
Editorial

Ten Simple Rules for Effective Computational Research
James M. Osborne1,2*, Miguel O. Bernabeu3,4, Maria Bruna1,2, Ben Calderhead3, Jonathan Cooper1,

Neil Dalchau2, Sara-Jane Dunn2, Alexander G. Fletcher5, Robin Freeman2,3, Derek Groen4,

Bernhard Knapp6, Greg J. McInerny1,2, Gary R. Mirams1, Joe Pitt-Francis1, Biswa Sengupta7,

David W. Wright3,4, Christian A. Yates5, David J. Gavaghan1, Stephen Emmott2, Charlotte Deane6

1 Computational Biology Group, Department of Computer Science, University of Oxford, Wolfson Building, Oxford, United Kingdom, 2 Computational Science Laboratory,

Microsoft Research, Cambridge, United Kingdom, 3 CoMPLEX, Mathematical and Physical Sciences, University College London, Physics Building, London, United Kingdom,

4 Centre for Computational Science, Department of Chemistry, University College London, London, United Kingdom, 5 Wolfson Centre for Mathematical Biology,

Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Oxford, United Kingdom, 6 Department of Statistics, University of

Oxford, Oxford, United Kingdom, 7 The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom

In order to attempt to understand the

complexity inherent in nature, mathe-

matical, statistical and computational

techniques are increasingly being em-

ployed in the life sciences. In particular,

the use and development of software

tools is becoming vital for investigating

scientific hypotheses, and a wide range

of scientists are finding software devel-

opment playing a more central role in

their day-to-day research. In fields such

as biology and ecology, there has been a

noticeable trend towards the use of

quantitative methods for both making

sense of ever-increasing amounts of

data [1] and building or selecting

models [2].

As Research Fellows of the ‘‘2020

Science’’ project (http://www.2020

science.net), funded jointly by the EPSRC

(Engineering and Physical Sciences Re-

search Council) and Microsoft Research,

we have firsthand experience of the

challenges associated with carrying out

multidisciplinary computation-based sci-

ence [3–5]. In this paper we offer a

jargon-free guide to best practice when

developing and using software for scientific

research. While many guides to software

development exist, they are often aimed at

computer scientists [6] or concentrate on

large open-source projects [7]; the present

guide is aimed specifically at the vast

majority of scientific researchers: those

without formal training in computer

science. We present our ten simple rules

with the aim of enabling scientists to be

more effective in undertaking research and

therefore maximise the impact of this

research within the scientific community.

While these rules are described individu-

ally, collectively they form a single vision

for how to approach the practical side of

computational science.

Our rules are presented in roughly the

chronological order in which they should

be undertaken, beginning with things that,

as a computational scientist, you should do

before you even think about writing any

code. For each rule, guides on getting

started, links to relevant tutorials, and

further reading are provided in the

supplementary material (Text S1).

Rule 1: Look Before You Leap

One of the key considerations in the

development of any method, computa-

tional or otherwise, is whether it has

previously been approached by someone

else. A growing wealth of software

toolboxes and libraries exist to tackle

many problems. However, assessing the

range and quality of what is available can

be hard, especially when addressing

nontraditional problems. A simple but

often-overlooked approach is to conduct

a software literature review to ascertain

what software is available and has been

successfully employed. Software reposi-

tories (e.g., GitHub, https://github.

com/, and SourceForge, http://

sourceforge.net/) are a good place to

begin a review. Furthermore, engaging

with the network of researchers sur-

rounding your own is invaluable; see

[8] and [9] for advice on this. If your

coworkers write software in the same

language or use particular toolboxes, you

may be able to consult their expertise in

order to accelerate and provide support

for your work.

Rule 2: Develop a Prototype
First

Before writing any code, it is imperative

to clarify what you are trying to imple-

ment: what functionality do you require,

and what interfaces do you need? When

implementing your latest developments,

you should first begin by considering a

prototype (i.e., a simplified version of the

full system or algorithm) to gain insight

and to guide the next steps. This is equally

relevant whether building on existing code

or starting from scratch. By prototyping

new functionality and building code up

incrementally, you can check that each

element of your code operates as expected

(and each incremental development can

be tested; see Rule 8). Breaking your

problem up into smaller elements like this

will also help to provide structure to your

code and will make it much easier when

you subsequently need to extend it. From

a practical point of view, it will usually be

easier to prototype mathematical and

statistical methods in a ‘‘higher-level’’

language, for example Matlab, R, or

Python. Although these languages can be

slower to run than optimized code in a

Copyright: � 2014 Osborne et al. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Competing Interests: ND, SJD, and SE are paid employees of Microsoft Research (MSR) and JMO, MB, RF, and
GJM are partly supported by MSR. This does not alter our adherence to the PLOS policies on sharing data and
materials. All other authors have declared that no competing interests exist.

Funding: This work is part of the 2020 Science programme, which is funded through the EPSRC Cross-
Disciplinary Interface Programme (grant number EP/I017909/1) and is also supported by Microsoft Research
Ltd. The funders had no role in the preparation of the manuscript.

Editor: Philip E. Bourne, University of California San Diego, United States of America

Published March 27, 2014

Citation: Osborne JM, Bernabeu MO, Bruna M, Calderhead B, Cooper J, et al. (2014) Ten Simple Rules for
Effective Computational Research. PLoS Comput Biol 10(3): e1003506. doi:10.1371/journal.pcbi.1003506

* E-mail: James.Osborne@cs.ox.ac.uk

PLOS Computational Biology | www.ploscompbiol.org 1 March 2014 | Volume 10 | Issue 3 | e1003506

http://www.2020science.net
http://www.2020science.net
https://github.com/
https://github.com/
http://sourceforge.net/
http://sourceforge.net/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

‘‘lower-level’’ language, their straightfor-

ward nature, built-in functionality, and

available libraries mean that you will

spend less time expressing your ideas in

code and searching for bugs.

Rule 3: Make Your Code
Understandable to Others (and
Yourself)

When revising or adapting existing

code, the absence of documentation and

comments can result in errors and time

drains. Such documentation not only

makes your code more understandable to

others but also to your future self (put

simply, the code tells you ‘‘how’’, the

comments tell you ‘‘why’’). The program

code itself can be made more understand-

able by using meaningful variable names

and formatting the code consistently.

While commenting and documentation is

often neglected when faced with deadlines,

developing and maintaining a standard-

ised way of commenting your code will be

of great benefit. As well as low-level

documentation in the code, you should

maintain a record of the ‘‘big picture’’

functionality (i.e., interconnectivity of

components and input/output formats).

This could take the form of a high-level

diagram or description of the system,

whether by hand on paper, in verbose

code comments, or using standardized

approaches such as UML (Unified Mod-

elling Language) (see Text S1). When you

are reviewing your code for documenta-

tion you should actively seek ways to break

it up into modules. This not only aids

structure and readability but also avoids

the error-prone and tedious task of

debugging and updating two (or more)

copies of the same code. As a rule of

thumb, if you write the same code twice, it

should become a function, subroutine, or

method.

Rule 4: Don’t Underestimate the
Complexity of Your Task

When developing your code, you should

keep a record of your work. This could be

in the form of a ‘‘logbook’’ file or a paper

notebook where you store commonly used

commands and other notes; another good

option is an online tool such as Evernote

(http://evernote.com/). You will often

find that you have to choose between

spending a long time doing a task by hand

and possibly spending longer learning how

to automate it. In order to automate the

task, you will probably need to learn how

to use some basic tools such as text editors

or scripting languages. Don’t be tempted

to think, ‘‘This is just a one-off, I’ll get on

with it;’’ it won’t be. You will find bugs,

wish to change a parameter, or need to

alter a figure slightly, and you will

eventually have to repeat the whole

process. Even if you are certain that it

really is a one-off task, use your ‘‘logbook’’

and keep a record of the list of commands

you used, since this is the first step towards

automating the task if and when the time

comes. However, it is not appropriate to

automate everything, and you need to find

a good balance, automating opportunisti-

cally, taking the expected time and cost

into account. A good rule to follow is ‘‘the

rule of three:’’ once you have had to do the

same thing twice already, automate it.

Rule 5: Understand the
Mathematical, Numerical, and
Computational Methods
Underpinning Your Work

When solving any computational mod-

el, you should always ensure that you are

using the appropriate numerical method

for your problem, and that any con-

straints and conditions are satisfied. A

basic understanding of numerical analysis

and, in particular, the concepts of rate of

convergence, order, and stability of nu-

merical methods will pay dividends. Care

should also be taken to ensure that any

assumptions made in the derivation of the

underlying mathematical models or meth-

ods (e.g., having a sufficiently large

number of objects to permit a continuum

approximation) hold for all system states

of interest. You should consult the

relevant literature (and communities) that

explains these methods and their advan-

tages and/or disadvantages and not steam

ahead without first gaining an under-

standing of which methods are appropri-

ate. By fully understanding the mathe-

matical and numerical methods being

used, you can be confident that your

results reflect the true behaviour of the

underlying model and are not numerical

or computational artefacts.

Rule 6: Use Pictures: They Really
Are Worth a Thousand Words

Visualisation and graphics are funda-

mental to developing, understanding, and

testing hypotheses, and are indispensable

for verifying and validating computational

methods (e.g., revealing correlations, co-

variation, position, structure, flows, orien-

tation, anomalies, and outliers). So, from

day one, spend time developing the visual

components of your work. Learn, develop

and use visualisation software and tools to

ensure that you understand your research

outputs and can effectively communicate

your findings. You may well need to

develop novel visualisations for your work,

but keep the basic figures. You needed

them to understand your results, model,

and implementation, and so will anyone

else. You should ensure that your visual-

isation algorithms can be executed sepa-

rately so that they can be reused by you

and others (for the same and different

tasks) and refined for other formats (e.g.,

publications, presentations, and websites).

In reality, all scientists could be better

educated in design, so any investment will

be rewarded, especially by receiving feed-

back on visualization from users.

Rule 7: Version Control
Everything

Version control systems (VCSs) offer an

easy way to store and back up not only

the current version of your code that you

are working on but also every previous

version of the code (in what’s known as a

repository). This not only saves you from

having to keep multiple copies of the

same file but also allows you to ‘‘roll

back’’ to an older ‘‘working’’ version of

the code if things go wrong. VCSs also

allow you to share material between

multiple machines, operating systems,

and more importantly, users in a simple

and robust manner. Two of the most

popular VCSs are Subversion (http://

subversion.apache.org) and Git (http://

www.github.com), both of which offer

many advanced features for managing

your code. Cloud storage such as Drop-

box (http://www.dropbox.com) and

SkyDrive (http://www.skydrive.live.com)

offer basic file sharing and backup

facilities; however, they don’t offer the

code management features of true VCSs,

so the effort put in to learning a VCS is

well worth it (see Text S1 for guides on

getting started with VCSs). While the

primary use of version control is to

manage the development and distribution

of code, many other collaborative en-

deavours can be stored in a version

control repository. In particular, using

version control tools while preparing

publications can save time and effort,

especially when dealing with input from

multiple authors. For example, contribu-

tions to this manuscript were managed

using a VCS.

Rule 8: Test Everything

Any non-trivial computer program will

have bugs when first written, often subtle

PLOS Computational Biology | www.ploscompbiol.org 2 March 2014 | Volume 10 | Issue 3 | e1003506

http://evernote.com/
http://subversion.apache.org
http://subversion.apache.org
http://www.github.com
http://www.github.com
http://www.dropbox.com
http://www.skydrive.live.com

ones that are hard to detect, which may

lead to incorrect results. Indeed, in

extreme cases this has caused high-profile

retractions of papers [10]. Simple tests that

the software behaviour matches expecta-

tions are essential for ensuring robust

results, minimising the presence of bugs,

and gaining confidence in your code (for

you and others). As a result of the time

pressures inherent in academia, often

software testing is performed manually

in an ad hoc manner, to determine

whether results ‘‘look roughly right’’

[11]. However, a systematic approach

to testing pays dividends. You should

learn how to test effectively to avoid the

illusion of reliability. For example,

compare low-level routines against an-

alytical or prototype solutions (see Rule

2) or experimental data and consider

‘‘corner cases’’ and both branches of

‘‘if’’ statements. Get the computer to

run tests for you automatically and alert

you to problems, using a suitable testing

framework (see Text S1). Ideally this

should be tied to a version control

system (see Rule 7) so that tests are

run automatically whenever new code is

committed to the repository. A useful

rule is to turn bugs you fix into new tests

to avoid them recurring. Testing gives

you the confidence to modify your code

without worrying that you are breaking

it. Testing can also provide a means for

reproducing results of published papers.

By setting up a test comparing against

published values, you can easily find out

when fixing a newly identified bug

changes published results.

Rule 9: Share Everything

Just as it is a common practice to

publish your research findings in peer-

reviewed journals, if an important part

of your research involves developing

new software tools and/or collecting

new data, you should consider sharing

these [7]. Based on our collective

experience, we advocate an open ap-

proach of sharing source code, data, and

results as freely as possible. You should

ask yourself, ‘‘Why not share?’’ If the

answer is, ‘‘I am worried that people

would find mistakes in it,’’ then, as a

scientist, this should be the strongest

argument in favour of sharing it! The

provision of such resources openly

provides the means to replicate, repro-

duce, and examine newly developed

methods and techniques. Open sharing

not only facilitates the scientific enter-

prise through replication, validation,

and error checking, but also deters

fraud and malpractice through trans-

parency. It is our opinion that the many

arguments in favour of openly sharing

code, data, and results far outweigh any

against. In many modern computational

analyses, the source code represents a

readable, executable methodology of

the research in question. Sharing is

the key to a sustainable future for

computational science, and publishers

are beginning to require it, with some

considering reviewing the software used

to generate results [12].

Rule 10: Keep Going!

Our advice arises from our collective

experience, and we continue to strive to

obey these rules in our work. Scientists

have a wide variety of demands on their

time (researching, writing papers [13],

teaching [14], applying for grants, admin-

istration, etc.) and have to make the most

of limited resources. Becoming more

technically effective can seem daunting

without strategies for making progress and

keeping motivated. So, prioritise in a way

that suits you and your projects and career

aspirations. One strategy is to implement

another of these rules each time you start a

new project, to build a growing repertoire

rather than trying to do everything at

once. Take every opportunity to teach and

help others to do what you have learnt.

Supporting Information

Text S1 Supplementary material for

paper. Includes guides for getting started

with each rule, along with references to

useful links and further reading.

(PDF)

References

1. Kumar S, Dudley J (2007) Bioinformatics
software for biologists in the genomics era.

Bioinformatics 23: 1713–1717. doi:10.1093/
bioinformatics/btm239

2. Karr JR, Sanghvi JC, Macklin DN, Gutschow

MV, Jacobs JM, et al. (2012) A Whole-Cell
Computational Model Predicts Phenotype from

Genotype. Cell 150: 389–401. doi:10.1016/
j.cell.2012.05.044

3. Mirams GR, Arthurs CJ, Bernabeu MO, Bordas
R, Cooper J, et al. (2013) Chaste: an open source

C++ library for computational physiology and

biology. PLOS Comput Biol 9: e1002970.
doi:10.1371/journal.pcbi.1002970

4. Dalchau N, Phillips A, Goldstein LD, Howarth
M, Cardelli L, et al. (2011) A peptide filtering

relation quantifies MHC class I peptide optimi-

zation. PLOS Comput Biol 7: e1002144.
doi:10.1371/journal.pcbi.1002144

5. Bernabeu MO, Nash RW, Groen D, Carver HB,
Hetherington J, et al. (2013) Impact of blood

rheology on wall shear stress in a model of the
middle cerebral artery. Interface Focus 3:

20120094. doi:10.1098/rsfs.2012.0094

6. Mozilla Science Lab (2013) Software Carpentry.
Available: http://software-carpentry.org/. Ac-

cessed 18 March 2013.
7. Prlić A, Procter JB (2012) Ten simple rules for

the open development of scientific software.
PLOS Comput Biol 8: e1002802. doi:10.1371/

journal.pcbi.1002802

8. Dall’Olio GM, Marino J, Schubert M, Keys KL,
Stefan MI, et al. (2011) Ten simple rules for

getting help from online scientific communities.
PLOS Comput Biol 7: e1002202. doi:10.1371/

journal.pcbi.1002202

9. Michaut M (2011) Ten simple rules for
getting involved in your scientific community.

PLOS Comput Biol 7: e1002232. doi:10.1371/
journal.pcbi.1002232

10. Chang G, Roth CB, Reyes CL, Pornillos O,
Chen Y, et al. (2006) Retraction. Science 314:

1875. doi:10.1126/science.314.5807.1875b

11. Pitt-Francis J, Bernabeu MO, Cooper J, Garny A,
Momtahan L, et al. (2008) Chaste: Using agile

programming techniques to develop computa-
tional biology software. Phil Trans R Soc A 366:

3111–3136. doi:10.1098/rsta.2008.0096
12. Hayden EC (2013) Mozilla plan seeks to debug

scientific code. Nature 501: 472. doi:10.1038/

501472a
13. Bourne PE (2005) Ten simple rules for getting

published. PLOS Comput Biol 1: e57.
doi:10.1371/journal.pcbi.0010057

14. Vicens Q, Bourne PE (2009) Ten simple rules to

combine teaching and research. PLOS Comput Biol
5: e1000358. doi:10.1371/journal.pcbi.1000358

PLOS Computational Biology | www.ploscompbiol.org 3 March 2014 | Volume 10 | Issue 3 | e1003506

http://software-carpentry.org/

