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Abstract 

Chondrogenic differentiation of adipose derived stem cells (ASC) is challenging but 

highly promising for cartilage repair. Large donor variability of chondrogenic 

differentiation potential raises the risk for transplantation of cells with reduced efficacy 

and a low chondrogenic potential. Therefore quick potency assays are required in 

order to control the potency of the isolated cells before cell transplantation. Current in 

vitro methods to analyze the differentiation capacity are time consuming and thus, a 

novel enhancer and tissue-specific promoter combination was employed for the 

detection of chondrogenic differentiation of ASC in a novel quick potency bioassay. 

Human primary ASC were co-transfected with the Metridia luciferase based collagen 

type II reporter gene pCMVE_ACDCII-MetLuc together with a Renilla control plasmid 

and analyzed for their chondrogenic potential. On day 3 after chondrogenic induction, 

the luciferase activity was induced in all tested donors under three dimensional (3D) 

culture conditions and in a second approach also under 2D culture conditions. With 

our newly developed quick potency bioassay we can determine chondrogenic 

potential already after 3 days of chondrogenic induction and under 2D culture 

conditions. This will enhance the efficiency of testing cell functionality, which should 

allow in the future to predict the suitability of cells derived from individual patients for 

cell therapies, in a very short time and at low costs. 

  



	

	

Introduction 

Cartilage repair strategies after traumatic injuries range from standard autologous 

cartilage transplantation (mosaicplasty) or marrow-stimulating techniques 

(microfracture) up to novel cell based strategies. For the matrix associated 

chondrocyte transplantation (MACT) 1, biomaterials are used in combination with 

expanded human autologous chondrocytes (hAC), a method which originates from a 

scaffold free procedure, the autologous chondrocyte transplantation (ACT) 2. One of 

the biggest drawbacks of cartilage/chondrocyte based methods is that healthy 

autologous cartilage needs to be harvested from the patient. This creates an 

additional defect which enhances the risk for developing osteoarthritis. In order to 

obtain enough cells for treatment it is further necessary to expand chondrocytes in 

vitro which is accompanied by a dedifferentiation process, leading to fibroblast-like, 

collagen type I expressing cells 3. Instead of hAC, mesenchymal stem cells (MSC) 

may overcome drawbacks accompanied with cartilage harvest and cell expansion. 

Bone marrow-derived MSC (BMSC) represent the most intensively investigated MSC 

type in cartilage tissue engineering. They can be isolated from bone marrow 

aspirates, expanded in monolayer and induced for chondrogenic differentiation 4, 5. 

Zuk et al. found that adipose-derived stem cells (ASC) also show ability to form 

cartilage-like matrix, as indicated by Alcian blue and collagen type II staining 6. In 

contrast to bone marrow, adipose tissue can be harvested in large amounts by 

simple surgical procedure. However, a large donor variability for the chondrogenic 

differentiation potential has been reported 7, 8, which raises the risk for transplantation 

of low-potent cells. Therefore, a quick potency assay is required to predict cell 

potency before transplantation or long-term storage. For assessing the chondrogenic 

potential collagen type II might be regarded as the most specific and unique marker 

for hyaline cartilage synthesis. Unfortunately, collagen type II expression starts very 



	

	

late: a significant increase can be detected by quantitative reverse transcription- 

(qRT) PCR after 2-3 weeks of differentiation in vitro 7 which impedes quick decisions 

of cells’ quality. This late but specific marker needs to be monitored in an early phase 

to anticipate cellular alteration and modification upon differentiation. Therefore we 

designed and developed a luciferase-based reporter-vector together with a quick 

potency assay to monitor the capability of cells synthesizing collagen type II upon 

chondrogenic induction. Luciferase based bioassays represent a useful alternative to 

conventional analytical methods due to their simple and extremely sensitive 

properties. The assay employed in this work is based on measuring bioluminescence 

derived from the reaction of Metridia luciferase under control of a tissue-specific 

collagen type II promoter coupled to a signal amplified viral enhancer (CMV) 9. With 

our luciferase reporter system we have established a proof of principle concept for 

the prediction of the chondrogenic differentiation potential within 3 days.  

 

Methods 

ASC isolation and cultivation 

The collection of human tissue was approved by the local ethical board with patient’s 

consent. Subcutaneous human adipose tissue was obtained during routine outpatient 

liposuction procedures under local tumescence anaesthesia. Isolation of ASC was 

performed according to Wolbank et al. 10. After isolation, cells were cultured in 

endothelial growth medium (EGM-2; Lonza, Austria) at 37°C, 5% CO2, and 95% air 

humidity to a subconfluent state before passaging. ASC were seeded at a density of 

2x103 / cm2 and media was changed every 3-4 days. ASC from passage 1 were used 



	

	

for flow cytometry, histological analysis and reporter experiments. For qRT-PCR 

experiments cells were expanded up to passage 2-4. 

   

ASC immunophenotype  

ASC from passage 1 were characterized by flow cytometry analysis using the 

following antibodies: CD73-PE (BD), CD90-PE (BD), CD105-FITC (Abcam), CD14-

FITC (Immunotools), CD34-PE (Immunotools), CD45-FITC (BD), HLA-ABC-PE (BD) 

and HLA-DR-FITC (BD). For staining, 2x105 cells in 50 µL PBS with 1% FCS were 

incubated with 5 µl primary labeled antibodies at room temperature for 15 min in the 

dark. Cells were washed with 1.5 ml Cell Wash™ (BD) and centrifuged for 5 min at 

400 g. The supernatant was discarded and the cell pellet resuspended in 300 µL 1 x 

Cell Fix™ (BD; diluted 1:10 with aqua dest) and analyzed on a FACSCanto (BD).  

 

Chondrogenic 3D pellet culture 

For chondrogenic differentiation and 3D micromass pellet cultures 3x105 ASC were 

centrifuged in chondrogenic differentiation media (hMSC Chondro BulletKit (Lonza) 

containing 10ng/ml BMP-6 (R&D Systems, Austria) and 10ng/ml TGF-ß3 (Lonza)) in 

1.5 mL polypropylene screw cap micro tubes (Sarstedt, Austria). The tubes were 

placed in an incubator at 37°C, 5% CO2, and 95% humidity with slightly open cap for 

gas exchange. After 2 days the pellets were transferred to 96-well U-bottom plates. 

Media was changed every 2-3 days. 

 

Histological analysis 



	

	

The 3D micromass pellet cultures incubated over 35 days in chondrogenic 

differentiation media were measured once a week for their cross section area. 

Micromass pellets were fixed in 4% phosphate-buffered formalin overnight for 

histological analysis. The next day the pellets were washed in 1x PBS and 

dehydrated in increasing concentrations of alcohol. After rinsing the pellets in xylol 

and infiltration with paraffin, deparaffinized sections were stained with Alcian blue for 

30 min and counterstained for 2 min with Mayers haematoxylin. For 

immunohistochemical staining, sections were treated with pepsin for 10 min at 37°C 

(AP-9007 RTU, Thermo Scientific, Austria). Endogenous peroxidase was quenched 

with freshly prepared 3% H2O2 for 10 min at room temperature, followed by normal 

horse serum 2.5% (Vector RTU) to block unspecific binding. Sections were incubated 

1 hour with monoclonal anti- collagen type II (MS-306 P0 Thermo Scientific) at 1:100. 

After washing with TBS, sections were incubated with the secondary antibody (anti 

mouse DAKO EnVision+ System HRP labelled Polymer, Dako, Austria) for 30 min 

and rinsed in TBS again. Bindings were visualized using Nova Red (SK4800 Vector 

Labs, Austria) for 6 min. Counterstaining was performed with Mayers haematoxylin 

for 2 min. For quantification of the collagen type II immunohistolgical staining intensity 

ImageJ 1.47v (National Institutes of Health, USA) was used. 

 

Quantitative RT-PCR 

Samples for qRT–PCR were taken after 3 days and at the end of differentiation 

cultures (day 35). Three to five micromass pellets per donor were pooled in 1 ml 

TriReagent (Sigma) and incubated for 20 min at room temperature. Extraction was 

facilitated by repeated pipetting of the pellets. Total RNA isolation was performed 

according to the TriReagent protocol (Sigma) and RNA content and RNA integrity of 



	

	

the samples was assessed by an Agilent 2100 Bioanalyzer, using the RNA 6000 

Nano Chips Kit (no. 5065 – 4476, Agilent Technologies, Germany). Isolated RNA 

was transcribed to cDNA according to the High Capacity cDNA Archive Kit protocol 

(Applied Biosystems, Austria). Quantification of specific cDNAs was conducted in 

triplicate, using a LightCycler W 480 (Roche, Germany) and Taqman gene 

expression assay (Applied Biosystems) for Col2A1 (collagen type II, 

Hs01064869_m1) and Sox9 (Hs00165814_m1). The PCR was programmed as 

follows: initial denaturation at 95°C for 10 min, followed by 95°C for 10 s, 60°C for 45 

s, cycled 50 times. Cooling to 40°C was held for 30 s. Slope speed was 20°C/s. 

Standard curves were prepared for quantification and expression values were 

normalized to the housekeeping gene, hypoxanthine–guanine phosphoribosyl 

transferase (HPRT). The efficiency-corrected quantification was performed 

automatically, using LightCycler 480 Relative Quantification Software (Roche). 

 

Reporter plasmid 

All cloning procedures were carried out using a standard Taq hot-start polymerase 

(Peqlab Biotechnologie GesmbH, Austria) and the E.coli cloning strain TOP10. The 

human collagen II alpha 1 promoter (Col2A1 promoter and 5’ mRNA UTR from -478 

to +179 from the transcriptional start site, see NC_000012.12) was cloned from 

human genomic DNA isolated from whole blood using the cloning primers hColIIPs 

5’- CTGTGGGCTCCTCCCTGTCCCCACTCC-3’) and hColIIPas(NotI) (5’- 

GAGGCGGCCGCGCTCACCGCGGGGCCTGGCTGAGC-3’) (Microsynth AG, 

Switzerland) and the product was ligated into the vector pCR2.1 by TA cloning for 

sequencing (data not shown) and subsequent cloning. The promoter was transferred 

to the in-house designed plasmid pCMVE-EYFPHis containing the CMV-enhancer 



	

	

(from -524 to -120 from the transcriptional start site, according to 9) and an EYFPHis 

reporter gene by PCR amplification using the primers hC2PHIII_f. (5’-GAG AAG CTT 

CTG TGG GCT CCT CCC TGT CC-3’) and hC2PHIII_r (5’-GAG AAG CTT GCT CAC 

CGC GGG GCC TGG-3’) (Microsynth AG), transfer of the PCR product to pCR2.1 

and subsequent cloning by HindIII (Fermentas/FisherScientific, Austria) digestion of 

insert and destination vector and ligation into pCMVE_ACDCII using standard 

procedures. The EYFPHis reporter gene was exchanged by a Metridia secreted 

luciferase by cloning the Metridia luciferase open reading frame 3’ of the CMV 

enhancer and the collagen II promoter in pCMVE_ACDCII using AgeI 

(Fermentas/FisherScientific) and NotI (Fermentas/FisherScientific) restriction sites. 

All vectors and intermediate products were verified by control digests (data not 

shown) and the Metridia luciferase containing end product pCMVE_ACDCII-MetLuc 

(Col2A, Fig. 1) was verified by sequencing (data not shown).  

 

Luciferase assay 

Pellets were co-transfected with Metridia luciferase based reporter genes 

pCMVE_ACDCII-MetLuc together with the Renilla control plasmid using X-

tremeGENE HP DNA Transfection Reagent (Roche) and 0.4 µg DNA in a 3:1 

reagent/DNA ratio after 2 days of pellet formation. For chondrogenic 2D luciferase 

assay 3x104 ASC per well were seeded in a white 96 well plate (Fisher Scientific, 

Austria) in EGM-2 media (9.4x104 / cm2). Sixteen hours later media was replaced by 

differentiation media. ASC were co-transfected with Metridia luciferase based 

reportervector pCMVE_ACDCII-MetLuc together with Renilla control plasmid using 

the same concentrations like for 3D pellet transfection. Metridia luciferase activity 

was measured in the supernatant samples (50 µl) with Ready-To-Glow™ Secreted 



	

	

Luciferase Reporter System (Clontech, Austria) according to the manufacturer’s 

protocol on day 1, day 2 and day 3. For the evaluation of this bioassay and as 

internal control to normalize the transfection we co-transfected the cells with a Renilla 

reporter gene under control of an ubiquitary promoter. Prior to measurement of 

Renilla luciferase activity, ASC were lysed with 1x Renilla Luciferase Assay Lysis 

Buffer (Promega, Austria) for 15 minutes, pellets with 5x Renilla Luciferase Assay 

Lysis Buffer for 15 minutes at 1400 rpm. Then Renilla luciferase activity was 

measured using Renilla Luciferase Assay System (Promega) according to the 

manufacturer’s instructions. Luciferase activities were recorded with an Infinite→ 

M200 Multimode Microplate Reader (Tecan). Data were normalized for transfection 

efficiency to Renilla luciferase activity. Pellet cultures and adherent cells were 

transfected using green fluorescent protein (GFP) to evaluate transfection efficiency. 

GFP positive pellets and cells were microscopically analyzed (Axiovert 200, Zeiss, 

Germany). 

 

Statistical Analysis  

Data are presented as mean ± standard deviation and statistical analysis was 

performed using PRISM6 (GraphPad, San Diego, CA, USA). P values of < 0.05 were 

considered to be significant acquired by parametric 2-way analysis of variance 

(ANOVA)-Bonferroni post hoc or parametric two-tailed t-test assuming normal 

distribution according to Kolmogorov-Smirnov normality test. 

 

Results 

Expression of specific ASC surface marker  



	

	

ASC displayed strong expression of mesenchymal stem cell marker CD73 (99.68% ± 

0.35), CD90 (98.70% ± 1.46) and CD105 (97.95% ± 1.62) and almost no expression 

of the lymphatic marker CD14 (1.64% ± 0.87), the endothelial marker CD34 (3.90% ± 

7.69) and the hematopoietic marker CD45 (1.23% ± 0.52) (Suppl. Table 1), which 

verified the ASC character as described in Bourin et al. 2013 11. The 

histocompatibility antigen molecule HLA-ABC (93.74% ± 6.17) was expressed at a 

very high level whereas only a small portion of ASC expressed the histocompatibility 

antigen class II HLA-DR (1.71% ± 0.76). 

 

Definition of donor potential by qRT-PCR, histology and pellet diameter area  

 

Micromass pellets from 9 different donors were analyzed after 35 days of 

chondrogenic differentiation for their capability to express collagen type II at mRNA 

and protein level by means of qRT-PCR and immunohistological staining. Further, 

sulphated glycosaminoglycans (sGAGs) were stained with Alcian blue to analyze the 

potential of individual donors to synthesize proteoglycans. Donors 3, 4, 5, 8 and 9 

showed Col2A1 expression levels in the range of 70.8-354.8 (relative mRNA 

expression normalized to HPRT), whereas donors 1, 2, 6 and 7 demonstrated 

significantly lower values in the range of 0.0066 – 3.4 (Fig. 2a,b). Immunohistological 

stainings showed that donors with low Col2A1 mRNA expression have also low 

potential to produce collagen type II and sGAGs on protein level, while donors with 

high Col2A1 expression on mRNA level showed intense staining for Alcian blue and 

collagen type II (Fig. 3a). Based on the results of qRT-PCR and histological 

evaluations we defined donors with high and low differentiation potential, as “good 

donors” and “bad donors”. The pellet diameter area of each good and bad donor was 

evaluated over time in culture (day 7, 14, 21, 28 and 35) (Fig. 3b). These results 



	

	

corroborate the immunohistological stainings for Alcian blue and collagen type II. 

Donor 2  is in the range of the good donors regarding pellet diameter area but is still 

negative for Alcian blue and collagen type II staining.. According to the analyses, the 

threshold for Col2A1 expression on mRNA level was set to 10 and together with the 

histological and immunohistological data we identified 5 good donors (3, 4, 5, 8, 9) 

and 4 bad donors (1, 2, 6, 7). 

 

Activation of Col2A luciferase reporter under 3D culture conditions 

To visualize transfection efficiency of 3D micromass pellets a GFP plasmid was used 

(Suppl. Fig. 1a). The weak fluorescence of un-transfected pellets is probably due to 

the known autofluorescence of cartilage-like matrix 12. For the analysis of Col2A 

reporter activation micromass pellets of the 9 different donors were transfected with a 

plasmid containing Metridia luciferase under control of the Col2A promoter together 

with a plasmid containing Renilla luciferase under control of an ubiquitary promoter. 

After 3 days of differentiation the activation of the Col2A luciferase reporter was 

analyzed and normalized to Renilla luciferase. While there were remarkable 

differences in the activation of the Col2A reporter (Fig. 4a), all donors showed similar 

activation of Renilla luciferase (Fig. 4b), indicating similar transfection efficiency and 

promoter activation. These differences in the Col2A reporter activation also occurred 

after normalization to Renilla activation (Fig. 4c). The data were compared to the 

results of qRT-PCR and histological stainings. Good donors exhibited relative 

luciferase units (RLU) in the range of 5.0x104-8.9x104 of Col2A activation 

corresponding to relative values of 112-335 after normalization to Renilla, while bad 

donors were in the range of 5.5x103-3.4x104 and 20.1-95.7 after normalization (Fig. 

4a,c). Sequential analysis of Col2A reporter activation over the first 3 days of 

induction showed an increase for both groups, but significantly higher Col2A 



	

	

activation for good donors on day3 (Fig. 4d). Even after normalization of Col2A 

activation to Renilla activation the induction of Col2A reporter was significantly 

stronger in good donors (199 ± 83) compared to bad donors (51 ± 34) (Fig. 4e). 

 

Col2A1 and Sox9 mRNA expression under 3D culture conditions 

As we have observed a luciferase reporter signal only after 3 days of differentiation 

we performed qRT-PCR for Col2A1 and Sox9. After 3 days Col2A1 expression was 

not detectable for any donor except minimal levels for donor 2 (Col2A1 mRNA 

expression of 0.0154) (data not shown). Early marker Sox9 expression after 3 days 

of differentiation showed also a very low but detectable signal in all donors (Suppl. 

Fig. 2a). However no difference between bad and good donors could be 

discriminated (Suppl. Fig. 2b). 

 

Activation of Col2A luciferase reporter under 2D culture conditions 

 

In order to simplify the assay we changed from the standard chondrogenic 3D culture 

conditions to 2D culture conditions, which reduces time and required cell numbers. 

Transfection efficiency was analyzed by using a GFP plasmid (Suppl. Fig. 1b) 

corresponding to 45.3% ± 11.8 of transfected cells as determined by nucleocounting. 

ASC were seeded and induced in 2D culture and co-transfected with Col2A reporter 

plasmid together with Renilla luciferase control plasmid. There was a clear difference 

in the activation of Col2A reporter between good (6.2x105-1.1x106 RLU) and bad 

donors (2.4x105-7.0x105 RLU) found on day 3 of culture (Fig. 5a), while Renilla 

activation was similar in all tested donors (Fig. 5b). The differences in Col2A reporter 

activation were still present after normalization of Metridia to Renilla activation (19.9-



	

	

31.3 vs. 7.3-18.3) (Fig. 5c), which demonstrates that the potential for chondrogenic 

differentiation is reflected in Col2A promoter activity at early timepoints even under 

2D conditions. Sequential analysis of Col2A reporter activation over the first 3 days 

showed an increase for both groups, but again a significantly higher Col2A activation 

for good versus bad donors on day 3 (Fig. 5d). Moreover, activation of Col2A reporter 

was still higher in good donors (25.6 ± 4.3) compared to bad donors (14.2 ± 4.8) after 

normalization to Renilla activation (Fig. 5e). 

 

Relation of Col2A luciferase reporter activation to Col2A1 mRNA expression, 

collagen type II immunostaining or pellet diameter area  

For a more clear relation of the 3D micromass pellet data, our day 3 quick potency 

assay was plotted against qRT-PCR, immunostainings and pellet diameter area of 

day 35 3D cultures (Fig. 6).  

By comparing values of Col2A luciferase reporter activation to Col2A1 mRNA 

expression (Fig. 6a) as well as to colIagen type II immunostaining intensity (Fig. 6b)  

the determined good donors 3, 4, 5, 8, 9 and bad donors 1, 2, 6, 7 could clearly be 

identified. Regarding the relation between Col2A luciferase reporter activation and 

the pellet diameter area (Fig. 6c) there is no clear cut-off line to identify donor quality, 

which may however partly be due to the low correlation of pellet size and the quality 

of chondrogenic differentiation 13, 14.  

	

Discussion 

 



	

	

In the current study we developed a quick potency assay for fast determination of 

chondrogenic differentiation status of ASC. ASC can be induced for collagen type II 

expression after extensive passaging 15, but also directly after isolation from adipose 

tissue 16. The expression of collagen type II is mainly regulated via the TGF-ß 

pathway 17, 18; in a previous work we could demonstrate that TGF-β and BMP-6 

induce collagen type II expression in ASC, in a 3D culture system 19.	 Also other 

pathways such as MAPK- and Wnt/β-catenin signalling have impact on collagen type 

II expression but have not been investigated in detail as the TGF-β pathway 21-25. To 

predict chondrogenic potential of ASC from different donors, Kang et al. measured 

activation of TGF-ß receptor expression. The chondrogenic potential was increased 

with a bicistronic vector system containing TGF-ß receptors 20. Duryagina et al. 

developed a new reporter system based on Gaussia luciferase reporter to monitor 

HSC-supportive proteins in human MSC 21. The advantages of assessing reporter 

genes with bioluminescent assays are the high sensitivity and the non-destructive 

and rapid application compared to protein and RNA analysis 22.  Based on a previous 

study, where we designed a reporter construct for detection of osteogenic 

differentiation 9, we employed in this study a novel reporter for chondrogenic 

differentiation. Cells from 4 individuals demonstrated a value for Col2A1 relative 

mRNA expression lower than 5 which confirmed the weak Alcian blue and absent 

immunohistological staining for collagen type II. These donors were regarded as bad 

donors. The remaining 5 donors expressed Col2A1 in the range of 70-350 and 

showed intense Alcian blue and collagen type II expression on protein level. These 

donors were regarded as good donors. The pellet diameter area of each good and 

bad donor corroborate these results, except donor 2 which is in the range of the good 

donors but still negative for Alcian blue and collagen type II staining. This is slightly 

different to a study of Hennig et al. 7, who investigated the chondrogenic 



	

	

differentiation potential of 9 donors treated with TGF-β and BMP-6 resulting in 7 of 9 

donors positive for collagen type II immunohistochemistry and all investigated 

samples positive for Col2A1 gene expression. They also found that low potency 

donors lack the expression of TGF-β receptor I which could be partly overcome by 

co-induction with TGF-β and BMP-6 7. We have identified that 20-50% are low 

potency donors (with low or no collagen type II expression) also in presence of BMP-

6, there is need for further analysis to find out differences between good and bad 

donors.  

Our determined good and bad donors were evaluated with our reporter gene assay 

using the identical differentiation condition and compared to collagen type II 

expression on mRNA and protein level on day 35. To our knowledge we were the first 

who showed transfection of chondrogenic micromass pellet cultures. The results of 

the quick potency assay measured for Metridia luciferase in the supernatant showed 

an increase of Col2A promoter activation for all donors from 1- 3 days with significant 

higher values of the good donors on day 3. Even the values normalized for Renilla 

luciferase activity were significantly higher for the good donors. Notably, the Col2A 

reporter activation normalized against Renilla demonstrated higher values in each of 

the good donors compared to each single bad donor. These results corroborate the 

analyses of the histological stainings and qRT-PCR after 35 days with 5 good donors 

and 4 bad donors. At single donor level, Col2A luciferase reporter activation 

measured on day 3 was comparable to the readout from day 35 pellet culture Col2A1 

mRNA levels and immunostaining for collagen type II and Alcian blue. We could 

hence identify the 4 donors with the weakest potential for chondrogenesis resulting in 

no deposition of collagen 2 in the pellets after 5 weeks. This result based on Col2A 

promoter-activity could be achieved although Col2A is a late marker and Col2A1 

mRNA levels on day 3 were indeed negative. mRNA levels of the early marker Sox9 



	

	

could be detected in all 9 donors already on day 3. However expression levels were 

extremely low and did not allow identification of the previously determined donors 

obtained by Col2A1 mRNA level and immunostainings on day 35. Hence, Sox9 

expression on day 3 was not predictive for chondrogenic potency at an early time 

point. Although 3D micromass pellet culture is the prerequisite for induction of 

chondrogenic differentiation we simplified this assay and changed to 2D culture. 

Surprisingly, also under 2D culture conditions Col2A reporter activity increased over 

3 days for all donors with a significant difference on day 3. The change from 3D to 2D 

contributed towards further improvement by saving time (2 days less, since no pellet 

formation was necessary) and cell number (1/10) while maintaining the functionality 

of the assay. Moreover, under 2D conditions no autofluorescence was visible which 

interferes with the luciferase reporter signal. Considering absolute Metridia (Fig. 4a, 

Fig. 5a) and Renilla (Fig. 4b, Fig. 5b) values, obviously 2D culture conditions give 

higher signals compared to 3D culture conditions. This might be due to inferior 

transfection or cell lysis efficiency in 3D micromass pellets compared to monolayer 

cultures. However, Metridia values normalized against Renilla are higher under 3D 

(Fig. 4c,e) than under 2D (Fig. 5c,e) culture conditions, which confirms the fact that 

ASC cultured in micromass pellets are more committed to the chondrogenic lineage 

compared to 2D culture. The results demonstrate that a determination between good 

and bad donors is possible under both 3D and 2D conditions. That implies the 

functionality and quality of the assay is maintained combined with the advantages of 

a quick potency assay.  

In this study we have established a proof of principle concept for the analysis of 

donor quality in terms of chondrogenic differentiation potential.	Based on this study 

the identification of donor material with poor chondrogenic differentiation potential 

should allow to exclude these cells at early timepoints. Before an implementation as 



	

	

a valuable cGMP (current good manufacturing practice) quality control could be 

established in the future, further careful evaluation of the cut-off point with a high 

number of donors would be required. 
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Fig. 1.  Metridia luciferase based reportervector pCMVE_ACDCII-MetLuc. This 

construct utilizes an artificial, chimeric cis-acting regulatory sequence through 

combination of a pan-active cytomegalovirus enhancer cloned directly upstream of 

the human COL2A promoter which drives the expression of the reporter gene.  

 

 



	

	

Fig. 2. COL2A1 mRNA expression. On day 35 of micromass pellet cultures 3 – 5 

pellets were pooled from each donor. COL2A1 mRNA expression demonstrates 

variations between the 9 tested donors (a). These donors were separated into 5 good 

donors (3, 4, 5, 8, 9) and 4 bad donors (1, 2, 6, 7) with a significant difference (b). *p 

< 0.05. 



	

	

 

Fig. 3. Alcian blue and collagen type II staining (a). The immunohistological 

evaluation demonstrates weak or absent Alcian blue and collagen type II staining for 

bad donors (D1, D2, D6, D7) but intense staining for good donors (D3, D4, D5, D8, 

D9). Bar = 100µm. Pellet size of 3D chondrogenic micromass pellets measured in 

differentiation media over time (day 7, 14, 21, 28 and 35) (b). The pellet diameter 



	

	

area of each good and bad donor corroborates the immunohistological stainings for 

Alcian blue and collagen type II. Apart from Donor 2, which is in the range of the 

good donors but still negative for Alcian blue and collagen type II staining.	

 

Fig. 4. Activation of Col2A luciferase reporter under 3D culture conditions. Micromass 

pellets were co-transfected with Metridia luciferase based reporter gene 

pCMVE_ACDCII-MetLuc together with Renilla control plasmid. Pellets were 

incubated in chondrogenic differentiation media with TGF-ß3 and BMP-6. Col2A 

Metridia luciferase activity was measured in the supernatant on day 1, day 2 and day 

3. For measurement of Renilla luciferase activity pellets were lysed on day3. 

Activation of Metridia and Renilla luciferase reporter and normalization of Metridia 

luciferase to Renilla luciferase on day3 for each single donor (a-c). There was a clear 

difference in the activation of Col2A reporter (a) while Renilla activation was similar in 

all tested donors (b). These differences were still present after normalization of 

Metridia to Renilla activation (c).  Donors were divided in good and bad donors as 

confirmed with qRT-PCR and regarding their specific reporter activation. Analysis of 



	

	

Col2A reporter activation over 3 days showed an increase for both groups, but 

significant higher Col2A activation for good donors (d). Even after normalization of 

Col2A activation to Renilla activation the induction of Col2A reporter was much 

stronger in good donors compared to bad donors (e). Data are shown as mean ± SD. 

Asterisks indicate significant difference. Units of Col2A luciferase reporter activation 

are shown in Relative Light Units (RLU). *p < 0.05; ****p < 0.0001	

 

Fig. 5. Activation of Col2A luciferase reporter under 2D culture conditions.  ASCs 

were co-transfected with Metridia luciferase based reporter gene pCMVE_ACDCII-

MetLuc together with Renilla control plasmid and incubated for 3 days with 

chondrogenic differentiation media with TGF-ß3 and BMP-6. On day 1, day 2 and 

day 3 Col2A Metridia luciferase activity was measured in the supernatant. On day 3 

cells were lysed for measurement of Renilla luciferase activity. Activation of Metridia 

and Renilla luciferase reporter and normalization of Metridia luciferase to Renilla 

luciferase on day3 for each single donor (a-c). There was a clear difference in the 

activation of Col2A reporter between the donors (a) while Renilla activation was 

similar in all tested donors (b). These differences were still present after 



	

	

normalization of Metridia to Renilla activation (c). Donors were divided in good and 

bad donors as confirmed with qRT-PCR and regarding their specific reporter 

activation. Analysis of Col2A reporter activation over 3 days showed an increase for 

both groups, but significant higher Col2A activation for good donors (d). Even after 

normalization of Col2A activation to Renilla activation the induction of Col2A reporter 

was higher in good donors compared to bad donors (e). Data are shown as mean ± 

SD. Asterisks indicate significant difference. Units of Col2A luciferase reporter 

activation are shown in Relative Light Units (RLU). *p < 0.05; **p < 0.01  

	

Fig. 6. Relation of Col2A luciferase reporter activation to Col2A1 mRNA expression, 

collagen type II immunostaining and pellet diameter area. Data of single donors are 

displayed with luciferase reporter activation on the x-axis and mRNA expression (a), 

immunostaining intensity (b) and the pellet diameter area (c) on the respective y-axis. 

A horizontal and vertical line indicate the cut-off point  discriminating the good donors 



	

	

3, 4, 5, 8, 9 and bad donors 1, 2, 6, 7  characterized by Col2A1 mRNA expression 

level (a) and colIagen II immunostaining intensity (b) based on Col2A luciferase 

reporter activation. In contrast plotting pellet diameter area against the luciferase 

reporter activation (c) showed no clear cut-off line to discriminate good and bad 

donors.  

 

 

 

 

Marker Mean ± SD 

CD73 99.68% ± 0.35 

CD90 98.70% ± 1.46 

CD105 97.95% ± 1.62 

HLA-ABC 93.74% ± 6.17 

HLA-DR 01.71% ± 0.76 

CD14 01.64% ± 0.87 

CD34 03.90% ± 7.69 

CD45 01.23% ± 0.52 

 

Table 1 

Supplemental Table 1. Immunophenotype of ASC at passage 1. ASC displayed 

strong expression of mesenchymal stem cell marker CD73, CD90 and CD105 and 

almost no expression of CD14 (lymphatic), CD34 (endothelial) and CD45 

(hematopoietic) which verified the ASC character. The histocompatibility antigen 

molecule HLA-ABC was expressed at a very high level whereas only a small portion 

of ASC expressed the histocompatibility antigen class II HLA-DR. 

	



	

	

	

Supplemental Fig. 1. GFP transfection of micromass pellet cultures. Un-transfected 

(left) and transfected (right) micromass pellets. Although the conventional 

autofluorescence is visible in un-transfected pellets, a clear positive signal for GFP is 

visible in transfected pellets (a) as well as 2D monolayer cell culture (b). Bar = 200µm 

(a), 100µm (b).  

 



	

	

 

Supplemental Fig. 2. SOX9 mRNA expression. On day 3 of micromass pellet 

cultures SOX9 demonstrates a very low expression in all single donors (a). There 

was no difference obvious when dividing the defined good donors (3, 4, 5, 8, 9) and 

bad donors (1, 2, 6, 7) (b). 

 

 

 

 

 

 

 

 

 

 

 


