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Aspects of hairy black holes in spontaneously-broken
Einstein-Yang-Mills systems: Stability analysis and Entropy

considerations

N.E. Mavromatos∗ and Elizabeth Winstanley

Department of Physics (Theoretical Physics), University of Oxford, 1 Keble Road,
Oxford OX1 3NP, U.K.

Abstract

We analyze (3+1)-dimensional black-hole space-times in spontaneously broken
Yang-Mills gauge theories that have been recently presented as candidates for an eva-
sion of the scalar-no-hair theorem. Although we show that in principle the conditions
for the no-hair theorem do not apply to this case, however we prove that the ‘spirit’
of the theorem is not violated, in the sense that there exist instabilities, in both the
sphaleron and gravitational sectors. The instability analysis of the sphaleron sector,
which was expected to be unstable for topological reasons, is performed by means of
a variational method. As shown, there exist modes in this sector that are unstable
against linear perturbations. Instabilities exist also in the gravitational sector. A
method for counting the gravitational unstable modes, which utilizes a catastrophe-
theoretic approach is presented. The rôle of the catastrophe functional is played by
the mass functional of the black hole. The Higgs vacuum expectation value (v.e.v.)
is used as a control parameter, having a critical value beyond which instabilities
are turned on. The (stable) Schwarzschild solution is then understood from this
point of view. The catastrophe-theory appproach facilitates enormously a universal
stability study of non-Abelian black holes, which goes beyond linearized perturba-
tions. Some elementary entropy considerations are also presented that support the
catastrophe theory analysis, in the sense that ‘high-entropy’ branches of solutions
are shown to be relatively more stable than ‘low-entropy’ ones. As a partial result of
this entropy analysis, it is also shown that there exist logarithmic divergencies in the
entropy of matter (scalar) fields near the horizon, which are up and above the linear
divergencies, and, unlike them, they cannot be absorbed in a renormalization of the
gravitational coupling constant of the theory. The associated part of the entropy
violates the classical Bekenstein-Hawking formula which is a proportionality relation
between black-hole entropy and horizon area. Such logarithmic divergencies, which
are associated with the presence of non-abelian gauge and Higgs fields, persist in
the ‘extreme case’, where linear divergencies disappear.
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1 Introduction

The surprising discovery of the Bartnik-McKinnon (BM) non-trivial particle-like
structure [1] in the Einstein-Yang-Mills system opened many possibilities for the
existence of non-trivial solutions to Einstein-non-Abelian-gauge systems. Indeed,
soon after its discovery, many other self-gravitating structures with non-Abelian
gauge fields have been discovered [3]. These include black holes with non-trivial hair,
thereby leading to the possibility of evading the no-hair conjecture [2]. The physical
reason for the existence of these classical solutions is the ‘balance’ between the non-
Abelian gauge-field repulsion and the gravitational attraction. Such a balance allows
for dressing black hole solutions by non-trivial configurations (outside the horizon)
of fields that are not associated with a Gauss-law, thereby leading to an ‘apparent’
evasion of the no-hair conjecture.

Among such black-hole solutions, a physically interesting case is that of a sponta-
neously broken Yang-Mills theory in a non-trivial black-hole space-time (EYMH) [4].
This system has been recently examined from a stability point of view, and found
to possess an instability [5], thereby making the physical importance of the solution
rather marginal, but also indicating another dimension of the no-hair conjecture,
not considered in the original analysis, that of stability.

In this article, we shall give more details of this stability considerations by extend-
ing the analysis to incorporate counting of the unstable modes, and going beyond
the linear-stability case by employing catastrophe theory [6] in order to analyse
instabilities in the gravitational sector of the solution. Catastrophe theory is a pow-
erful mathematical tool to study or explain a variety of change of states in nature,
and in particular a discontinuous change of states that occurs eventually despite a
gradual (smooth) change of certain parameters of the system. In the case at hand,
the catastrophe functional, which exhibits a discontinuous change in its behaviour,
will be the mass of the black hole space time, whilst the control parameter, whose
smooth change turns on the catastrophe at a given critical value, will be the vacuum
expectation value (v.e.v.) of the Higgs field. The advantage of using the v.e.v. of
the Higgs field as the control parameter, rather than the horizon radius as was done
in [6], is that it will allow us to relate the stability of the EYMH black holes to that
of the Schwarzschild solution, which is well known to be stable. The type of catas-
trophe encountered will be that of a fold catastrophe. The catastrophe-theoretic
approach allows for a universal stability study of non-abelian black hole solutions
that goes beyond linearised perturbations; the particular use of the Higgs v.e.v. as
a control parameter in the case of the EYMH systems allows an exact counting of
the unstable modes.

As part of our analysis, we shall make an attempt to associate the above catastrophe-
theoretic considerations with some ‘thermodynamic/information-theoretic’ aspects
of black hole physics, and in particular with the entropy of the black hole. By



computing explicitly the entropy of quantum fluctuations of (scalar) matter fields
near the horizon we shall show that ‘high-entropy’ branches of the solution possess
less unstable modes (in the gravitational sector) than the ‘low-entropy’ ones. As a
partial, but not less important, result of this part of our analysis, we shall also show
that the entropy of the black hole possess linear and logarithmic divergencies. The
linear divergencies do not violate the Bekenstein-Hawking formula relating entropy
to the classical horizon area. The only difference is the divergent proportionality
factors in front, which, however, can be absorbed in a conjectured renormalization
of Newton’s constant in the model [7, 8]. This is not the case with the logarithmic
divergencies though. The latter persist even in ‘extreme black-hole’ cases, where the
linear divergencies disappear. They clearly violate the Bekenstein-Hawking formula.
In our case they owe their presence to the non-Abelian gauge and Higgs fields. The
presence of logarithmic divergencies in black hole physics has been noted in ref. [8],
but only in examples involving truncation from (3+1)-dimensional space-times to
(1 + 1) dimensions, and in that reference their presence had been attributed to
this bad truncation of the four-dimensional black hole spectrum. Later on, how-
ever, such logarithmic divergencies have been confirmed to exist in string-inspired
dilatonic black holes in (3+1) dimensions [9]. Their presence in our EYMH system,
and in general in non-Abelian black holes as we shall show, indicates that such log-
arithmic divergencies are generic in black hole space-times with non-conventional
hair, and probably indicates information loss, even in extreme cases, associated with
the presence of space time boundaries. This probably implies that the entropy of
the black hole is not only associated with classical geometric factors, but is a much
more complicated phenomenon related to information carried by the various (inter-
nal) black hole states. The latter phenomenon could be associated with, and may
be offer ways out of, the usual difficulties of reconciling quantum mechanics with
canonical quantum gravity.

The structure of the article is as follows. In section 2 we shall discuss the no hair
conjecture for black holes space-times with non-trivial scalar field configurations by
following a modern approach due to Bekenstein [10]. We shall show that the proof of
the no-hair theorem fails for the case of the EYMH system, in accordance with the
explicit solution found in ref. [4]. In section 3 we shall present a stability analysis
of the system based on linear perturbations. We shall demonstrate the existence of
instabilities in the sphaleron sector, following a variational approach which is an ex-
tension of the approach of Volkov and Gal’tsov [11] to study particle-like solutions.
We shall also present arguments for counting the unstable modes in the sphaleron
sector of the theory. In section 4 we shall present a method for counting the unsta-
ble modes in the gravitational sector by going beyond the linearised-perturbation
analysis using catastrophe theory, with the mass functional of the black hole as the
catastrophe functional and the Higgs v.e.v. as the control parameter. In section 5,
in connection with the latter approach, we shall estimate the entropy of the vari-
ous branches of the solution using a WKB approximation. We shall show that the
high-entropy branch of solutions is relatively more stable (in the sense of possesssing



fewer unstable modes) than the low-entropy branch. As we have already mentioned,
we shall also discuss the existence of logarithmic divergencies in the entropy, associ-
ated with the presence of non-trivial hair in the black hole, in certain extreme cases,
and we shall argue about an explicit violation of the classical Bekenstein-Hawking
entropy formula, indicating a different (information oriented) rôle of the black hole
entropy. Conclusions and outlook will be presented in section 6. Some technical
aspects of our approach will be discussed in two appendices.

2 Bypassing Bekenstein’s no-hair theorem in

EYMH systems

Recently, Bekenstein presented a modern elegant proof of the no-hair theorem for
black holes, which covers a variety of cases with scalar fields [10]. The theorem is
formulated in such a way so as to rule out a multicomponent scalar field dressing an
asymptotically flat, static, spherically-symmetric black hole. The basic assumption
of the theorem is that the scalar field is minimally coupled to gravity and bears a non-
negative energy density as seen by any observer, and the proof relies on very general
principles, such as energy-momentum conservation and the Einstein equations. From
the positivity assumption and the conservation equations for the energy momentum
tensor TMN of the theory, ∇MTMN = 0, one obtains for a spherically-symmetric
space-time background the condition that near the horizon the radial component of
the energy-momentum tensor and its first derivative are negative

T rr < 0, (T rr )
′ < 0 (1)

with the prime denoting differentiation with respect to r. This implies that in such
systems there must be regions in space, outside the horizon where both quantities
in (1) change sign. This contradicts the results following from Einstein’s equations
though [10], and this contradiction constitutes the proof of the no-hair theorem,
since the only allowed non-trivial configurations are Schwarzschild black holes. We
note, in passing, that there are known exceptions to the original version of the no-
hair theorem [2], such as conformal scalar fields coupled to gravity, which come from
the fact that in such theories the scalar fields diverge at the horizon of the black
hole [12].

The interest for our case is that the theorem rules out the existence of non-trivial
hair due to a Higgs field with a double (or multiple) well potential, as is the case for
spontaneous symmetry breaking. Given that stability issues are not involved in the
proof, it is of interest to reconcile the results of the theorem with the situation in our
case of EYMH systems, where at least we know that an explicit solution with non-
trivial hair exists [4], albeit unstable [5]. As we shall show below, the formal reason
for bypassing the modern version of the no-hair theorem [10] lies in the violation
of the key relation among the components of the stress tensor, T tt = T θθ , shown to



hold in the case of ref. [10]. The physical reason for the ‘elusion’ of the above no-
hair conjecture lies in the fact that the presence of the repulsive non-Abelian gauge
interactions balance the gravitational attraction, by producing terms that make the
result (1) inapplicable in the present case. Below we shall demonstrate this in a
mathematically rigorous way.

To this end, consider the EYMH theory with Lagrangian

LEYMH = − 1

4π

{

1

4
|FMN |2 +

1

8
φ2|AM |2 +

1

2
|∂Mφ|2 + V (φ)

}

(2)

where AM denotes the Yang-Mills field, FMN its field strength, φ is the Higgs field
and V (φ) its potential. All the indices are contracted with the help of the background
gravitational tensor gMN . In the spirit of Bekenstein’s modern version of the no-hair
theorem, we now examine the energy-momentum tensor of the model (2). It can be
written in the form

8πTMN = −EgMN +
1

4π

{

FMPFN
P +

φ2

4
AMAN + ∂Mφ∂Nφ

}

(3)

with E ≡ −LEYMH .

Consider, now, an observer moving with a four-velocity uM . The observer sees a
local energy density

ρ = E +
1

4π

{

uMFMPFN
PuN +

φ2

4
(uMAM)2 + (uM∂Mφ)2

}

, uMuM = −1. (4)

To simplify the situation let us consider a space-time with a time-like killing vec-
tor, and suppose that the observer moves along this killing vector. Then uM∂Mφ = 0
and by an appropriate gauge choice uMAM = 0 = uMFMN . This gauge choice is
compatible with the spherically-symmetric ansatz for AM of ref. [4]. Under these
assumptions,

ρ = E (5)

and the requirement that the local energy density as seen by any observer is non-
negative implies

E ≥ 0. (6)

We are now in position to proceed with the announced proof of the bypassing of
the no-hair theorem of ref. [10] for the EYMH black hole of ref. [4]. To this end
we consider a spherically-symmetric ansatz for the space-time metric gMN , with an
invariant line element of the form

ds2 = −eΓdt2 + eΛdr2 + r2(dθ2 + sin2 θdϕ2), Γ = Γ(r), Λ = Λ(r). (7)

To make the connection with the black hole case we further assume that the space-
time is asymptotically flat.



From the conservation of the energy-momentum tensor, following from the invari-
ance of the effective action under general co-ordinate transformations, one has for
the r-component of the conservation equation

[(−g) 1
2T rr ]

′ − 1

2
(−g) 1

2

(

∂

∂r
gMN

)

TMN = 0 (8)

with the prime denoting differentiation with respect to r. The spherical symmetry
of the space time implies that T θθ = T ϕϕ . Hence, (8) can be written as

(e
Γ+Λ

2 r2T rr )
′ − 1

2
e

Γ+Λ

2 r2
[

Γ′T tt + Λ′T rr +
4

r
T θθ

]

= 0. (9)

Observing that the terms containing Λ cancel, and integrating over the radial coor-
dinate r from the horizon rh to a generic distance r, one obtains

T rr (r) =
e−

Γ
2

2r2

∫ r

rh
dre

Γ
2 r2

[

Γ′T tt +
4

r
T θθ

]

(10)

Note that the assumption that scalar invariants, such as TMNT
MN are finite on the

horizon (in order that the latter is regular), implies that the boundary terms on the
horizon vanish in (10).

It is then straightforward to obtain

(T rr )
′ =

1

2

[

Γ′T tt +
4

r
T θθ

]

− e−
Γ
2

r2
(e

Γ
2 r2)′T rr . (11)

Next, we consider Yang-Mills fields of the form [4]

A = (1 + ω(r))[−τ̂φdθ + τ̂θ sin θdϕ] (12)

where τi, i = r, θ, ϕ are the generators of the SU(2) group in spherical-polar coor-
dinates. Ansatz (12) yields

T tt = −E
T rr = −E + F
T θθ = −E + J (13)

with (see Appendix A for details of the relevant quantities),

F ≡ e−Λ

4π

[

2ω′2

r2
+ φ′2

]

J ≡ 1

4π

[

ω′

r2
e−Λ +

(1 − ω2)2

r4
+

φ2

4r2
(1 + ω2)

]

. (14)



Substituting (14) in (13) yields

T rr (r) =
e−

Γ
2

r2

∫ r

rh

{

−(e
Γ
2 r2)′E +

2

r
J
}

dr (15)

(T rr )
′(r) = −e

−Γ
2

r2
(e

Γ
2 r2)′F +

2

r
J (16)

where E is expressed as

E =
1

4π

[

(ω′)2

r2
e−Λ +

(1 − ω2)2

2r4
+
φ2(1 + ω)2

4r2
+

1

2
(φ′)2e−Λ +

λ

4
(φ2 − v2)2

]

. (17)

We now turn to the Einstein equations for the first time, following the analysis of ref.
[10]. Our aim is to examine whether there is a contradiction with the requirement
of the non-negative energy density. These equations read for our system

e−Λ(r−2 − r−1Λ′) − r−2 = 8πT tt = −8πE
e−Λ(r−1Γ′ + r−2) − r−2 = 8πT rr . (18)

Integrating out the first of these yields

e−Λ = 1 − 8π

r

∫ r

rh
Er2dr − 2M′

r
(19)

where M′ is a constant of integration.

The requirement for asymptotic flatness of space-time implies the following asymp-
totic behaviour for the energy-density functional E ∼ O(r−3) as r → ∞, so that
Λ ∼ O(r−1). In order that eΛ → ∞ at the horizon, r → rh, M′ is fixed by

M′ =
rh
2
. (20)

The second of the equations (18) can be rewritten in the form

e−
Γ
2 r−2(r2e

Γ
2 )′ =

[

4πrT rr +
1

2r

]

eΛ +
3

2r
. (21)

Consider, first, the behaviour of T rr as r → ∞. Asymptotically, e
Γ

2 → 1, and so
the leading behaviour of (T rr )

′ is

(T rr )
′ =

2

r
[J − F ]. (22)

We, now, note that the fields ω and φ have masses v
2

and µ =
√
λv respectively.

From the field equations and the requirement of finite energy density their behaviour
at infinity must then be

ω(r) ∼ −1 + ce−
v

2
r

φ(r) ∼ v + ae−
√

2µr (23)



for some constants c and a. Hence, the leading asymptotic behaviour of J and F is

J ∼ 1

4π

[

c2v2

4r2
e−vr +

2c2

r4
e−vr +

v2c2

4r2
e−vr

]

F ∼ 1

4π

[

c2v2

2r2
e−vr + 2a2µ2e−

√
2µr

]

(24)

since e−Λ → 1 asymptotically.

The leading behaviour of (T rr )
′, therefore, is

(T rr )
′ ∼ 1

4π

[

2c2

r4
e−vr − 2a2µ2e−2

√
2µr

]

. (25)

There are two possible cases: (i) 2
√

2µ > v (corresponding to λ > 1/8); in this case
(T rr )

′ > 0 asymptotically, (ii) 2
√

2µ ≤ v (corresponding to λ ≤ 1/8) ; then, (T rr )
′ < 0

asymptotically.

Since J vanishes exponentially at infinity, and E ∼ O[r−3] as r → ∞, the integral
defining T rr (r) converges as r → ∞ and |T rr | decreases as r−2.

Thus, in case (i) above, T rr is negative and increasing as r → ∞, and in case (ii)
T rr is positive and decreasing.

Now turn to the behaviour of T rr at the horizon. When r ≃ rh , E and J are both
finite, and Γ′ diverges as 1/(r − rh). Thus the main contribution to T rr as r ≃ rh is

T rr (t) ≃
e−Γ/2

r2

∫ r

rh

(−eΓ/2r2)
Γ′

2
Edr (26)

which is finite.

At the horizon, eΓ = 0; outside the horizon, eΓ > 0 . Hence Γ′ > 0 sufficiently
close to the horizon, and, since E ≥ 0, T rr < 0 for r sufficiently close to the horizon.

Since F ∼ O[r − rh] at r ≃ rh, (T rr )
′ is finite at the horizon and the leading

contribution is

(T rr )
′(rh) ≃ −Γ′

2
F +

2

r
J . (27)

From ref. [4] we record the relation

re−Λ Γ′

2
= e−Λ

[

ω′2 +
1

2
r2(φ′)2

]

−1

2

(1 − ω2)2

r2
−1

4
φ2(1+ω2)2+

m

r
−λ

4
(φ2−v2)2r2 (28)



where e−Λ = 1 − 2m(r)
r

. Hence,

(T rr )
′ = −e

−Λ

4πr

[

2(ω′)2

r2
+ (φ′)2

]{

(ω′)2 +
1

2
r2(φ′)2 − 1

2
eΛ

(1 − ω2)

r2
(29)

−φ
2

4
eΛ(1 + ω)2 +

m

r
eΛ
λ

4
(φ2 − v2)r2eΛ

}

+
1

2πr

[

(ω′)2

r2
eΛ +

(1 − ω2)2

r4
+

φ2

4r2
(1 + ω)2

]

. (30)

For r ≃ rh, this expression simplifies to

(T rr )
′(rh) ≃ J (rh)

[

2

rh
+

4π

rh
F̃(rh)

]

−F̃(rh)

[

1

2
+

1

2

(1 − ω2)2

r2
h

− λ

4
(φ2 − v2)2r2

h

]

= F̃(rh)

[

(1 − ω2)2

2r3
h

+
φ2

4rh
(1 + ω2)2 +

λ

4
rh(φ

2 − v2)2 − 1

2rh

]

+
2

rh
J (31)

where F̃ = eΛF(r) = 1
4π

[2(ω
′)2

r2
+ (φ′)2].

Consider for simplicity the case rh = 1. Then, from the field equations [4] (see
also Appendix A)

ω′
h =

1

D

[

1

4
φ2
h(1 + ωh) − ωh(1 − ω2

h)
]

=
A
D (32)

φ′
h =

1

D

[

1

2
φh(1 + ωh)

2 + λφh(φ
2
h − v2)

]

=
B
D (33)

where

D = 1 − (1 − ω2
h)

2 − 1

2
φ2
h(1 + ωh)

2 − 1

2
λ(φ2

h − v2)2. (34)

Then the expression (31) becomes

(T rr )
′(rh) =

1

4πD

[

8πDJ −A2 − 1

2
B2
]

=
C

4πD . (35)

From the field equations [4] (see Appendix A),

D = 1 − 2m′
h (36)

which is always positive because the black holes are non-extremal. (See Appendix
A for further discussion of this point.) Thus the sign of (T rr )

′(rh) is the same as that
of C. Simplifying, we have

C = c1 + c2 + c3 + c4 + c5 (37)



where

c1 = (1 − ω2
h)

2ω2
h(3 − 2ω2

h) (38)

c2 =
1

8
φ2
h(1 + ωh)(1 − ω2

h)(12ω3
h + 12ω2

h − 7ωh − 9) (39)

c3 =
1

16
φ4
h(1 + ωh)

2(4ω2
h + 8ωh + 5) (40)

c4 = −λ(φ2
h − v2)2

[

(1 − ω2
h)

2 +
1

2
λφ2

h

]

(41)

c5 =
1

4
λφ2

h(v
2 − φ2

h)(1 + ωh)
2(2 − v2 + φ2

h). (42)

The first term is always positive since |ωh| ≤ 1. The cubic in c2 possesses a local
maximum at ωh = −0.886 where it has the value −1.724 and a local minimum at
ωh = 0.219 where it equals −9.831. The cubic has a single root at ωh = 0.8215, and
thus is positive for ωh > 0.8215 and negative for ωh < 0.8215. The quadratic in c3
is always positive and possesses no real roots. It has a minimum value of 1 when
ωh = −1. The term c4 is always negative and c5 is always positive since |φh| ≤ v.

In order to assess whether or not C as a whole is positive or negative, we shall
consider each branch of black hole solutions in turn.

Firstly, consider the k = 1 branch of solutions. As v increases from 0 up to
vmax = 0.352, ωh increases monotonically from 0.632 to 0.869. The derivative of the
first term is

dc1
dωh

= 2ωh(1 − ω2
h)(3 − 13ωh + 8ω2

h) (43)

where the quartic has roots given by ω2
h = 1.347 or 0.278. This derivative is negative

for ωh ∈ (0.632, 0.869) and hence the first term decreases as v increases, and is
bounded below by its value at the bifurcation point v = vmax, namely

c1 ≥ 0.0674. (44)

The cubic in c2 increases as ωh increases from 0.632 to 0.869, and is bounded below
by its value when ωh = 0.632

12ω3
h + 12ω2

h − 7ωh − 9 ≥ −5.602. (45)

Along this branch of solutions, it is also true that

(1 − ω2
h) ≤ 1 − (0.632)2 = 0.601

1 + ωh ≤ 2

φh ≤ 0.19v ≤ 0.0669. (46)

Altogether this gives

c2 ≥ −5.602 × 1

8
× (0.0669)2 × 2 × 0.601 = −3.767 × 10−3. (47)



The quadratic in c3 increases as ωh increases along the branch and so is bounded
above by its value when ωh = 0.869;

4ω2
h + 8ωh + 5 ≤ 14.973. (48)

Thus,

c3 ≥ − 1

16
× (0.0669)4 × 22 × 14.973 = −7.498 × 10−5. (49)

For the fourth term, since
(φ2

h − v2)2 ≤ v4 (50)

we have

c4 ≥ −0.15 × (0.352)4 ×
(

(0.601)2 +
1

2
× 0.15 × (0.0669)2

)

= −8.326 × 10−4 (51)

and finally,
c5 ≥ 0. (52)

Thus, adding these expressions up, one obtains

C ≥ 0.0627 ≥ 0 (53)

so that (T rr )
′(rh) > 0 along the whole of the k = 1 branch of black hole solutions.

For the quasi-k = 0 branch, as v decreases from vmax down to 0, ωh increases
monotonically from 0.869, subject to the inequality

0.869 < ωh < 1 − 0.1v2. (54)

Hence, along this branch,

(1 − ω2
h)

2 = (1 − ωh)
2(1 + ωh)

2 ≥ (0.1v2)2 × (1.869)2 = 0.0349v4. (55)

Thus the first term is bounded below as follows:

c1 ≥ 0.0349v4 × (0.869)2 × 1 = 0.0264v4. (56)

Since ωh > 0.869, the cubic in c2 is positive all along this branch, so that c2 and c5
are positive. The quadratic in c3 is bounded above by its value when ωh = 2, i.e.

4ω2
h + 8ωh + 5 ≤ 37. (57)

All along the quasi-k = 0 branch,

φh ≤ 0.5v2. (58)

This gives

c3 ≥ − 1

16
× (0.5v2)4 × 22 × 37 = −0.578v8. (59)



Since v ≤ 0.352,

c3 ≥ −0.578 × (0.352)4 × v4 = −8.874 × 10−3v4. (60)

Finally, for c4 we have

c4 ≥ −0.15v4
[

1

2
× 0.15 × (0.5)2v4 + (1 − (0.869)2)2

]

= −8.992 × 10−3v4 − 2.813 × 10−3v8

≥ −8.992 × 10−3v4 − 2.813 × 10−3 × (0.352)4v4

= −9.035 × 10−3v4. (61)

In total this gives

C ≥ 0.0264v4 − 8.874 × 10−3v4 − 9.035 × 10−3v4 = 8.491 × 10−3v4 ≥ 0. (62)

In conclusion, (T rr )
′(rh) is positive for all the black hole solutions having one node

in ω, regardless of the value of the Higgs mass v.

Let us now check on possible contradictions with Einstein’s equations.

Consider first the case λ > 1/8. Then, as r → ∞, T rr < 0 and (T rr )
′ > 0. As

r → rh, T
r
r < 0 and (T rr )

′ > 0. Hence there is no contradiction with Einstein’s
equations in this case.

Consider now the case λ ≤ 1/8. In this case, as r → ∞, T rr > 0 and (T rr )
′ < 0,

whilst as r → rh, T
r
r < 0 and (T rr )

′ > 0. Hence, there is an interval [ra, rb] in which
(T rr )

′ is positive and there exists a ‘critical’ distance rc ∈ (ra, rb) at which T rr changes
sign.

However, unlike the case when the gauge fields are absent [10], here there is no

contradiction with the result following from Einstein equations, because (T rr )
′ > 0

in some open interval close to the horizon, as we have seen above.

In conclusion the method of ref. [10] cannot be used to prove a ‘no-scalar-hair’
theorem for the EYMH system, as expected from the existence of the explicit solution
of ref. [4]. The key difference is the presence of the positive term 2

r
J in the expression

(16) for (T rr )
′. This term is dependent on the Yang-Mills field and vanishes if this field

is absent. Thus, there is a sort of ‘balancing’ between the gravitational attraction
and the non-Abelian gauge field repulsion, which is responsible for the existence of
the classical non-trivial black-hole solution of ref. [4]. However, as we shall discuss
below, this solution is not stable against (linear) perturbations of the various field
configurations [5]. Thus, although the ‘letter’ of the ‘no-scalar-hair’ theorem of
ref. [10], based on non-negative scalar-field-energy density, is violated, its ‘spirit’ is
maintained in the sense that there exist instabilities which that the solution cannot
be formed as a result of collapse of stable matter.



3 Instability analysis of sphaleron sector of the

EYMH black hole

The black hole solutions of ref. [4] in the EYMH system resemble the sphaleron
solutions in SU(2) gauge theory and one would expect them to be unstable for
topological reasons. Below we shall confirm this expectation by proving [5] the
existence of unstable modes in the sphaleron sector of the EYMH black hole system
(for notation and definitions see Appendix A).

Recently, an instability proof of sphaleron solutions for arbitrary gauge groups in
the EYM system has been given [13, 14]. The method consists of studying linearised
radial perturbations around an equilibrium solution, whose detailed knowledge is not
necessary to establish stability. The stability is examined by mapping the system
of algebraic equations for the perturbations into a coupled system of differential
equations of Schrödinger type [13, 14]. As in the particle case of ref. [1], the insta-
bility of the solution is established once a bound state in the respective Schrödinger
equations is found. The latter shows up as an imaginary frequency mode in the
spectrum, leading to an exponentially growing mode. There is an elegant physical
interpretation behind this analysis, which is similar to the Cooper pair instability
of super-conductivity. The gravitational attraction balances the non-Abelian gauge
field repulsion in the classical solution [1], but the existence of bound states implies
imaginary parts in the quantum ground state which lead to instabilities of the so-
lution, in much the same way as the classical ground state in super-conductivity is
not the absolute minimum of the free energy.

However, this method cannot be applied directly to the black hole case, due to
divergences occuring in some of the expressions involved. This is a result of the
singular behaviour of the metric function at the physical space-time boundaries
(horizon) of the black hole.

3.1 Linearized perturbations and instabilities

It is the purpose of this section to generalise the method of ref. [13] to incorporate
the black hole solution of the EYMH system of ref. [4]. By constructing appropriate
trial linear radial perturbations, following ref. [14, 11], we show the existence of
bound states in the spectrum of the coupled Schrödinger equations, and thus the
instability of the black hole. Detailed knowledge of the black hole solutions is not
actually required, apart from the fact that the existence of an horizon leads to
modifications of the trial perturbations as compared to those of ref. [13, 14], in
order to avoid divergences in the respective expressions [11].

We start by sketching the basic steps [13, 11] that will lead to a study of the
stability of a classical solution φs(x, t) with finite energy in a (generic) classical field



theory. One considers small perturbations δφ(x, t) around φs(x, t), and specifies [13]
the time-dependence as

δφ(x, t) = exp(−iΩt)Ψ(x). (63)

The linearised system (with respect to such perturbations), obtained from the equa-
tions of motion, can be cast into a Schrödinger eigenvalue problem

HΨ = Ω2AΨ (64)

where the operators H, A are assumed independent of the ‘frequency’ Ω. As we
shall show later on, this is indeed the case of our black hole solution of the EYMH
system. In that case it will also be shown that H is a self-adjoint operator with
respect to a properly defined inner (scalar) product in the space of functions {Ψ}
[13], and the A matrix is positive definite, < Ψ|A|Ψ >> 0. A criterion for instability
is the existence of an imaginary frequency mode in (64)

Ω2 < 0. (65)

This is usually difficult to solve analytically in realistic models, and usually numerical
calculations are required [15]. A less informative method which admits analytic
treatment has been proposed recently in ref. [13, 11], and we shall follow this for
the purposes of the present work. The method consists of a variational approach
which makes use of the following functional defined through (64):

Ω2(Ψ) =
< Ψ|H|Ψ >

< Ψ|A|Ψ >
(66)

with Ψ a trial function. The lowest eigenvalue is known to provide a lower bound
for this functional. Thus, the criterion of instability, which is equivalent to (65), in
this approach reads

Ω2(Ψ) < 0

< Ψ|A|Ψ > < ∞. (67)

The first of the above conditions implies that the operator H is not positive definite,
and therefore negative eigenvalues do exist. The second condition, on the finiteness

of the expectation value of the operator A, is required to ensure that Ψ lies in
the Hilbert space containing the domain of H. In certain cases, especially in the
black hole case, there are divergences due to singular behaviour of modes at, say,
the horizons, which could spoil these conditions (67). The advantage of the above
variational method lies in the fact that it is an easier task to choose appropriate
trial functions Ψ that satisfy (67) than solving the original eigenvalue problem (64).
In what follows we shall apply this second method to the black hole solution of ref.
[4].



For completeness, we first review basic formulas of the spherically symmetric black
hole solutions of the EYMH system [4]. The space-time metric takes the form [4]

ds2 = −N(t, r)S2(t, r)dt2 +N−1dr2 + r2(dθ2 + sin2 θdϕ2) (68)

and we assume the following ansatz for the non-Abelian gauge potential [4, 13]

A = a0τrdt+ a1τrdr + (ω + 1)[−τϕdθ + τθ sin θdϕ] + ω̃[τθdθ + τϕ sin θdϕ] (69)

where ω, ω̃ and ai, i = 0, 1 are functions of t, r. The τi are appropriately normalised
spherical generators of the SU(2) group in the notation of ref. [13].

The Higgs doublet assumes the form

Φ̃ ≡ 1√
2

(

ψ2 + iψ1

φ− iψ3

)

; ψ = ψr̂ (70)

with the Higgs potential

V (Φ̃) =
λ

4
(Φ̃†Φ̃ − v2)2 (71)

where v denotes the v.e.v. of Φ̃ in the non-trivial vacuum.

The quantities ω, φ satisfy the static field equations

Nω′′ +
(NS)′

S
ω′ =

1

r2
(ω2 − 1)ω +

φ2

4
(ω + 1)

Nφ′′ +
(NS)′

S
φ′ +

2N

r
φ′ =

1

2r2
φ(ω + 1)2 + λφ(φ2 − v2) (72)

where the prime denotes differentiation with respect to r. For later use, we also
mention that a dot will denote differentiation with respect to t.

If we choose a gauge in which δa0 = 0, the linearised perturbation equations de-
couple into two sectors [13] . The first consists of the gravitational modes δN , δS,
δω and δφ and the second of the matter perturbations δa1, δω̃ and δψ. For our anal-
ysis in this section it will be sufficient to concentrate on the matter perturbations,
setting the gravitational perturbations δN and δS to zero, because an instability
will show up in this sector of the theory. An instability study in the gravitational
sector will be discussed in the following section 4. The equations for the linearised
matter perturbations take the form [13]

HΨ + AΨ̈ = 0 (73)

with,

Ψ =







δa1

δω̃
δψ





 (74)



and,

A =







Nr2 0 0
0 2 0
0 0 r2





 (75)

and the components of H are

Ha1a1 = 2(NS)2

(

ω2 +
r2

8
φ2

)

Hω̃ω̃ = 2p2
∗ + 2NS2

(

ω2 − 1

r2
+
φ2

4

)

Hψψ = 2p∗
r2

2
p∗ + 2NS2

(

(−ω + 1)2

4
+
r2

2
λ(φ2 − v2)

)

Ha1ω̃ = −2iNS[(p∗ω) − ωp∗]

Hω̃a1 = −2i[p∗NSω +NS(p∗ω)] (76)

Ha1ψ =
ir2

2
NS[(p∗φ) − φp∗]

Hψa1 = ip∗
r2

2
NSφ+ i

r2

2
NS(p∗φ)

Hω̃ψ = Hψω̃ = −φNS2

where the operator p∗ is

p∗ ≡ −iNS d

dr
. (77)

Upon specifying the time-dependence (63)

Ψ(r, t) = Ψ(r)eiσt ; Ψ(r) =







δa1(r)
δω̃(r)
δψ(r)





 (78)

one arrives easily to an eigenvalue problem of the form (64), which can then be
extended to the variational approach (67).

To this end, we choose as trial perturbations the following expressions (c.f. [13])

δa1 = −ω′Z

δω̃ = (ω2 − 1)Z

δψ = −1

2
φ(ω + 1)Z

where Z is a function of r to be determined.



One may define the inner product

< Ψ|X >≡
∫ ∞

rh

ΨX
1

NS
dr (79)

where rh is the position of the horizon of the black hole. The operator H is then
symmetric with respect to this scalar product. Following ref. [13], consider the
expectation value

< Ψ|A|Ψ >=
∫ ∞

rh
dr

1

NS
Z2

[

Nr2(ω′)2 + 2(ω2 − 1)2 +
r2

4
φ2(ω + 1)2

]

(80)

which is clearly positive definite for real Z. Its finiteness will be examined later, and
depends on the choice of the function Z.

Next, we proceed to the evaluation of the expectation value of the Hamiltonian
H (77); after a tedious calculation one obtains

< Ψ|H|Ψ > =
∫ ∞

rh

drSZ2{−2N(ω′)2 + 2P 2N(ω2 − 1)2

+
1

4
P 2Nr2φ2(ω + 1)2 − 2

r2
(ω2 − 1)2 − 1

2
φ2(ω + 1)2} (81)

+ boundary terms

where P ≡ 1
Z
dZ
dr

. The boundary terms will be shown to vanish so we omit them in
the expression (82). The final result is

< Ψ|H|Ψ > =
∫ ∞

rh
drS

{

−2N(ω′)2 − 2

r2
(ω2 − 1)2 − 1

2
φ2(ω + 1)2

}

+
∫ ∞

rh
dr
{

2

r2
(ω2 − 1)2 + φ2(ω + 1)2 + 2N(ω′)2

}

S(1 − Z2)

+
∫ ∞

rh
drSN

(

dZ

dr

)2 [

2(ω2 − 1)2 +
1

4
r2φ2(ω + 1)2

]

. (82)

The first of these terms is manifestly negative. To examine the remaining two, we
introduce the ‘tortoise’ co-ordinate r∗ defined by [11]

dr∗

dr
=

1

NS
(83)

and define a sequence of functions Zk(r
∗) by [11]

Zk(r
∗) = Z

(

r∗

k

)

; k = 1, 2, . . . (84)

where

Z(r∗) = Z(−r∗),
Z(r∗) = 1 for r∗ ∈ [0, a]

−D ≤ dZ
dr∗

< 0, for r∗ ∈ [a, a + 1]

Z(r∗) = 0 for r∗ > a+ 1 (85)



where a, D are arbitrary positive constants. Then, for each value of k the vacuum
expectation values of H and A are finite, < Ψ|H|Ψ >< ∞, and < Ψ|A|Ψ >< ∞,
with Z = Zk, and all boundary terms vanish. This justifies a posteriori their being
dropped in eq. (82). The integrands in the second and third terms of eq. (82) are
uniformly convergent and tend to zero as k → ∞. Hence, choosing k sufficiently
large the dominant contribution in (82) comes from the first term which is negative.

This confirms the existence of bound states in the Schrödinger equation (73), (64),
and thereby the instability (67) of the associated black hole solution of ref. [4] in
the coupled EYMH system. The above analysis reveals the existence of at least one
negative odd-parity eigenmode in the spectrum of the EYMH black hole.

3.2 Counting sphaleron-like unstable modes in the EYMH

system

The exact number of such negative modes is an interesting question and we next
proceed to investigate it. Recently, a method for determining the number of the
sphaleron-like unstable modes has been applied by Volkov et al. [16] to the gravi-
tating sphaleron case. We have been able to extend it to the present EYMH black
hole. The method consists of mapping the system of linearized perturbations to a
system of coupled Scrödinger-like equations. Counting of unstable modes is then
equivalent to counting bound states of the quantum-mechanical analogue system. It
is important to notice that due to the fact that the EYMH black hole solution is not
known analytically, but only numerically, it will be necessary to make certain phys-
ically plausible assumptions concerning certain analyticity requirements [17] for the
solutions of the analogue system. This is equivalent to requiring that the conditions
for the validity of perturbation theory in ordinary quantum mechanics be applied
to this problem. Details are described below.

Working in the gauge δa0 = 0, and denoting the derivative with respect to the
tortoise coordinate (83) by a prime, we can write the linearised perturbations in the
sphaleron sector of the EYMH system as [13]:

2N2S2

(

ω2 +
r2

8
φ2

)

δa1 + 2NS(ωδω̃′ − ω′δω̃)

+
1

2
r2NS(φ′δψ − φδψ′) = Nr2σ2δa1

2(NSωδa1)
′ + 2NSω′δa1 + δω̃′′ +NS2φδψ

− 2

r2
S2

(

(ω2 − 1) +
φ2

4

)

δω̃ = −2σ2δω̃



1

2
(NSr2φδa1)

′ +
1

2
r2NSφ′δa1 −NS2φδω̃ − (r2δψ′)′

+2NS2

(

(1 − ω)2

4
+

1

2
r2λ(φ2 − v2)

)

δψ = r2σ2δψ (86)

together with the Gauss constraint

σ2

{(

r2

S
δa1

)′

+ 2ωω̃ − r2φ

2
δψ

}

= 0. (87)

Define δξ = rδψ, δα = r2

2S
δa1. Then

σ2δα = f(r∗) (88)

where

f(r∗) = NSω2δa1 +
N

8
Sr2φ2δa1 − ω′δω̃ + ωδω̃ +

N

4
Sφδξ +

r

4
(φ′δξ − φδξ′) (89)

and

f ′(r∗) = σ2
(

−ωδω̃ +
r

4
φδξ

)

(90)

and the Gauss constraint becomes

σ

(

δα′ + ωδω̃ − r
φ

4
δξ

)

= 0. (91)

Next, we define a ‘strong’ Gauss constraint by

δα′ = −ωδω̃ +
r

4
φδξ (92)

even when σ = 0.

Using (89) and (92) we may write

δω̃ =
r2

P
φ2

(

δα′

r2φ2

)′

− Q

P
δα

δξ =
4ω2

Prφ

(

δα′

ω2

)′

− 4Qω

Prφ
δα (93)

where

P (r∗) = −2ω′ + 2ωφ′ + 2ω
NS

r

Q(r∗) = 2
NS2

r2
ω2 +

1

4
NS2φ2 − σ2. (94)



If we substitute these expressions into the equation for δω̃ we obtain the following
equation for δα:

− δα(iv) +

(

2P ′

P
+HP

)

δα′′′

+

{

P ′′

P
− 2P ′2

P 2
+ 2H ′P +Q− σ2 +NS2J

}

δα′′+

{

H ′′P + 2P
(

Q

P

)′
+ σ2HP+

NS2
(

−2ωP

r2
− H

r2
(ω2 − 1)P − H

4
φ2P +

4

r2
ω′
)}

δα′+
{

P
(

Q

P

)′′
− 2ωP

(

NS2

r2

)′

− 4PNS2

r2
ω′ + σ2Q−NS2QJ

}

δα = 0 (95)

where

H ≡ 2NS

rP
+

2φ′

φP

J ≡ −2ω

r2
+
ω2 − 1

r2
+
φ2

4
. (96)

Alternatively, we can eliminate δξ to obtain the following pair of coupled Schrödinger
equations [14, 16]:

σ2δα = −δα′′ +

(

2φ′

φ
+

2NS

r

)

δα′ +

(

2NS2

r2
ω2 +

N

4
S2φ2

)

δα + Pδω̃

σ2δω̃ = −δω̃′′ − 2N

r2
S2(1 + ω)δα′ −

{

4ω′NS2

r2
+ 2ω(

NS2

r2
)′
}

δα

+
NS2

r2

{

(ω − 1)2 +
r2φ2

4

}

δω̃. (97)

To proceed, it appears necessary to make the following assumptions:

• We assume that the equilibrium solutions are continuous functions of the Higgs
mass v.

• We also assume that given a Schrödinger-like equation −Ψ′′ + VΨ = EΨ,
where the potential V depends continuously on some parameter v, then the
bound state energies also depend continuously on v. This can be proven rig-
orously if we make the physically plausible assumption of analyticity of the
operators involved in the above system. The proof then relies on the powerful
Kato-Rellich theorem of analytic operators [17]. This analyticity requirement
is the case if perturbation theory is used to solve the Schrödinger system with
potential V (v+δv) in terms of the spectrum of V (v), implying that the changes
in the bound state energies δE due to the infinitesimal shift in the parameter



v are also infinitesimal. It is also the case where variational methods are appli-
cable. This assumption implies that the eigenvalues of the discrete spectrum
of the above equations (97), i.e. the bound-state energies for σ2 < 0, are also
continuous as v varies continuously.

The above assumptions had to be made because in the case of the EYMH black
hole system, the solution is not known analytically but only numerically, and there-
fore the issue of analyticity of the various operators involved with respect to the
Higgs field v.e.v., v, cannot be rigorously established.

We now notice that the continuous spectrum of the equations (97) is given by
σ2 > 0. Hence, the number of negative modes will change by one whenever a mode
is either absorbed into the continuum or emerges from it.

For σ2 = 0 the equations possess pure “gauge mode” solutions of the form

δα =
r2Ω′

2NS2
, δω̃ = −ωΩ, δξ =

rφ

2
Ω (98)

where
(

r2Ω′

2NS2

)′

=

(

ω2 +
r2

8
φ2

)

Ω. (99)

Thus, near the event horizon, Ω ∼ O[(r− rh)
k], where k = 0 or 1, and at infinity,

Ω ∼ e±
v

2 upon choosing S(∞) = 1. Hence, there is a single non-degenerate, non-
normalisable eigenmode with σ2 = 0.

For the fourth-order equation with σ2 = 0, δα ∼ O[(r − rh)
k] near the horizon,

where k = 0 (twice, corresponding to the pure “gauge mode” solutions ) or k =
−1±

√
5

2
.

In the latter case, δω̃, δξ ∼ O[(r − rh)
k−1], and so will not remain bounded near

the horizon. Hence there is a single non-degenerate zero mode for non-zero v.

From the above it follows that the number of negative modes of the system (97)
cannot change at any non-zero value of v, including the bifurcation point vmax, by
continuity. The negative eigenvalues of this system are non-degenerate and hence
cannot themselves bifurcate at some value of v.

The only possible place where the number of negative modes may change is at
v = 0. Let φ = vφ̃, δξ = vδξ̃. Then the system of equations (97) becomes

− δα′′ +

(

2φ̃′

φ̃
+

2NS

r

)

δα′ +

(

2NS2φ̃2

4

)

δα



+

(

−2ω′ + 2ω
φ̃′

φ̃
+ 2ω

NS

r

)

δω̃ = σ2δα

−δω̃′′ − 2
NS2

r2
(1 + ω)δα′ +

NS2

r2

[

(ω − 1)2 + v2 r
2φ̃2

4

]

δω̃

−
[

4ω′NS
2

r2
+ 2ω

(

NS2

r2

)′]

δα = σ2δω̃ (100)

together with the Gauss constraint δα′ = −ωδω̃ + 1
4
v2rφ̃δξ̃.

Consider the k = n branch of the EYMH solutions. In this branch, φ̃′

φ̃
has a

well-defined limit as v → 0, and the system (97) is continuous at v = 0. In this case,
the Gauss constraint reduces to δα′ = −ωδω̃ , and substituting in (100) yields the
equation

− δα′′ +
2

ω
ω′δα′ +

2NS2

r2
ω2δα = σ2δα. (101)

This is the equation studied in ref. [16] where it was shown that there are exactly n
negative eigenvalues. Furthermore, there is a single non-degenerate zero mode given
by

δα =
r2Ω′

2NS2
(102)

where
(

r2Ω′

2NS2

)′

= ω2Ω. (103)

As before, near the horizon Ω ∼ O[(r − rh)] or Ω ∼ O[1] whilst at infinity Ω ∼ r

or r
1
2 , giving a single eigenmode with zero eigenvalue. Thus, the number of negative

eigenvalues does not change at v = 0 for this branch of solutions.

For the quasi k = n− 1 branch of solutions φ̃′

φ̃
does not have a well-defined limit

as v → 0, and the system (97) is not continuous at v = 0. Hence, by continuity, we
can conclude that both the k = n and the quasi k = n− 1 black holes have exactly

n unstable modes in the sphaleron sector.

4 Instabilities in the Gravitational Sector -

Catastrophe theory approach

It is the aim of this section to prove the existence and count the exact number of
unstable modes in the gravitational sector of the solutions. In the first part we shall
study the conditions for the existence of unstable modes in a linearized framework,
and we shall study the possibility of a change in the stability of the system as
one varies the Higgs v.e.v. v continuously from 0 up to the bifurcation point (c.f.



figure 2). In the second part, which will deal with the change of the stability of
the system at the bifurcation point, we shall go beyond linearized perturbations by
applying catastrophe theory. It should be stressed that although catastrophe theory
was first employed by the authors of [6], our approach in this section is somewhat
different, and has certain advantages, not least of which is that we are able to exploit
the known stability of the Schwarzschild black hole to draw conclusions about the
non-trivial EYMH black holes.

4.1 Linearized perturbations

The linearised perturbation equations for the gravitational sector are:

− δω′′ + Uωωδω + Uωφδφ = σ2δω

−δφ′′ − 2NS

r
δφ′ + Uφωδω + Uφφδφ = σ2δφ (104)

where the prime denotes differentiation with respect to the tortoise coordinate (83)
as before, and

Uωω =
NS2

r2

[

3ω2 − 1 +
1

4
r2φ2 − 4r2ω′2

(

N

r
+

(NS)′

S

)

+
ω(ω2 − 1)

r
ω′ + 2rω′φ2

]

Uωφ =
NS2

r2

[

1

2
(1 + ω)φr2 − 2φ′ω′r3

(

N

r
+

(NS)′

S

)

+ 2rφ′ω(ω2 − 1)

+φω′(1 + ω)2r +
1

2
φ′φ2(1 + ω) + 2λr3φω′(φ2 − v2)

]

Uφω =
2

r2
Uωφ

Uφφ =
NS2

r2

[

1

2
(1 + ω)2 + λr2(3φ2 − ṽ2) − 2r3(φ′)2

(

N

r
+

(NS)′

S

)

+2φ′φ(1 + ω)2r + 4λφφ′r3(φ2 − ṽ2)
]

. (105)

The continuity argument described previously when applied here, implies that the
number of negative eigenvalues of the system (104,105) can change only when there
is a zero mode.

Suppose that for some v 6= 0 there is such a zero mode of (104). Given the
background solution (ω, φ) of the field equations, then (ω + δω, φ + δφ), together
with the corresponding metric functions, will also be a solution of the field equations.

As r → ∞ , then
(

δω
δφ

)

∼ O[e−vr
∗

] r → −∞ (106)

and
(

δω
δφ

)

∼ const r → −∞. (107)



Also, since in this sector the change in the mass function m(r) is given by (see
Appendix A)

δm(r) = 2N
dω

dr
δω(r) + r2N

dφ

dr
δφ(r) (108)

we have that for this zero mode δm → 0 as r∗ → ±∞. Hence, for fixed param-

eters rh, λ, v, g there are two solutions of the original field equations

(

ω
φ

)

, and
(

ω + δω
φ+ δφ

)

, satisfying the required boundary conditions. For our purposes we shall

assume that the solution of ref. [4] is unique. Compatibility with the above analy-
sis, then, requires the latter to be valid only at the bifurcation point (c.f. figure 2).
Hence, there is a single zero mode at v = vmax. For any other v the zero mode is
absent.

Let δφ ≡ vδφ̃, φ ≡ vφ̃. The equations (105) become

− δω′′ + Uωωδω + v2Ũωφδφ̃ = σ2δω

−δφ̃− 2NS

r
δφ̃′ + Ũφωδω + Uφφδφ̃ = σ2δφ̃ (109)

where Uωφ ≡ vŨωφ, Ũφω ≡ vŨφω.

These equations have a well-defined limit as v → 0, and are continuous at v = 0.
At v = 0 the equations reduce to

δω′′ + Uωωδω = σ2δω (110)

where

Uωω =
NS2

r2

[

3ω2 − 1 − 4r(ω′)2

(

N

r
+

(NS)′

S

)

+
ω(ω2 − 1)

r
δω′

]

. (111)

If this equation possesses a zero mode, then δω → const, as r → ∞ for this mode.
As r → ∞, N → 1− m

r
+O[e−r], ω → −1+O[e−r], S → 1+O[er], and the equation

takes the form

d2

dr2
(δω) = −m

r2

(

1 − 2m

r

)−1 d

dr
(δω) +

2

r2

(

1 − m

r

)−1

δω. (112)

Suppose that δω =
∑∞
n=0 anr

−ρ−n, a0 6= 0 as r → ∞. Then ρ = 2 or −1. Let
δω = r2f(r). Then, f(r) satisfies the equation

f ′′ + f ′
(

1 − 2m

r

)−1 (4

r
− 6m

r2

)

= 0. (113)

The solution to this equation as r → ∞ assumes the form

f =
A

8M3
log

(

r − 2M
r

)

+
A

4M2r2
+

A

4Mr2
+B r → ∞ (114)



with A, B arbitrary constants and M = limr→∞m(r), so that

δω → Br2 +
Ar2

8M3
log

(

r − 2M
r

)

+
Ar

4M2
+

A

4M . (115)

Hence δω can remain bounded as r → ∞ only if A = B = 0, i.e. only the trivial
solution exists. Thus, there are no non-trivial zero modes for v = 0.

We, therefore, conclude that along each branch of solutions the number of negative
modes remains constant from v = 0 to v = vmax.

4.2 Bifurcation points and catastrophe theory

In order to determine what happens at v = vmax we appeal to catastrophe the-
ory [6]. Our aim is to study the possibility of a change of the stability of the system
at vmax. To this end, we have to determine a certain function (catastrophe func-

tional) in the black hole solution which changes discontinuously despite the smooth
change of certain (control) parameters of the system. As we shall show below, in the
case at hand the rôle of the catastrophe functional is played by the mass function of
the black hole, whilst the control parameter is the Higgs v.e.v. v. At the bifurcation
point vmax we shall find a fold catastrophe which affects the relevant stability of
the branches of the solution. In addition, the catastrophe-theoretic approach allows
for an exact counting of the unstable modes in the various branches. For notations
and mathematical definitions on catastrophe theory we refer the interested reader
to Appendix B.

We should note at this point that although catastrophe theory seems power-
ful enough to yield a universal stability study of all kinds of non-Abelian black
holes [6], however one should express some caution in drawing conclusions about
absolute stability. Indeed, catastrophe theory gives information about instabilities
of certain modes of the system. If catastrophe theory gives a stable branch of so-
lution, this does not mean that the system is completely stable, given that there
may be other instabilities in sectors where catastrophe theory does not apply. In
our EYMH system this is precisely the case with the sphaleron sector. However safe
conclusions can be reached, within the framework of catastrophe theory, regarding
relative stability of branches of solutions, and it is in this sense that we shall use
it here in order to count the number of unstable modes of the various branches of
the EYMH system. Having expressed these cautionary remarks we are now ready
to proceed with our catastrophe-theoretic analysis.

The mass functional M (c.f. appendix A) can be re-written as a functional of the
matter fields only as follows:



First note that M = m(∞). Let µ(r) ≡ m(r) −m(rh) = m(r) − rh
2
. Then, using

a prime to denote d/dr

µ′(r) = m′(r) =
1

2

[(

1 − 2m

r

)

(2(ω′)2 + r2(φ′)2)
]

+
r2

2

[

(1 − ω2)2

r4
+

φ2

2r2
(1 + ω)2 +

λ

2
(φ2 − v2)2

]

=
1

2

[(

1 − rh
r

)

(2(ω′)2 + r2(φ′)2)
]

+
r2

2

[

(1 − ω2)2

r4
+
φ2(1 + ω)2

2r2
+
λ

2
(φ2 − ṽ2)2

]

−µ
r
(2(ω′)2 + r2(φ′)2). (116)

The last term on the right-hand-side can be written in terms of the metric function
δ (cf appendix A)

− µ

r
(2(ω′)2 + r2(φ′)2) = µδ′. (117)

Solving for µ gives

µ(r) = eδ(r)
∫ r

rh

K[ω, φ]e−δ(r
′)dr′ (118)

where

K[ω, φ] ≡ 1

2

[(

1 − rh
r

)

(2(ω′)2 + r2(φ′)2)
]

+
r2

2

{

(1 − ω2)2

r4
+
φ2(1 + ω)2

2r2
+
λ

2
(φ2 − v2)2

}

. (119)

Hence, setting δ(∞) = 0 we obtain

M =
rh
2

+
∫ ∞

rh
K[ω, φ]e−δ(r)dr. (120)

Varying this functional with respect to the matter fields yields the correct equa-
tions of motion [18]. Thus, the equilibrium solutions of the field equations will be
stationary points of the functional M.

If we plot the solution curve in (v, δ0,M) space, then the resulting curve is smooth
(c.f. figure 1). For the Catastrophe Theory (c.f. Appendix B) we consider δ0 as a
variable, and v as a control parameter. The Whitney surface could be defined in
our case as follows. For each v, consider a smoothly varying set of functions ωδ, φδ
indexed by the value of δ0 they give:

δ0 =
∫ ∞

rh

1

r
(2(ω′

δ)
2 + r2(φ′

δ)
2)dr (121)

such that ωδ, φδ are the appropriate solutions to the field equations when δ0 lies on
the solution curve. Then, the solution curve represents the curve of extremal points
of this Whitney surface, δM = 0.



The projections of this curve onto the (v, δ0) and (δ0,M) planes are also smooth
curves. The catastrophe map χ projects the solution curve onto the (v,M) plane

χ : (v, δ0,M) → (v,M). (122)

This yields the curve shown in figure 2. This map is regular except at the point
(v = vmax,M = Mmax), where it is singular. This point is the bifurcation set B.

Since the Whitney surface describes a one-parameter (v) family of functions of
a single variable (δ), and the bifurcation point is a single point, we have a fold
catastrophe, as found in ref. [6] from a different point of view. A more detailed
comparison, of the results of that reference with ours will be made at the end of the
section.

Catastrophe theory tells us that the stability of the system will change at the point
B on the solution curve, and, furthermore, that the branch of solutions (including
the point B) having the higher mass (for the same value of v) will be unstable,
relative to the other branch. Hence, from our previous continuity considerations,
the k = n branch of solutions will have exactly one more negative mode than the
quasi- k = n− 1 branch.

The catastrophe theory analysis applies to the gravitational sector rather than the
sphaleronic sector, since gravitational perturbations correspond to small changes in
the functions ω and φ, whilst keeping the functional form of M fixed. On the
contrary, sphaleronic perturbations keep the functions ω and φ fixed, affecting the
functional form of M. As we discussed in the previous section, the number of
unstable sphaleron modes is the same for the k = n and quasi-k = n− 1 branches.

All that remains is to determine the number of negative modes of the quasi-k = 0
branch of solutions. From the above considerations, this will be equal to the number
of negative modes of the v = 0 limiting case of this branch of solutions, which is
nothing other than the Schwarzschild black hole. The gravitational perturbation
equation is in this case, where a prime now denotes d/dr∗,

− δω′′ + Uωωδω = σ2δω (123)

where

Uωω =
NS2

r2

[

3ω2 − 1 − 4r(ω′)2

(

N

r
+

(NS)′

S

)

+
ω(ω2 − 1)

r
δω′

]

. (124)

For the Schwarzschild solution N = 1 − rh
r
, S = 1, ω = 1. Equation (123), then,

reduces to

− δω′′ +
2

r2

(

1 − rh
r

)

δω = σ2δω (125)



which has the form of a standard one-dimensional Schrödinger equation with poten-
tial

V (r∗) =
2

r2

(

1 − rh
r

)

d

dr∗
≡
(

1 − rh
r

)

d

dr
. (126)

As r∗ → ±∞, V (r∗) → 0. On the other hand, for finite r∗, −∞ < r∗ < ∞, the
potential is positive definite, V (r∗) > 0.

Then, by a standard theorem of quantum mechanics [20], the Schrödinger equation
(125,126) has no bound states. Thus, the Schwarzschild solution (and, hence, the
quasi-k = 0 branch of solutions) has no negative gravitational modes, a known result
in agreement with the no-hair conjecture.

Working inductively through the various branches of solutions (the v = 0 limit of
the k = n branch is the same as that for the quasi-k = n− 1 branch after replacing
ω by −ω) we find that the k = n branch possesses exactly n unstable gravitational
modes, and the quasi-k = n − 1 branch exactly n − 1 negative modes. This result
has been conjectured but not proven in ref. [21].

Before closing the section we would like to compare our results with those of ref.
[6]. In ref. [6] the authors also used catastrophe theory to draw conclusions about
the stability of the EYMH black holes, but their approach was somewhat different.
There the writers fixed the parameter λ = 0.125 and also fixed the Higgs mass v.
They then varied the horizon radius rh and for each solution calculated the value of
the mass functional M, the field strength at the horizon Bh given by

Bh = |F 2| 12
∣

∣

∣horizon (127)

and the Hawking-Bekenstein entropy S = πrh, to give a smooth solution curve in
(M, Bh, S) space. The projection of this curve on to the (M, S) plane has the
same qualitative features as our figure 2. Here we have also fixed λ = 0.15, and
in addition we have fixed rh = 1 and varied the Higgs mass v from 0 up to the
bifurcation point. Torii et al concluded that the k = 1 branch of solutions was
more unstable than the quasi-k = 0 branch of solutions. The advantage of our
approach is that, by interpolating between the various coloured black hole solutions
[19], beginning with the Schwarzschild solution, we will be able to calculate the exact
number of unstable modes of each branch of solutions and not just give qualitative
information concerning their relative stability.

5 Entropy considerations

It remains now to associate the above catastrophic considerations with some ele-
mentary ‘thermodynamic’ properties of the black hole solutions, and in particular
their entropy. Our aim in this section is to give elementary estimates of the entropy
of the various branches, assuming thermodynamic equilibrium of the black hole with



a surrounding heat bath. Such estimates will allow an association of the stability
issues with the amount of entropy carried by the various branches of the solution. In
particular we shall argue that the ‘high-entropy’ branch has relatively fewer unsta-
ble modes than the ‘low-energy’ ones and, thus, is relatively more stable. We shall
employ approximate WKB semi-classical methods for the evaluation of the entropy.
We shall also study the conditions under which such estimates are valid.

The calculation of the entropy of the black hole will be made on the basis of
calculating the entropy of quantum matter fields in the black hole space time. This
will constitute only a partial contribution to the total black hole entropy. A com-
plete calculation requires a proper quantization of the gravitational field, which at
present is not possible, given the non-renormalizability of (local) quantum gravity.
Ignoring such back reaction effects of the matter fields to the (quantum) geome-
try of space time results in ultra-violet divergences in the calculated entropy of the
matter fields [7, 8]. Such divergences can be absorbed in a renormalization of the
gravitational (Newton’s) constant. This is so because the entropy is proportional
to the area of the black hole horizon, with the divergent contributions appearing as
multiplicative factors.

In what follows we shall estimate the entropy of a scalar field propagating in the
EYMH black hole background. Anticipating a path integral formalism for quantum
gravity, we shall compute only the entropy which is due to quantum fluctuations of
the scalar field in the black hole background. The part that contains the classical
solutions to the equations of motion contributes to the ‘classical’ entropy, associated
with the classical geometry of space time. This part is known to be proportional
to 1/4 of the horizon area [7, 8]. The quantum-scalar-field entropy part will also
turn out to be proportional to the horizon area, but the proportionality coefficient
is linearly divergent as the ultraviolet cut-off is removed, exactly as it happens
in the corresponding computation for the Schwarzschild black hole [7]. Absorbing
the divergence into a conjectured renormalization of the gravitational constant will
enable us to estimate the entropy of the various branches of the EYMH black hole
solution, and relate this to the above-mentioned catastrophe-theoretic arguments.

As we shall show, this will be possible only in the non-extremal case, which is the
case of the numerical solutions studied in ref. [4] and in the present work. Among
the solutions, however, there exist some extremal cases, for which the Hawking
temperature - which is defined by assuming thermal equilibrium of the black hole
system with a surrounding heat bath - vanishes. In such a case, the linearly divergent
entropy of the scalar field vanishes. However, there are non trivial logarithmically

divergent contributions to the black hole entropy which cannot be absorbed in a
renormalization of the gravitational constant. Moreover, the classical Bekenstein-
Hawking entropy formula seems to be violated by such contributions to the black-
hole entropy. The situation is similar to the case of a scalar field in an extreme



(3+1)-dimensional dilatonic black hole background [9], and seems to be generic to
black holes with non-conventional hair. We shall briefly comment on this issue at
the end of the section.

We shall be brief in our discussion and concentrate only in basic new results,
relevant for our discussion above. For details in the formalism we refer the interested
reader to the existing literature [7, 8]. To start with, we note that the metric for
the EYMH black holes is given by:

ds2 = −
(

1 − 2m(r)

r

)

e−2δ(r)dt2 +

(

1 − 2m(r)

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2). (128)

Consider a scalar field of mass µ propagating in this spacetime [7], satisfying the
Klein-Gordon equation:

1√−g∂µ(
√−ggµν∂νΦ) − µ2Φ = 0. (129)

Since the metric is spherically symmetric, consider solutions of the wave equation
of the form

Φ(t, r, θ, ϕ) = e−iEtfEl(r)Ylml
(θ, ϕ) (130)

where Ylml
(θ, ϕ) is a spherical harmonic and E is the energy of the wave. The wave

equation separates to give the following radial equation for fEl(r)

(

1 − 2m(r)

r

)−1

E2fEl(r)

+
eδ(r)

r2

d

dr

[

e−δ(r)r2

(

1 − 2m(r)

r

)

dfEl(r)

dr

]

−
[

l(l + 1)

r2
+ µ2

]

fEl(r) = 0. (131)

The “brick wall” boundary condition is assumed [7], namely, the wave function is
cut off just outside the horizon,

Φ = 0 at r = rh + ǫ (132)

where rh is the black hole horizon radius, and ǫ is a small, positive, fixed distance
which will play the rôle of an ultraviolet cut-off. We also impose an infra-red cut-off
at a very large distance L from the horizon:

Φ = 0 at r = L, where L≫ rh. (133)

Hence f satisfies
fEl(r) = 0 when r = rh + ǫ or r = L. (134)



In anticipation of being able to use a WKB approximation, define functions K(r)
and h(r) by

K2(r, l, E) =

(

1 − 2m(r)

r

)−1


E2

(

1 − 2m(r)

r

)−1

− l(l + 1)

r2
− µ2



 (135)

h(r) = e−δ(r)r2

(

1 − 2m(r)

r

)

. (136)

Then the equation for fEl(r) becomes

1

h(r)

d

dr

[

h(r)
d

dr
fEl(r)

]

+K2(r, l, E)fEl(r) = 0. (137)

Now define a function u(r) by

fEl(r) =
u(r)
√

h(r)
. (138)

Then u(r) satisfies

d2u

dr2
+



K2 +
1

4h2

(

dh

dr

)2

− 1

2h

d2h

dr2



u = 0. (139)

The WKB approximation for u will be valid if
∣

∣

∣

∣

∣

∣

1

4h2

(

dh

dr

)2

− 1

2h

d2h

dr2

∣

∣

∣

∣

∣

∣

≪
∣

∣

∣K2
∣

∣

∣ (140)

and
∣

∣

∣

∣

∣

dK

dr

∣

∣

∣

∣

∣

≪
∣

∣

∣K2
∣

∣

∣ . (141)

The first inequality is required so that u can be taken to satisfy the equation

d2u

dr2
+K2u = 0 (142)

where K is now the radial wave number, and the second inequality is required so
that the approximation to the wave function

u(r) ∼ 1
√

K(r)
exp

[

±i
∫

K(r)dr
]

(143)

is valid. Assuming, for the present, that the WKB approximation is valid, define
the radial wave-number K as above whenever the right-hand-side of (135) is non-
negative. Define K2 = 0 otherwise. Then the number of radial modes nK is given
by

πnK =
∫ L

rh+ǫ
drK(r, l, E) (144)



where the fact that nK must be an integer restricts the possible values of E. For
fixed energy E, the total number N of solutions with energy less than or equal to
E is

πN =
∫

(2l + 1)πnKdl

=
∫ L

rh+ǫ

(

1 − 2m(r)

r

)−1

dr
∫

(2l + 1)dl

×
[

E2 −
(

l(l + 1)

r2
+ µ2

)(

1 − 2m(r)

r

)] 1
2

(145)

where the integration is performed over all values of l such that the argument of the
square root is positive.

The Hawking temperature of the black hole is given by

T−1 = β =
4πrhe

δh

1 − 2m′
h

(146)

where δh is fixed by the requirement that δ(∞) = 0, and ′ = d/dr. Assume further
that β−1 ≪ 1. It should be noted that T = 0 in the extreme case m′

h = 0.5. Further
comments on the entropy in this situation will be made at the end of the section.
However, as discussed in Appendix A, this situation does not arise for the black
holes we are concerned with. The free energy F of the system is given by

e−βF =
∑

e−βE

=
∏

nK ,l,ml

1

1 − exp(−βE)
. (147)

Hence

βF =
∑

nK ,l,ml

log(1 − e−βE)

≃
∫

dl(2l + 1)
∫

dnK log(1 − e−βE) (148)

for large β, integrating over appropriate l, E. Integrating by parts,

F = − 1

β

∫

dl(2l + 1)
∫

d(βE)
nK

exp(βE) − 1

= −1

π

∫

dl(2l + 1)
∫

dE
1

exp(βE) − 1

∫ L

rh+ǫ
dr

×
(

1 − 2m(r)

r

)−1 [

E2 −
(

1 − 2m(r)

r

)(

l(l + 1)

r2
+ µ2

)] 1
2

(149)



where we have substituted for nK from (144). The l integration can be performed
explicitly,

∫

dl(2l + 1)

[

E2

(

1 − 2m(r)

r

)(

l(l + 1)

r2
+ µ2

)] 1
2

=
2

3
r2

(

1 − 2m(r)

r

)−1 (

E2 −
(

1 − 2m(r)

r

)

µ2

)
3

2

(150)

to give

F = − 2

3π

∫

dE
1

exp(βE) − 1

∫ L

rh+ǫ
drr2

(

1 − 2m(r)

r

)−2 [

E2 −
(

1 − 2m(r)

r

)

µ2

]
3

2

.

(151)
Introduce a dimensionless radial co-ordinate x by

x =
r

rh
. (152)

Then

F = −2r3
h

3π

∫

dE
1

exp(βE) − 1

∫ L̂

1+ǫ̂
dxx2

(

1 − 2m̂(x)

x

)−2 [

E2 −
(

1 − 2m̂(x)

x

)

µ2

] 3
2

(153)

where ǫ̂ = ǫ
rh

, L̂ = L
rh

, and m̂(x) = m(xrh)
rh

.

The contribution to F for large values of x is

F0 = − 2

9π
L3
∫ ∞

µ
dE

(E2 − µ2)
3
2

exp(βE) − 1
(154)

which is the expression for the free energy in flat space. The contribution for x near
1 diverges as ǫ → 0. For x near 1, the leading order term in the integrand in (153)
is

E3(x− 1)−2(1 − 2m̂′
h)

2 (155)

where m̂′
h = m̂′(1) = m′(rh). This gives the leading order divergence in F

Fdiv = −2r3
h

3π

(1 − 2m̂′
h)

−2

ǫ̂

∫

dE
E3

exp(βE) − 1

= −2π3

45ǫ̂

r3
h(1 − m̂′

h)
−2

β4

= −2π3

45ǫ

r4
h(1 − m̂′

h)
−2

β4
. (156)

The total energy U and entropy S are given by

U =
∂

∂β
(βF ) =

2π3

15ǫ

r4
h(1 − 2m̂′

h)
−2

β4
(157)



S = β2∂F

∂β
=

8π3

45ǫ

r4
h(1 − 2m̂′

h)
−2

β3
. (158)

Substituting for β from (146), obtain

S =
rh

360ǫ
(1 − 2m′

h)e
−3δh . (159)

Before discussing the implications of this formula, it is necessary to ascertain
when the approximations used are valid. Firstly, β ≫ 1 if rh ≫ 1 or 1 − 2m′

h ≪ 1.
In the first case, non-trivial (viz. non-Schwarzschild) solutions exist only for very
small values of v, the Higgs mass [6] and these solutions will be very close to the
Schwarzschild solution having mass M = rh/2. In the second case, the black hole
is very nearly extremal. For 1 = 2m′

h exactly, the above analysis does not apply.
However, 1− 2m′

h ≪ 1 for large n [19] and for any value of v for which a non-trivial
solution exists. We shall discuss the physical implications of this (nearly) extremal
case at the end of the section.

Secondly, consider the validity of the WKB approximation. The principal contri-
bution to the free energy F comes from the region where K is large; in particular,
above we have concentrated on x close to 1. It is expected that the WKB ap-
proximation will be valid when K is large. For K large, it may be approximated
by

K = E

(

1 − 2m(r)

r

)−1

. (160)

For r near rh, then

K = E(1 − 2m′
h)

−1(r − rh)
−1 + 0(1) (161)

whence
dK

dr
= −E(1 − 2m′

h)
−1(r − rh)

−2. (162)

Hence
∣

∣

∣

∣

∣

dK

dr

∣

∣

∣

∣

∣

≪ |K2| if

∣

∣

∣

∣

∣

E

1 − 2m′
h

∣

∣

∣

∣

∣

≫ 1. (163)

Similarly, for r near rh we may approximate h by

h = e−δr2(1 − 2m′
h)(r − rh) + 0(r − rh)

2. (164)

Then
1

4h2

(

dh

dr

)2

− 1

2h

(

d2h

dr2

)

=
1

4(r − rh)2
+ 0(r − rh)

−1, (165)

so that
∣

∣

∣

∣

∣

∣

1

4h2

(

dh

dr

)2

− 1

2h

d2h

dr2

∣

∣

∣

∣

∣

∣

≪ |K2| if

∣

∣

∣

∣

∣

4E

1 − 2m′
h

∣

∣

∣

∣

∣

≫ 1. (166)



Thus, for black hole solutions with large n, the WKB approximation is valid except
for small values of E. Now return to the expression for the entropy (158),

S ≡ Slinear =
rh

360ǫ
(1 − 2m′

h)e
−3δh . (167)

We notice first that the entropy is positive, due to the fact that for the solutions
m′
h < 1/2 to avoid naked singularities. Having said that, we now fix n and consider

the two branches of black hole solutions, the k = n and quasi-k = n − 1 solutions.
The linear divergence rh/ǫ is a common multiplicative factor in all branches, and
thus can be absorbed in a renormalization of the gravitational constant [8]. This can
be done as follows: Re-write rh/ǫ = 4πr2

h
1

ǫ4πrh
, where A = 4πr2

h is the horizon area,

G0 is the bare graviational coupling constant (which, by convention, had been set to
one in the previous formulae), and rhǫ = 2mhǫ may be considered as the invariant
distance (cut-off) of the brick wall from the horizon. The classical Bekenstein-
Hawking entropy formula is then still valid, but with the renormalized gravitational
constant GR replacing the bare (classical) one G0

Sclassical + Slinear = (
1

4G0
+O[

1

ǫ
])A =

1

4GR
A (168)

Such a renormalization may be thought of as expressing quantum matter back
reaction effects to the space-time geometry. Doing this in our case, we observe
from (167) that for each v, the k = n solution has larger m′

h and δh than the
quasi-k = n − 1 solution. Hence the k = n solution has a lower entropy than the
quasi-k = n− 1 solution, in agreement with Torii et al [6].

Before closing the section we would like to make some important comments con-
cerning the extreme case m′(rh) = 1/2, for which the Hawking temperature (146)
vanishes. In this case the linearly-divergent part of the entropy (159) also vanishes,
but this is not the case for the next-to-leading order logarithmically divergent part1.

The logarithmic divergent part of the free energy can be found from (153) by
requiring the following expansion

m̂(x) = m̂h + m̂′
h(x− 1) +

1

2
m̂′′
h(x− 1)2 + . . . m̂h =

1

2
. (169)

Using the trick x = 1 + (x− 1) we can write down the identities:

x−1 = 1 − (x− 1) + (x− 1)2 + . . .

x−2 = 1 + 2(x− 1) + (x− 1)2. (170)

1It should be noted that the logarithmic divergent parts exist also in the non-extreme case, but
there they are suppressed by the dominant linearly divergent terms. It can be easily checked that
for the solutions of ref. [4], their presence does not affect the entropy considerations above, based
on the linearly divergent term.



Hence

1 − 2m̂(x)

x
= (1 − 2m̂′

h)(x− 1) + (2m̂h − 1 − m̂′′
h)(x− 2)2 + . . .

(

1 − 2m̂(x)

x

)−2

= (1 − 2m̂′
h)

−2(x− 2)−2

×
{

1 +
2(x− 1)(2m̂′

h − 1 − m̂′′
h)

2m̂′
h − 1

+ . . .

}

. (171)

Substituting in (153) we obtain for the next-to-leading order divergence of the free
energy

Fnlo =
2r3

h

3π

2(2 − 4m̂′
h + m̂′′

h)

(1 − m̂′
h)

3

∫

dE
E3

eβE − 1

∫

1+ǫ̂
dx

1

x− 1

+
2r3

h

3π

3

2
µ2 1

1 − 2m̂′
h

∫

dE
E

eβE − 1

∫

1+ǫ̂

dx

x− 1
. (172)

Using the formulae

∫ ∞

0
dE

E3

eβE − 1
=

π4

15β4

∫ ∞

0
dE

E

eβE − 1
=

π2

6β2
(173)

the expression (172) reduces to

Fnlo =
4

45
r3
h

π4

β4

2 − 4m̂′
h + m̂′′

h

(1 − 2m̂′
h)

3
log ǫ̂− 1

6
r3
h

π

β2
µ2 1

1 − 2m̂′
h

log ǫ̂. (174)

From (158) the corresponding next-to-leading contribution to the entropy in the
extremal case m̂′

h = 1/2 (where the linear divergence vanishes) is given by the
following expression :

Snlo =
[

1

3
r2
hµ

2e−δh − 1

180
e−3δhm̂′′

h

]

log
(

ǫ

rh

)

(175)

Thus, we observe that in the extremal case the entropy diverges logarithmically
with the ultraviolet cut-off, in a similar spirit to the case of the dilatonic black hole
background [9]. In our case, however, the horizon area does not vanish, because
there is no dilaton field exponentially coupled to the graviton. Thus, one could hope
that the divergent contribution (175) could be absorbed in the renormalization of
the gravitational constant, so that a formal Bekenstein-Hawking expression for the
entropy is still valid. However, as we see from (175), for generic scalar fields this
cannot be the case, due to terms that spoil the proportionality of Snlo to the black
hole horizon area A = 4πr2

h. Indeed, let us analyze the various contributions in
(175).



The first term can be absorbed into a renormalization of the gravitational con-
stant, and respects the classical formula (168). This is not the case with the second
term however. From equation (202) of Appendix A, we observe that there are con-
tributions that depend on the (boundary) horizon values of the fields φh and ωh
which are not proportional to the horizon area A,

m′′
h =

1

rh

(

1 − φ2
h

2ωh
(1 + ωh)

2

)

(176)

Thus, the associated contribution to the black hole entropy seems not to be related
to geometric aspects of the black hole background.

One is tempted to interpret such contributions as being associated with infor-
mation loss across the horizon. This is supported by the fact that the logarithmic
divergencies disappear for black holes whose horizon is vanishing in the sense of
rh → ǫ. For consistency with the interpretation as loss of information, the positivity

requirement of the relevant contribution to the black hole entropy has to be imposed.
Returning to formula (175) we observe that the above requirement implies m′′

h > 0.
In the present case we do not know whether extremal solutions exist. A priori there
is no reason why such solutions should not exist in the EYMH system. If such a
solution exists, the above-mentioned positivity requirement will impose restrictions
on the boundary (horizon) values of the hair fields of the black hole background.
From the case at hand, it seems that the ambiguities in sign are associated with
the presence of the non-abelian gauge field component ω. Indeed, from (176), it is
immediately seen that the contributions of the scalar Higgs field φ alone to m′′

h are
manifestly positive. The terms that could lead to negative logarithmic contributions
to the entropy are associated with the field ω and vanish for ω = −1.

This phenomenon is somewhat similar to what is happening in the case of a
(spin one) gauge field in the presence of an ordinary black hole background. If one
integrates quantum fluctuations of a spin one field in a gravity background, there
is an induced coefficient in front of the Einstein curvature term in the effective
action whose sign is negative for space-time dimensions less than 8 [22]. Notice
that such sign ambiguities do not occur for scalar fields in conventional black hole
backgrounds. In our case, there are gauge fields present in the black hole background
associated with non-conventional hair. The sign ambiguities found above in the
logarithmically-divergent contributions to the entropy (175) occur already when
one considers quantum fluctuations of scalar fields. This is associated with negative
signatures of terms that involve the gauge field hair background in the effective
action.

Some comments are now in order concerning the the so-called entanglement en-
tropy [23] of fields in background space times with event horizons or other space-time
boundaries. The entanglement entropy is obtained from the density matrix of the



field upon tracing over degrees of freedom that cross the event horizon or lie in the
interior of the black hole, and therefore is closely associated with loss of information.
The entanglement entropy is always positive. This immediately implies a difference
from the ordinary black hole entropy, computed above, for the case of spin one
fields [22]. On the other hand, for scalar fields in ordinary black hole backgrounds
both entropies are identical, since in that case sign ambiguities in the entropy do not
arise. On the other hand, our computation for the extreme EYMH case, provided
the latter exists, has shown that, in general, one should expect a difference between
the two entropies even in the case of scalar fields propagating in such (extreme)
non-Abelian black hole backgrounds.

There exists, of course, the interesting possibility that the entanglement entropy
of scalar fields in this extreme black hole background can be identified with the
logarithmic entropy terms (175), in which case the latter must be positive definite.
This, as we discussed above, would imply restrictions on the boundary (horizon)
values of the gauge hair for the extreme black hole to exist. The restrictions seem to
be relatively mild though. As an example of the kind of the situation one encounters
in such cases, consider the case where extreme EYMH black hole solutions exist.
From (176), we observe that positivity of m′′

h implies restrictions on the size of ωh,
2ωh > φ2

h(1 + ωh)
2 > 0, which is a mild restriction.

However, all these are mere speculations at this stage. One has to await for
a complete analytic solution of the EYMH black hole problem before reaches any
conclusions regarding entropy production and information loss in extreme cases.
Therefore, we leave any further considerations on such issues for future work.

6 Conclusions and Outlook

In this work, we have analyzed in detail black holes in (3+1)-dimensional Einstein-
Yang-Mills-Higgs systems. We have argued that the conditions for the no-hair theo-
rem are violated, which allows for the existence of Higgs and non-Abelian hair. This
analytic work supports the numerical evidence for the existence of hair found in [4].
This is due to a balance between the gauge field repulsion and the gravitational
attraction. However we have shown that the above black holes are unstable, and
therefore cannot be formed by gravitational collapse of stable matter. Although
the instability of the black hole sphaleron sector was expected for topological rea-
sons, however our analysis in this work, which includes an exact counting of the
unstable modes in this sector, acquires value in the sense that we have managed to
describe rigorously the sphaleron black holes from a mathematical point of view. In
the gravitational sector we have used catastrophe theory to classify and count the
unstable modes. Our method of using as a catastrophe functional the black hole
mass and as a control parameter the Higgs field v.e.v. proved advantageous over



existing methods of similar origin [6] in that we managed to understand the connec-
tion with the Schwarzschild black holes from a stability/catastrophe-theoretic point
of view. The above analysis, although applied to a specific class of systems, how-
ever is quite general and the various steps can be applied to other self-gravitating
structures in order to reach conclusions related to the existence of non-trivial hair
and their stability. For instance, we can tackle the problem of moduli hair of black
holes in string-inspired dilaton-coupled higher derivative gravity [24]. The presence
of Gauss-Bonnet combinations in such systems shares many similarities with the
case of the non-Abelian black holes, and it would be interesting to study in detail
the possibility of having non-trivial hair (to all orders in the Regge slope α′) and its
stability, following the methods advocated in the present work.

In addition to the question of the stability of non-conventional hairy solutions,
the above analysis has revealed another important aspect concerning the information
theoretic content of these (3+1)-dimensional hairy black holes, namely the existence
of logarithmic divergent contributions to the entropy of matter (quantum (scalar)
fields) near the horizon. Such contributions owe their existence to the non-trivial
hair of the black hole, and they modify the Bekenstein-Hawking entropy formula,
by yielding contributions that do not depend on the horizon area. Our findings can
be compared to a similar situation characterizing extreme (string-inspired) black
holes [9]. There, the deviation from the Bekenstein-Hawking entropy was seen to
occur by the fact that in the extreme case, due to the presence of the dilaton,
the effective horizon area vanishes, whilst the entropy did not vanish. In our case,
despite the non vanishing entropy in the extreme case, the logarithmically-divergent
entropy contributions violate explicitly the classical entropy-area formula by yielding
contributions that are independent of the horizon area. This kind of entropy is
clearly associated with loss of information across the horizon but it is not described
in terms of classical geometric characteristics of the black hole. If true in a full
quantum theory of gravity, this phenomenon might explain the information paradox.
The question of associating this entropy with the entanglement entropy of fields in
the EYMH background is left open in the present work. We hope to come back to
this issue in the near future.

Whether a full quantum theory of gravity could make sense of such divergencies
or not remains to be seen. There are conjectures/indications that string theory,
which is believed to be a mathematically consistent, finite theory of quantum grav-
ity, yields finite extensive quantities at the horizon [8], if string states, which in a
generalized sense are gauged states, are properly taken into account [25]. However,
our understanding of these issues, which are associated with the incompatibility -
at present at least - of canonical quantum gravity with quantum mechanics, is so
incomplete that any claim or attempt to relate the above issues to realistic com-
putations involving quantum black hole physics would be inappropriate. We think,
however, that it is interesting to point out yet another contradiction of quantum me-
chanics and general relativity associated with the proper quantization of extended



objects possessing space-time boundaries.
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Appendix A

Notation and conventions

Throughout this paper we use the sign conventions of Misner, Thorne and Wheeler
[26] for the metric and curvature tensors. In particular, the signature of the metric is
(−+++). For the EYMH system, we write the most general spherically symmetric
metric in the form

ds2 = −NS2dt2 +N−1dr2 + r2(dθ2 + sin2 θdϕ2) (177)

where N and S are functions of t and r only and can be written in terms of the
mass function m and the function δ as

N(t, r) = 1 − 2m(t, r)

r
, S(t, r) = e−δ(t,r). (178)

This latter form of the metric is particularly useful for black hole space-times. Fol-
lowing ref. [4], we take the most general spherically symmetric SU(2) gauge potential
in the form

A = a0τrdt+ a1τrdr + (1 + ω)[τθ sin θdϕ− τϕdθ] + ω̃[τθdθ + τϕ sin θdϕ] (179)

where a0, a1, ω and ω̃ are functions of t and r alone and the τi are given by

τr = τ1 sin θ cosϕ+ τ2 sin θ sinϕ+ τ3 cos θ (180)

τθ = τ1 cos θ cosϕ+ τ2 cos θ sinϕ− τ3 sin θ (181)

τϕ = −τ1 sinϕ+ τ2 cosϕ (182)

with τi, i = 1, 2, 3 the usual Pauli spin matrices. The complex Higgs doublet assumes
the form

Φ =
1√
2

(

ψ2 + iψ1

φ− iψ3

)

(183)

where a suitable spherically symmetric ansatz is

ψ = ψ(t, r)r̂, φ = φ(t, r). (184)

Then the EYMH Lagrangian is [4]

LEYMH = − 1

4π

[

1

4
|F |2 +

1

8
(φ2 + |ψ|2)|A|2 +

1

2
gMN [∂Mφ∂Nφ+ (∂Mψ) · (∂Nψ)]

+V (φ2 + |ψ|2) +
1

2
gMNAM · [ψ × ∂Nψ + ψ∂Nφ− φ∂Nψ]

]

(185)

and the Higgs potential is

V (φ2) =
λ

4
(φ2 − v2)2. (186)



For the equilibrium static solutions, a0, a1, ω̃ and ψ all vanish and the remaining
functions depend on r only. The metric functions m(r) and δ(r) are required by the
Einstein equations to satisfy the following, where ′ = d/dr:

m′(r) =
1

2

[(

1 − 2m(r)

r

)

(2ω′2 + r2φ′2)

]

+
r2

2

[

(1 − ω2)2

r4
+
φ2

2r2
(1 + ω)2 +

λ

2
(φ2 − v2)2

]

(187)

δ′(r) = −1

r
(2ω′2 + r2φ′2) (188)

subject to the boundary conditions m(rh) = rh
2

in order for a regular event horizon
at r = rh, and, in order for the spacetime to be asymptotically flat, δ(∞) = 0. For
an asymptotically flat spacetime, it is also the case that m(r) → M as r → ∞,
where M is a constant equal to the ADM mass of the black hole. Integrating (187)
from rh to ∞ we obtain:

M− rh
2

= m(∞) −m(rh) =
∫ ∞

rh
m′(r)dr

=
∫ ∞

rh

1

2

[(

1 − 2m

r

)

(2ω′2 + r2φ′2)
]

+
r2

2

[

(1 − ω2)2

r4
+

φ2

2r2
(1 + ω)2 +

λ

2
(φ2 − v2)2

]

(189)

This equation defines the mass functional M as an integral of the fields over the
spacetime.

Finally we define the ‘tortoise’ co-ordinate r∗ by

dr∗

dr
=

1

NS
. (190)

Numerical solution of equilibrium equations

The static field equations for the metric functions and matter fields are:

m′(r) =
1

2

[(

1 − 2m

r

)

(2ω′2 + r2φ′2)
]

+
r2

2

[

(1 − ω2)2

r4
+

φ2

2r2
(1 + ω)2 +

λ

2
(φ2 − v2)2

]

(191)

δ′(r) = −1

r
(2ω′2 + r2φ′2) (192)

Nω′′ = −(NS)′

S
ω′ +

1

r2
(ω2 − 1)ω +

φ2

4
(1 + ω) (193)

Nφ′′ = −(NS)′

S
φ′ − 2N

r
φ′ +

φ

2r2
(1 + ω)2 + λφ(φ2 − v2) (194)



For finite energy solutions, we require that ω(∞) = −1, φ(∞) = v and δ(∞) = 0 in
order for spacetime to be asymptotically flat. These equations trivially possess the
Reissner-Nordström solution given by

m ≡ rh
2
, ω ≡ −1, φ ≡ v, δ ≡ 0. (195)

Non-trivial solutions do not occur in closed form, so a numerical method of solution
is necessary as in [4]. We set the horizon radius rh = 1 and λ = 0.15 (cf. λ = 0.125
in ref. [4]).

From the above equations, if the function δ(r) satisfies (192) then δ(r)+ constant
will also be a valid solution. To make the numerical solution easier, we set δ(rh) = 0
(so that δ(∞) = 0 will not be satisfied) when integrating outwards from rh. An
appropriate constant can then be added to δ(r), after the field equations have been
solved, to ensure that the boundary condition at infinity holds.

With this transformation, there are two unknowns at the event horizon, ω(rh)
and φ(rh), since the field equations yield

ω′(1) =
1
4
φ2
h(1 + ωh) − ωh(1 − ω2

h)

1 − (1 − ω2
h)

2 − 1
2
φ2
h(1 + ωh)2 − λ

2
(φ2

h − v2)2

φ′(1) =
1
2
φh(1 + ωh)

2 + λφh(φ
2
h − v2)

1 − (1 − ω2
h)

2 − 1
2
φ2
h(1 + ωh)2 − λ

2
(φ2

h − v2)2
(196)

where
ωh = ω(rh) = ω(1) φh = φ(rh) = φ(1). (197)

Solving the field equations (191)–(194) is therefore a two-parameter shooting prob-
lem. The procedure is to take initial ‘guesses’ for the unknowns ωh and φh and then
integrate the differential equations out from rh using a standard ordinary differential
equation solver, attempting to satisfy the boundary conditions for large r. The ini-
tial starting values for ωh and φh are then adjusted until these boundary conditions
are satisfied (see [27] for further details of the algorithm used).

For each fixed value of the Higgs mass v, there are many solutions which can
be indexed by the number of nodes k of the potential function ω(r). Here we
concentrate on the case k = 1. Then, for each v, there are two solutions which can
be ascribed to one of two families of solutions: the k = 1 branch or the quasi-k = 0
branch, depending on the behaviour of the families as v → 0. The quasi-k = 0
branch of solutions approaches the Schwarzschild solution ω ≡ 1, φ ≡ 0 as v → 0,
whereas the k = 1 branch of solutions approaches the first coloured black hole of
[19] as v → 0, with φ ≡ 0. As v increases, the two branches of solutions join up
at v = vmax = 0.352. This phenomenon does not occur for λ = 0.125, as found by
Greene, Mathur and O’Neill [4]. However, they conjectured that the two branches



of solutions would converge of some value of λ. We stress here that our approach is
somewhat different from that of ref. [6], where the field equations were solved for
fixed Higgs mass v and varying rh, whereas we have fixed rh and varied v.

For each value of the Higgs mass v, we calculated the quantities

M =
rh
2

+
∫ ∞

rh

{

1

2

[(

1 − 2m

r

)

(2ω′2 + r2φ′2)
]

+r2

[

(1 − ω2)2

r4
+

φ2

2r2
(1 + ω)2 +

λ

2
(φ2 − v2)2

]}

dr (198)

δ0 =
∫ ∞

rh

1

r
(2ω′2 + r2φ′2)dr (199)

for each of the two solutions. The resulting solution curve plotted in (v, δ0,M) space
is shown in figure 1. The projection of this curve on to the (v,M) plane are shown
in figure 2.

One issue that is important, especially when we come to consider the thermody-
namics and entropy of the black holes, is whether or not they are extremal. An
extremal black hole occurs when N has a double zero at the event horizon, and is
caused physically by an inner horizon moving outwards until it coincides with the
outermost event horizon. Mathematically, the condition for extremality is that

m′(1) =
1

2
. (200)

From the field equations (194), we have

m′(1) =
1

2

[

(1 − ω2
h)

2 +
1

2
φh(1 + ωh)

2 +
λ

2
(φ2

h − v2)2

]

(201)

m′′(rh) =
1

rh

(

1 − φ2
h

2ωh
(1 + ωh)

2

)

(202)

where in the last relation we have kept an explicit rh dependence for calculational
convenience. There is thus no a priori reason why this quantity should not be equal
to one half for some equilibrium solution. For the solutions on the k = 1 and quasi-
k = 0 branches, we can however place the following bounds on m′(1). The first term
is decreasing for ωh positive and increasing, and hence is bouded above by its value
for the smallest value of ωh along these branches, which is ωh = 0.632, whence

(1 − ω2
h)

2 ≤ 0.360. (203)

Along both these branches, φh ≤ 0.19v which gives the following bound on the
second term,

1

2
φ2
h(1 + ωh)

2 ≤ 2 × (0.19v)2 ≤ 2 × 0.192 × 0.3522 = 8.95 × 10−3. (204)



Finally, for the last term we have

λ

2
(φ2

h − v2)2 ≤ λ

2
v4 ≤ 0.15 × 0.5 × 0.3524 = 1.15 × 10−3. (205)

Adding together all the contributions, we find that

m′(1) ≤ 0.5 × (0.360 + 8.95 × 10−3 + 1.15 × 10−3) = 0.185 ≤ 0.5 (206)

and hence all the equilibrium black holes considered here are non-extremal.

Linear perturbation equations

Consider small, time-dependent perturbations about the equilibrium solutions dis-
cussed above, within the initial ansatz for the metric and matter field functions. We
use a δ to denote one of these small perturbation quantities, all other quantities are
assumed to be static equilibrium functions. Following ref. [13], we set δa0 = 0 so
that the field configurations remain purely magnetic. With this choice, the pertur-
bation equations decouple into two independent coupled systems. The first concerns
δa1, δω̃ and δψ only. The equations take the form, with a prime denoting d/dr∗

where r∗ is the tortoise co-ordinate:

−Nr2 ¨δa1 = 2N2S2

(

ω2 +
r2

8
φ2

)

δa1 + 2NS(ωδω̃′ − ω′δω̃)

+
1

2
r2NS(φ′δψ − φδψ′) (207)

2δ ¨̃ω = 2(NSωδa1)
′ + 2NSω′δa1 + δω̃′′ +NS2φδψ

− 2

r2
S2

(

ω2 − 1 +
φ2

4

)

δω̃ (208)

−r2δψ̈ =
1

2
(NSr2φδa1)

′ +
1

2
r2NSφ′δa1 −NS2φδω̃ − (r2δψ′)′

+2NS2

(

(1 − ω)2

4
+

1

2
r2λ(φ2 − v2)

)

δψ (209)

0 = ∂t

{(

r2

S
δa1

)′

+ 2ωω̃ − r2

2
φδψ

}

. (210)

This final equation is known as the Gauss constraint equation, since it represents an
additional constraint on the field perturbations rather than an equation of motion.
This system of coupled equations is referred to as the sphaleronic sector because it
does not involve any perturbations of the metric functions.



The remaining perturbation equations form the gravitational sector and concern
the perturbations of the metric functions and also δω and δφ:

− δω̈ = −δω′′ + Uωωδω + Uωφδφ (211)

−δφ̈ = −δφ′′ + Uφωδω + Uφφδφ (212)

where the U ’s are complicated functions of N , S, ω and φ and are given explicitly
in section 4, equation 105. The equations governing the behaviour of δm and δS are
derived from the linearised Einstein equations and are:

d

dr
(Sδm) =

d

dr

(

2NS
dω

dr
δω + r2NS

dφ

dr
δφ

)

(213)

δṁ = 2N
dω

dr
δω̇ + r2N

dφ

dr
δφ̇ (214)

δ

(

1

S

dS

dr

)

=
4

r

dω

dr

dδω

dr
+ 2r

dφ

dr

dδφ

dr
. (215)

From (213) δm has the form

δm = 2N
dω

dr
δω +Nr2dφ

dr
δφ+

f(t)

S
(216)

where f(t) is an arbitrary function of t. Compare this with the following, which
results from integrating (214):

δm = 2N
dω

dr
δω +Nr2dφ

dr
δφ+ g(r) (217)

where g(r) is an arbitrary function of r. Comparing (216) with (217), we see that
f(t) ≡ 0 ≡ g(r) and

δm = 2N
dω

dr
δω +Nr2dφ

dr
δφ. (218)

We consider periodic perturbations of the form

δω(r, t) = δω(r)eiσt (219)

and similarly for the other pertubation quantities. When substituted into the per-
turbation equations for each of the two sectors, the equations studied in detail in
sections 3 and 4 are derived.



Appendix B

Definitions and results of catastrophe theory

Consider a family of functions

f : X × C → IR f(x, c) = fc(x) (220)

Here X and C are both manifolds known as the state space and control space
respectively. In other words, we have a family of functions of the variable x, the
members of the family being indexed by c. From now on we take both X and C to
be intervals of the real line. Then f maps out a surface z = f(x, c) in IR3 which is
known as the Whitney surface [28].

The catastrophe manifold is defined as the subset of X × C at which

d

dx
fc(x) = 0, (221)

namely it is the set of all critical points of the family of functions. In section 4,
critical points of the functional M correspond to solutions of the field equations,
and hence the catastrophe manifold corresponds to the projection of the solution
curve onto the (x, c) = (δ0, v) plane.

The catastrophe map χ is the restriction to the catastrophe manifold of the natural
projection

π : X × C → C, π(x, c) = c. (222)

This can easily be extended to a projection of the solution curve on to the (c, z)
plane:

χ(x, c, z = f(x, c)) = (c, z = f(x, c)). (223)

The singularity set is the set of singular points of χ in the catastrophe manifold,
and the image of the singularity set in C is called the bifurcation set B. Here both
manifolds X and C are of dimension 1, and hence χ will be singular whenever its
derivative vanishes.

The first result we require is that the singularity set is the set of points (x, c) at
which fc(x) has a degenerate critical point, in other words, both

d

dx
fc(x) = 0 and

d2

dx2
fc(x) = 0. (224)

This implies that the set B is the place where the number and nature of the critical
points of the family of functions fc(x) change (see [28] for more details of these
results).



In our case, where both X and C are one-dimensional, the only possibility is that
the bifurcation set B either is empty (in which case there is no catastrophe) or B
contains a single point (when a fold catastrophe occurs). We observe in section 4
that the latter situation arises.

The catastrophe manifold is a curve C in the (x, c) plane, with the point B lying
on it. On one side of the point B, points lying on C correspond to maxima of the
functions fc(x) whilst on the other side of B they represent minima. In section 4
the value of f corresponds to energy, so that minima of f will represent (relatively)
stable objects, whilst maxima of f will represent (relatively) unstable configurations.
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Figure Captions

Figure 1 Solution curve for black holes in EYMH theory with one node of the
gauge field component ω, in (v, δ0,M) parameter space: v is the Higgs v.e.v., δ0 is
the black hole parameter defined in Appendix A and M is the mass functional of
the black hole. Notice that the solution curve is smooth, but this is not true for its
projection onto the (v,M) plane, see Figure 2 below.

Figure 2 Projection of the solution curve of Figure 1 onto the (v,M) plane. The
cusp at v = vmax indicates the rôle of M as a fold catastrophe functional, with v
the appropriate control parameter. The upper branch of solutions (quasi-k = 0),
corresponding to higher entropy, is more stable relative to the lower branch (k = 1).
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