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Testing sleep consolidation in skill learning: a field study using an
online game

Tom Stafford
Department of Psychology, University of Sheffield

Erwin Haasnoot
Department of Electrical Engineering, Mathematics and

Computer Science, University of Twente

Using an observational sample of players of a simple online game (n > 1.2 million), we are

able to trace the development of skill in that game. Information on playing time, and player

location, allows us to estimate time of day during which practice took place. We compare those

whose breaks in practice probably contained a night’s sleep and those whose breaks in practice

probably did not contain a night’s sleep. Our analysis confirms experimental evidence showing

a benefit of spacing for skill learning, but fails to find any additional benefit of sleeping during

a break from practice. We discuss reasons why the well established phenomenon of sleep

consolidation might not manifest in an observational study of skill development. We put the

spacing effect into the context of the other known influences on skill learning: improvement

with practice, and individual differences in initial performance. Analysis of performance data

from games allows experimental results to be demonstrated outside of the lab, and for experi-

mental phenomenon to be put in the context of the performance of the whole task.

Introduction

Consolidation

It is widely accepted that memories are consolidated af-

ter acquisition (McGaugh, 2000) - that is, the organisation

and strength of habits, associations and skills can improve

in the gap between acquisition or practice and subsequent

testing, even without active rehearsal. Sleep is thought to

be intimately involved in this consolidation process. A first

basic demonstration was by Jenkins and Dallenbach (1924),

who showed that retention of memories of nonsense sylla-

bles (following Ebbinghaus, 1885) was less degraded after

a delay which involved sleep rather than a delay of equiva-

lent time which didn’t involve sleep. Subsequent results have

even shown that, for motor skills, performance can improve

after a delay involving sleep (e.g. Karni, Tanne, Ruben-

stein, Askenasy, & Sagi, 1994). More recently, well con-

trolled experiments have demonstrated that sleep conveys a

crucial benefit, beyond mere disengagement from the task for

a comparable delay, and controlling for the known effects of

practice spacing (Walker, Brakefield, Morgan, Hobson, &

Stickgold, 2002; Walker, Brakefield, Seidman, et al., 2003;

Cohen, Pascual-Leone, Press, & Robertson, 2005).

Although the most consistent evidence for memory con-

solidation concerns procedural memories (Walker & Stick-

gold, 2004; Stickgold, 2005; Walker & Stickgold, 2006)

there are good reasons to suspect this is not a phenomenon

restricted to motor skills (Ellenbogen, Hu, Payne, Titone,

& Walker, 2007), with there being a complex interaction

of sleep and wakefulness in consolidation and reconsolida-

tion of memories across procedural and declarative domains

(Walker, Brakefield, Hobson, & Stickgold, 2003). Other ev-

idence suggests that sleep may provide greater benefit for

the most difficult aspects of a skill (Kuriyama, Stickgold, &

Walker, 2004).

Games

Whereas sleep consolidation has been rigorously demon-

strated in experiments, it has been difficult to validate outside

the lab. We approach this problem by using a large Naturally

Occurring Dataset (Goldstone & Lupyan, 2016) collected

from people who play a simple game of skill online (Stafford

& Dewar, 2014).

Previously Stafford and Dewar (2014) have shown that ob-

servational data from this game can be used to validate and

extend the analysis of phenomenon previously established in

the experimental literature on skill acquisition. They show

how practice amount and practice spacing contribute to skill

development.

Our interest here is to build on this analysis, using an es-

timate of the players’ time-zones. The time-zone of a player,

combined with the time of each play, allows us to calculate

the local time of each play and so compare comparable prac-

tice histories which are likely to contain, or not to contain,

a night’s sleep. This allows us to interrogate our dataset for

the existence of the phenomenon of sleep consolidation. Our

study allows us to use a large sample to quantify the mag-

nitude of the effect as it manifests among those who are in-

trinsically motivated to learn an arbitrary task. It also allows

us to put the phenomenon within the context of other factors

affecting skill development.
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The analysis of data from games has a particular advan-

tages and disadvantages for the cognitive scientist. Unlike so

many of our experimental tasks, games are played for their

intrinsic enjoyment rather than out of obligation or for exter-

nal reward (Baldassarre et al., 2014). This allows us to look

at skill development in a context where motivation plays as

large a part as ability. This supports an expectation of gener-

alisation to skill development outside the lab and avoids the

normal confound of large variation in participant motivation

(and the attendant high degree of satisficing which occurs

within traditional experiments Maniaci & Rogge, 2014; Op-

penheimer, Meyvis, & Davidenko, 2009). Data from games

allows us to measure skill development as it occurs in a nat-

uralistic setting, over the course of days and weeks, rather

than the mere minutes of most typical lab experiments.

Games also present a skill development domain in which

automated data collection at a large scale is plausible. Un-

like other skill development domains — for example, spoken

language, playing the violin, soccer — each action taken dur-

ing a game, is conducted through a computer and so may be

easily and unobtrusively recorded.

Games involve complex task performance. Further, they

contain many elements which exist to facilitate enjoyment

of play, rather than being strictly relevant to the operations

which a cognitive scientist may be interested in. Because of

this the use of games in cognitive science requires, and will

benefit from, analysis of the whole task (as encouraged by

Newell, 1973).

Data Acquisition

We used anonymised-at-source data from ‘Axon’,

an online game developed for the Wellcome Trust

by Preloaded. The game can be played here

http://axon.wellcomeapps.com/. The game involves

guiding a neuron from connection to connection, through

rapid mouse clicks on potential targets. A screenshot can be

seen in Figure 1 (see figure caption for description of game

dynamics). Cognitively the game involves little strategic

planning, instead testing rapid perceptual decision making

and motor responding.

The analysis was approved by the University of Sheffield,

Department of Psychology Ethics Sub-Committee, and car-

ried out in accordance with the University and British Psy-

chological Society (BPS) ethics guidelines. The data were

collected incidentally and so did not require any change in

the behaviour of game players, nor impact on their experi-

ence. Individuals were identified by cookie stored in their

browser. For our analysis we have assumed a one-to-one

mapping between machine and player. No identifying in-

formation on the players was collected and so the data were

effectively anonymised at the point of collection. Location

information was approximate, to the city-block level at maxi-

mum. For these reasons the institutional review board waived

Figure 1. Game screenshot. Players control the axonal

branching of the white neuron. At each point, possible

synaptic contacts (the other dots) are those within the zone

of expansion (the larger transparent circle), which shrinks

rapidly after each new contact is made. Non-player neurons

(in red here) compete for these synaptic opportunities. Score

is total branch length in micrometers (shown bottom left).

the need for written informed consent from the participants.

For further details of the dataset, see Stafford and Dewar

(2014).

The data were extracted from Google Analytics using a

Python library written by Nick Mihailovski. In contrast to

Stafford and Dewar (2014), we were able to extract data for

the longer period of between March 2012 and February 2015.

The original data and code for coding, filtering and analysing

it is available at https://osf.io/fckq8/.

This data set comprised a total number of 1201515

players, the vast majority of whom played fewer than

five times. The data and code for producing the anal-

ysis and plots presented here are also available from

https://osf.io/fckq8/.

Analysis 1: Spacing & Sleep Consolidation

Aim

Our aim with this analysis was to compare subjects who

took a break in their practice of the game, against those who

played a comparable number of games without a break. This

reproduces the analysis done in Stafford and Dewar (2014),

which showed the benefits of practice spacing, and extends it

to ask if activity during gaps in practice may influence sub-

sequent performance. To do this, we wish to compare those

for whom the timing suggests that they had probably slept

between bouts of practice (e.g. someone who plays between

8pm and 9pm and then again between 8am and 9am) against

those for whom the timing suggests that they probably did

not sleep between bouts of practice, but nevertheless did take
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a comparable break (e.g. someone who plays between 8am

and 9am and then again between 8pm and 9pm).

Filtering

First, we only analyse players who complete a minimum

of 15 games, leaving 26727 players. Additionally we filter

the data for players on which we are unable to calculate valid

longitude data, or valid timing for their practice attempts.

This leaves 26291 players.

Coding

The local time for each play was calculated using the for-

mula localtime = UTCtime + (longitude × 24 ÷ 360), mod-
ulo 24. This formula gives a local time which is correct in

the majority of cases and almost always true within 2 hours;

the exceptions due to irregularities in time-zone/national bor-

ders. Since our location information is approximate anyway

there is a limit to the possible level of accuracy regardless of

the method of calculating the local time.

Next, we categorise players into four types, according to

the nature of the timing of their first 15 attempts at the game.

Players who play their first 15 games with a gap of less than

15 minute between each game we categorise as “no gap"

(9388 players). Players who have a single gap of between 7

and 12 hours are categorised as resting, either in the "sleep"

or "wake" categories depending on the timing of the gap (761

and 423 players respectively). A break which finished be-

tween 5am and 12pm is categorised as a “sleep" gap (since

gaps are 7-12 hours, this means that the earliest rising player

last played before 10pm). A break which finished between

5pm and 12am is categorised as a “wake" gap. All other play-

ers are categorised as "no category" (15719 players). This

includes people who have medium length gaps, longer gaps

and multiple gaps.

Results

Results are shown in Figure 2. We show the median

scores, not means (inspection of score distribution showed

that there were a small number of very high scores which

made the results — although qualitatively the same — less

consistent).

The 95% and 99% confidence bounds shown are calcu-

lated using a bootstrap analysis: scores from all categories

re-sampled in sample sizes as large as the smaller category

of the “no gap", “sleep" and “wake" categories (for 10, 000

iterations). This gives an indication of how likely it is that

samples of these sizes (or larger) would provide medians out-

side of the range predicted if the scores for players in these

categories were all drawn from a common distribution. As

can be seen, the “no gap" scores fall below the level predicted

by the “no category" scores, and both the “sleep" and “wake"

scores fall above.

Figure 2. Improvements in performance with practice for

those who don’t take breaks (“no gap") and those who have

long breaks, either over night (“sleep") or during the day-

time (“wake"). Uncategorised players not shown. Black line

shows median for all players and 95% (dashed line with large

dots) and 98% (dashed line with small dots) confidence limits

based on samples the size of the smallest of “no gap", “sleep"

and “wake".

Subtracting the average score for “sleep" category play-

ers at each attempt from the corresponding score for “wake"

players shows there is no advantage of the “sleep players”

(indeed, the scores of the “wake” group are slightly, but

significantly, higher; difference = 669.6, t(14) = 2.81,p=

0.014).

Analysis 2: Putting the effects into whole task context

Aim

Following Newell’s (1973) injunction to study a whole

task, we were interested to put the effect of spacing into the

context of other effects which manifest in game performance.

A disadvantage of observational data is that multiple differ-

ent factors, both measured and unmeasured, simultaneously

influence outcomes, but a corresponding advantage is that the

data afford the chance to gauge the importance of different

factors against each other. Hence we ask, having established

that the effect of spacing is statistically significance, if it is

also a meaningful difference.

Secondarily, the quantity of data available makes it pos-

sible to analyse in more detail the functional ‘shape’ of how

various factors affect performance. In conventional experi-

mental work we typically compare a small number of points,

typically a control and experimental group, and analyse the

contrast to reveal the effect of the manipulated factor. Here

we can show how performance changes with many different
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levels of the factor. This ’parametric analysis’ shows more

than just whether a factor has an influence on performance,

but has the potential to show something about how a factor

influences performance.

One parametric analysis of the impact on performance that

is already familiar is that of practice, specifically in the form

of the learning curve. In this same domain, Stafford and De-

war (2014) showed that practice amount had the expected

effect on performance of a relatively rapid initial increase

which slowed down as practice amount increased (this can

also be seen in the curves shown here in Figure 2). That

analysis also showed that early performance on the task was

predictive of both rate of increase and asymptotic level of

performance. We do not wish to commit on what constitutes

these differences between players — probably it is influenced

by a large variety of factors including motivation, prior ex-

perience with online games, sensory-motor function, playing

environment and equipment as well as neuro-cognitive readi-

ness for skill acquisition.

Here we compare three factors: practice spacing, practice

amount and initial performance for both the size and shape

of influence over performance. We note that the compari-

son is inherently limited by the arbitrary bounds of the range

over which the factors are analysed. The effect of practice is

bounded by the potential improvement in performance due

to skill (and hence also by the range over which we assess

practice). The effect of initial performance is bounded by

the range within the population from whom data are gath-

ered. The effect of spacing is bounded by the observed de-

lay between some initial practice and subsequent attempts.

Nonetheless, we believe it is instructive to see the compar-

ison, and wish also to highlight it an example of the way

larger data sets allow different analyses.

Filtering

As with Analysis 1, we remove all players who played

fewer than 15 games, and those for which we could not cal-

culate longitude or timing information.

Coding

First, to perform a categorical comparison with which to

gauge the size of different effects we split our data into high

and low groups for each of the three factors we considered:

spacing, practice, and initial performance.

To gauge the effect of spacing we compared the average

score on plays 11–15 for those who had no gap in their first

15 plays (i.e. the “no gap" group from Analysis 1, n = 9388),

with those who had a single gap of between 7 and 12 hours

(i.e. the "wake" and “sleep" groups from Analysis 1 com-

bined, n = 1184). To gauge the effect of practice we com-

pared the average score, over all players, on plays 1–5 and

on plays 11–15. To gauge the effect of initial performance

we compared the average score on plays 11–15 of those who

Figure 3. Two-category comparison for the effects of spac-

ing, practice and initial performance. Standard error bars are

shown.

scored in the bottom 1
3
rd on plays 1–5 with the average score

on plays 11–15 of those who scored in the top 1
3
rd on plays

1–5.

Second, we sought to make a ‘parametric’ comparison

of the effect of changes in these three factors. By this, we

seek to show the way in which average scores change at each

point along the range for which each factor can change. For

practice amount, we calculated the average score, across all

players, for each of the plays numbered 1 to 15. For initial

performance, we calculated the the average score on plays

1–5 for range from lowest to highest scorers (using 16 con-

secutive windows, covering the 100 percentiles). For spacing

we calculated the average score on plays 11 to 15 according

to the total gap time between plays 1 and 10 (using 16 con-

secutive windows, covering the range 0 to 60 minutes. The

range was restricted to 0–60 minutes because average score

does not change significantly for larger gaps). We used the

median rather than the mean for all averages, since the score

distribution contains a proportion of very high scores which

disproportionately skew mean scores.

Results

Figure 3 shows effect of the three factors when binary cat-

egorised.

Figure 4 shows the parametric comparison of the three

factors. Note that there is no sense in which the range of

the three factors may be compared absolutely. The initial

performance line captures all the variation present in the pop-

ulation, the practice line captures the variation over the range

of number of plays analysed in this paper (1–15), whilst the

spacing line shows a relatively short range compared to that

used for the analysis shown in Figures 2 and 3. This is be-
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Figure 4. Parametric comparison for the effects of least to

most spacing, shortest to longest practice and lowest to high-

est initial performance. Standard error bars shown for prac-

tice and spacing curves.

cause the spacing effect doesn’t change significantly at cu-

mulative gaps beyond 60 minutes.

The comparison of Figures 3 and 4 illustrates that effects

which appear to be of a comparable size from a ‘two point’

analysis can be produced by underlying functions which have

very different shapes. Practice affects performance with a

decelerating function; initial performance has the opposite

effect, such that the largest changes come at the high-end of

the distribution of that variable. The effect of spacing is a

non-monotonic function, with an optimal point in the mid-

dle of the range (presumably reflecting a trade-off between

the memory benefits of spacing-based consolidation and the

memory costs of forgetting).

Discussion

These analyses show that there is a clear spacing effect.

The psychological mechanisms by which this is produced

may assumed to be some combination of rest/recovery and

active consolidation of memory. Analysis 1 suggests that,

contrary to experimental results, breaks in training which

contain sleep do not provide a superior benefit to equally long

breaks which do not contain sleep. There could be many rea-

sons for this. One possibility is that our task and/or analysis

is insensitive to any additional effect of sleep consolidation.

Although our large data set suggests this would not be due to

a lack of statistical power, it might be that the nature of our

task, or the ranges over which we conducted our analysis,

fall outside the operating realm of the effect (in contrast to

experimental results, which we might presume are carefully

designed to capture the effect). If this is so it is interesting to

note that, whereas other learning phenomena such as practice

or spacing effects do manifest, sleep consolidation does not

here.

Other results suggest that the benefit of sleep consolida-

tion is larger for more complex tasks (Kuriyama et al., 2004;

Ellenbogen et al., 2007). It may be that our task was not

complex enough for a sleep consolidation effect to manifest.

Figure 4 could be viewed as lending support to this idea —

there is no additional benefit on performance of gaps longer

than 15 minutes, with the spacing effect appearing as gap in

practice lengthens from no gap to 15 minutes. This is a rel-

atively short window compared to the size of many spacing

effects (Cepeda et al., 2009) and compared to the duration

over which benefits of sleep consolidation are typically seen.

The lack of experimental control over players’ behaviour

may be involved in the failure to observe sleep consolidation.

Suppose that the phenomenon operates in concert with some

other factor such as fatigue and amount of information need-

ing consolidation 1. Individual players may automatically

calibrate their practice so that they are resting as and when

they need to with respect to these factors, so that there is no

additional benefit of sleep consolidation. In contrast, exper-

imental studies dictate when participants practice and when

they rest, which both controls for spacing effects and which

may allow a benefit of sleep consolidation to be isolated.

It is striking that the benefit that comes from spaced prac-

tice is comparable to the benefit of player’s tripling their

amount of practice (Figure 3). Both of these effects are

swamped by the range in aptitude for the game, as measured

by initial performance (this importance of initial aptitude has

been found elsewhere Stafford & Dewar, 2014; Destefano,

2010; Huang, Yan, Cheung, Nagappan, & Zimmermann, in

press). Two important caveats are, firstly, that although the

amount and nature of our practice can be brought under an

individuals control, it is less clear how initial performance

can be controlled. This means that whilst differences in ac-

quisition due to initial performance may be larger, it is not

clear that they are more important for anyone wishing to infer

how to improve rate of acquisition. Secondly, in this study

we define aptitude entirely phenomenologically — that is, it

is a simple effect read off from the data by dividing players

according to their initial scores. Although this shows how

players vary in the initial scores, it leaves completely unex-

plored why players vary. No doubt a constellation of factors

contribute to initial ability, some of which are indeed mu-

table (for discussion of the contribution of initial ability to

expertise development see Detterman, 2014).

Games offer an opportunity to investigate learning in a

naturalistic context, under conditions of intrinsic motivation,

as well as bring with them the advantages of easy collection

of large data sets. We attempted to show here how one partic-

1Although we note that Stafford and Dewer (2014) Figure 4 pro-

vides evidence for a true consolidation effect in these data, and not

just a ‘relief from fatigue’ effect
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ular game can be used to study long established phenomenon.

In particular we show ordered effects of practice amount, and

a predicted effect of practice spacing, in a simple game. In

contrast, the predicted benefit of rest periods which involved

sleep was not observed. We also attempted to put these ef-

fects into mutual context, contrasting both the ‘size’ of the

effect — admittedly with arbitrarily defined ranges — and

the parametric ‘shape’ of the effects. In this way we hoped to

show that the large data available in the study of games does

not just augment statistical power, but makes possible new

ways of analysing behavioural data.
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