buffer (PBS, pH 7.4), at room temperature using SNL

probes (Bruker) with a nominal spring constant of approximately

0.35 Nm21 and a nominal resonant frequency of around 18 kHz

(in liquid). The modulation amplitude and frequency were

adjusted to values in the range 20–24 nm and 2 kHz, respectively.

2.4. Fluorescence imaging and spectral measurements
After AFM characterization, patterned samples with RC-LH1-PufX

or LHCII proteins were mounted between a microscope slide and

coverslip in imaging buffer and were sealed with DPX Mountant
(Sigma-Aldrich) prior to fluorescence measurements. The fluor-

escence emission properties of the immobilized patterned proteins

were measured using a home-built inverted epifluorescence micro-

scope (Zeiss Axio Observer.A1m) equipped with a spectrometer

(Princeton Instrument Acton 150) and an electron-multiplying

charge-coupled device (EMCCD) camera (Princeton Instrument

ProEM 512). Excitation was from a collimated light-emitting

diode (LED) light source emitting at 470 nm (ThorlabsM470L2),

and the resulting fluorescence emission was detected through the

spectrometer onto the EMCCD camera.

During the fluorescence imaging and spectral measurements

excitation, light was filtered by a 470/40 nm bandpass filter, then

reflected by a 605 nm dichroic beamsplitter (SemrockFF605-Di02)

onto the sample. For RC-LH1-PufX samples, the fluorescence

emission was collected using a 680 nm longpass emission filter

(Chroma, Q680lp), and a 593 nm longpass filter (SemrockFF01–

593/LP) was used for LHCII. The spectra were captured with a

slit width of 800 mm and a 150 g mm21 grating at a central wave-

length of either 900 nm for RC-LH1-PufX or 680 nm for LHCII.

Each fluorescence image and emission spectrum was an average

of 10 frames with a 0.1 s exposure time.
3. Results and discussion
3.1. Interference periodic patterning of nitrilotriacetic

acid surfaces: control of period and line width
Periodic patterned lines of NTA across Au substrates were

prepared as described in the Materials and methods. Upon
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Figure 3. Lateral force microscopy images (5 � 5 mm2) showing control over the period and width of lines of NTA on gold/mica achieved by varying the exposure
time (typically 2 – 15 min and with a corresponding dose of 14 – 105 J cm2) at fixed angles of 68 (a – d ), 138 (e – h), 188 (i – l ) and 308 (m – p). These data are
summarized in table 1. All scale bars, 1 mm.
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exposure to UV radiation, SAMs of amine-thiols on gold were

photo-oxidized [24]. Exposure of alkylthiolate SAMs to UV

light in the presence of air causes photo-oxidation of the

head-group to yield an alkylsulfonate [49], which can be

removed by washing in polar solvents such as water or ethanol;

alternatively, alkylthiolate SAMs can be replaced by another

thiol, in this case with a OEG-thiol linker. Following photopat-

terning, the amine-thiols in the unexposed regions were then

converted to NTA by reaction with glutaraldehyde and then

treated with AB-NTA as described in the Materials and

methods, and depicted in figure 1.

The LFM images in figure 3a–p show periodic patterns of

NTA lines obtained with half-angles u of 68, 138, 188 and 308,
respectively, between the sample surface and the incident

laser beam, and with varying exposures. Alternating bands

of bright and dark contrast were observed in every case,

with the bright bands arising from the strongly polar NTA

groups that adhere strongly to the probe yielding a higher

rate of energy dissipation than the less polar OEG-rich

regions. The widths of the bright bands decreased with

exposure. At lower exposures, the intensity is only sufficient

to cause complete photo-oxidation of adsorbates near to the

maxima in the interferogram. Consequently, after these

narrow bands are derivatized with OEG-thiol, broad bands

occupied by amine-terminated thiols remain between them,

which yield bright contrast in the LFM images after functio-

nalization with NTA. As the exposure increases, the widths
of the bands of photo-oxidized adsorbates increase, thinning

the residual amine-functionalized regions to which NTA is

attached. This ‘photochemical whittling’ [46] of the unex-

posed amine regions widens the OEG-thiol regions that are

formed after the final adsorption step, and narrows the

lines of the remaining intact amine-terminated adsorbates,

as shown in table 1.
3.2. Nanopatterning photosynthetic membrane protein
complexes onto Ni2þ– nitrilotriacetic acid lines
created by interferometric lithography

The versatility of the IL approach for yielding the variety of

NTA lines in figure 3 was exploited for nanopatterning photo-

synthetic membrane protein complexes. These complexes

form two-dimensional arrays in the lipid bilayer membranes

of photosynthetic organisms, and their function is to absorb,

transmit and eventually store solar energy. For use in our nano-

patterning experiments, these complexes are removed from

their native lipid bilayer by gentle detergent treatment and

purified by several rounds of chromatography. Initially, we

used the monomeric RC-LH1-PufX complex from the purple

phototrophic bacterium Rba. sphaeroides; a medium-resolution

structure of the RC-LH1-PufX dimer was published recently

[50]. NTA lines were complexed with Ni2þ ions then used for

attachment of RC-LH1-PufX monomers, genetically engineered
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Figure 4. (a – n) AFM topographs (5 � 5 mm2) of surface-immobilized His-tagged RC-LH1-PufX complexes attached to Ni2þ– NTA lines produced by IL. The half-
interference angles are 68 (a – d ), 138 (e – h), 188 (i – l ) and 308 (m,n). For the images running horizontally, the exposure time at a given angle was progressively
increased: 2 min (a – m), 5 min (b – n), 10 min (c – k), 15 min (d – l). (o) A section (black line) was taken across three lines of RC-LH1-PufX complexes. ( p) Height
profile corresponding to this section. All scale bars, 1 mm.

Table 1. Variation in periodicity of lines with the change of half-angle between the two interfering beams, and the variation in line width for different
exposure times. The values of periods and widths were measured as the full width at half maximum (FWHM).

half-beam interference
angle (u)

period of
lines (nm)

width of line (nm)

2 min exposure 5 min exposure 10 min exposure 15 min exposure

6 1200 600 400 200 170

13 550 290 210 110 80

18 400 200 100 70 60

30 240 130 100 80 50
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Figure 5. Spectroscopic characterization of RC-LH1-PufX complexes immobilized on Ni2þ– NTA lines patterned by IL on gold substrates. (a) False colour fluorescence
image. (b) The fluorescence emission spectrum recorded on immobilized complexes.
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Figure 6. (a – f ) AFM topographs (5 � 5 mm2) of LHCII complexes attached to IL-patterned amine lines. The various LHCII line widths were produced using angles
of u as in figure 2, of 168 (a – c) and 268 (d – f ), with irradiation of 6, 18 and 36 J cm22. A section (cyan line) was taken across three lines of LHCII proteins in
panel (c). (g) Height profile corresponding to this section.
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to bear a His10 tag on the cytoplasmically facing RC-H subunit.

This combination of an engineered His-tag and NTA groups on

the surface ensures a uniform orientation of the immobilized

complexes. The tapping mode AFM topographs in figure 4

(top panels) show that RC-LH1-PufX complexes are attached

to the NTA lines, with very little non-specific adsorption and

with periods very similar to their parental LFM patterns in

figure 3. The 7–8 nm heights of these features, measured

across the black line in figure 4 (bottom panels) and displayed

as the cross section in figure 4b, are slightly lower than

measured for two-dimensional crystals of a similar RC-LH1

complex [51], which we attribute to the AFM probe causing

small displacement of surface-bound complexes. It is also

possible that these complexes adsorb to the surface at a variety

of angles, whereas they are held at a fixed position in the

two-dimensional crystals.

3.3. Assessment of the functional integrity of surface-
bound RC-LH1-PufX complexes

The fluorescence emitted from the bacteriochlorophyll or

chlorophyll pigments of photosynthetic complexes is a

useful indicator of their structural integrity and function. In
the case of RC-LH1-PufX complexes, a closely packed ring

of 28 bacteriochlorophylls, attached to LH1 polypeptides,

forms a belt round each RC, the site of charge separation

[50]. Monomeric bacteriochlorophylls in solvent emit fluor-

escence at approximately 780 nm, whereas their assembly

into ring-like structures red-shifts their emission by over

100 nm [52]. The presence of red-shifted fluorescence is there-

fore a useful measure of retained structure and function

following immobilization onto IL-patterned Ni2þ–NTA. To

investigate the possible effects of immobilizing RC-LH1-

PufX complexes on patterned surfaces, we recorded the

florescence emission of Ni2þ–NTA patterns using a home-

built inverted epifluorescence microscope. Patterned core

complexes were excited at 470 nm with a collimated LED

light source, and the resulting fluorescence was collected

through a spectrometer onto an EMCCD camera. The image

in figure 5a shows the lines of fluorescent RC-LH1-PufX com-

plexes; a region of interest on the pattern was defined by

closing the slits of the spectrometer and, using a suitable grating

and centre wavelength, the fluorescence emission spectrum was

measured (figure 5b). The 885 nm fluorescence emission maxi-

mum shows that the RC-LH1-PufX complexes have retained

their native properties following surface immobilization.
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Figure 7. Fluorescence analyses of the LHCII complex immobilized on IL-patterned lines on gold substrates. (a) Fluorescence image (scale bar, 5 mm) and (b) the
fluorescence emission spectrum.
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3.4. Interference patterning of the plant light-
harvesting LHCII complex

In order to explore the possibilities of attaching different

types of light-harvesting complexes, we immobilized LHCII

complexes purified from spinach thylakoid membranes by

using an imido-ester cross-linker on photopatterned amine

monolayers on gold surfaces.

This strategy exploits the lysine residues on the N-

terminal side of the LHCII complex which, along with the

use of the DMS cross-linker (see §2.2.2), ensures a consistent

orientation on the amine surface. Variations in the periodic

patterns were created using two different half-interference

beam angles, and by altering the exposure times. The AFM

topographs show the expected height of around 6–7 nm for

immobilized LHCII complexes, and that linewidths of 200,

80 and 60 nm (figure 6a,b,c, respectively), and 200 nm,

100 nm and 60 nm (figure 6d,e,f, respectively), have been

achieved. The background islands visible in figure 6, and

also figure 4, are the ‘terraces’ or the facets of the epitaxially

grown gold layer on top of the mica substrate [53,54]. The

bright spots seen in the AFM images, some lying on and

some between the protein nanolines, most likely result from

aggregation of a small fraction of the LHCII protein. These

aggregates can also be seen in the fluorescence image in

figure 7a.

In order to verify the retained functionality of IL-

patterned LHCII complexes, we imaged the fluorescent

LHCII lines (figure 7a) and also recorded the fluorescence

emission spectrum. The 470 nm excitation we used predomi-

nantly excites chlorophyll b and the carotenoids, whereas the

fluorescence emission maximum at 684 nm is characteristic of

chlorophyll a emission. Thus, the emission spectrum of

immobilized LHCII complexes (figure 7b) indicates internal

energy transfer from chlorophyll b to chlorophyll a and
shows that the immobilized LHCII complexes retain their

structural and functional integrity [43].
4. Conclusion
Interference lithography offers a simple, rapid and scaleable

method for fabricating nanostructures of SAMs of NTA and

amine-thiols on a gold substrate. By systematically varying

simple processing parameters such as the energy dose and

the beam interference angle, it was possible to vary the period

of NTA lines from 240 to 1200 nm, and to control the width of

patterned NTA lines within the range 50–600 nm. These nano-

structures allow the efficient attachment of proteins; we used

light-harvesting complexes from bacteria and plants because

of their biological interest and their intrinsic property of binding

fluorescent chlorophylls that act as sensitive reporters of their

structural and functional integrity. AFM, fluorescence and

spectral imaging of surface-attached light-harvesting com-

plexes show that these proteins remain functional despite

their proximity to the evanescent field of the gold substrate,

which risks quenching of fluorescence. The IL patterning in

this work lays the foundations for fabrication of mesoscale

multi-protein assemblies for harvesting solar energy and its

storage as charge-separated states at defined locations.
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