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Abstract. The determination of the displacement and the space-dependent force act-
ing on a vibrating structure from measured final or time-average displacement observation is
thoroughly investigated. Several issues related to the existence and uniqueness of solution of
the linear but ill-posed inverse problems are highlighted. After that, in order to capture the
solution a variational formulation is proposed and the gradient of the least-squares functional
that is minimized is rigorously and explicitly derived. Numerical results obtained using the
Landweber method and the conjugate gradient method are presented and discussed illus-
trating the convergence of the iterative procedures for exact input data. Furthermore, for
noisy data the semi-convergence phenomenon appears, as expected, and stability is restored
by stopping the iterations according to the discrepancy principle criterion once the residual
becomes close to the amount of noise. The present investigation will be significant to re-
searchers concerned with wave propagation and control of vibrating structures.

Keywords: Inverse force problem; Finite difference method; Landweber method; Conju-
gate gradient method; Wave equation.

1 Introduction

We consider the problem of force identification from measured data for the hyperbolic wave
equation. This inverse formulation is significant to modelling several practical applications
related to unknown force loads and control. Because part of the cause of the physical
phenomenon is unknown one has to compensate for this lack of information by measuring an
appropriate part of the effect. What quantity to measure is the delicate choice/constraint
when formulating inverse problems, but a proper formulation would be able to ensure that
the unknown force can be uniquely retrieved from the proposed additional measurements.

Prior to this study, the reconstruction of a space-dependent force in the wave equa-
tion from Cauchy data measurements of both displacement and its normal derivative on
the boundary has been attempted in [3, 10, 11]. This inverse formulation is, as expected,
improperly posed because the unknown output force f(x) depends on x in the domain Ω,
whilst the known input data, say u and ∂nu, depend on (x, t) on the boundary ∂Ω× (0, T ).
Although the uniqueness of solution still holds, [6, 14, 18], it seems more natural to mea-
sure instead information about the displacement u(x, t) for x ∈ Ω and time t = T , or the

time-averaged displacement
∫ T

0
u(x, t)dt for x ∈ Ω. This way, the output-input mapping

satisfies the meta-theorem that the overposed data and the unknown force function lie in the
same direction, [15]. This spacewise-dependent force f(x) identification from the upper-base
spacewise dependent displacement measurement u(x, T ) has been investigated theoretically
in Section 8.2 of [16], where the uniqueness of solution was proved. For other wave related
force identification studies which use the final time displacement data we refer to [9] which
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employs a weak solution approach for a quite general inverse problem with a highly non-
unique solution, and to [17] which nicely introduces a quasi-nonlinearity in the governing
wave equation to resolve the non-uniqueness of solution. The other inverse problem generated
by the measurement of the time-averaged displacement

∫ T

0
u(x, t)dt which we investigate in

our study is new. Essentially, the same inverse problem with unknown spacewise dependent
right-hand side source in the governing equation arises also for the parabolic heat equation
in the thermal field, see [8, 13].

The plan of the paper is as follows. Section 2 introduces the inverse problem formulations,
whilst Sections 3 and 4 highlight several issues related to the existence, uniqueness and
stability of solution of the direct and inverse problems, respectively. Section 5 presents the
variational formulations of the inverse problems under investigation and derives explicitly the
expressions for the gradients of the least-squares functionals which are minimized. Section
6 describes the iterative Landweber method accommodated and applied in order to obtain
regularized stable solutions, whilst Section 7 illustrates and discusses extensive numerical
results in both one and two dimensions, for the recovery of both smooth and non-smooth
force functions. Furthermore, the conjugate gradient method (CGM) is also described and
employed for one of the examples. A numerical extension to two-dimensions is presented in
Section 8 and finally, conclusions are presented in Section 9.

2 Problem formulation

Assume that we have a medium, denoted by Ω, occupying a bounded sufficiently smooth
domain in Rn, where n ≥ 1. The boundary of Ω is denoted by ∂Ω, and we define the space-
time cylinder QT = Ω × (0, T ), where T > 0. We wish to find the displacement u(x, t) and
the force f(x) in the hyperbolic wave equation

utt − Lu = f(x)g(x, t) + χ(x, t) =: F (x, t) in QT , (1)

where g and χ are given functions, and, in general, for a homogeneous medium we have
L = ∇2 the Laplacian operator. For inhomogeneous media, we can have Lu = c2(x)∇2u, or
∇.(K(x)∇u), where K and c are given positive material properties, [4].

Equation (1) has to be solved subject to prescribed initial conditions

u(x, 0) = ϕ(x) x ∈ Ω, (2)

ut(x, 0) = ψ(x) x ∈ Ω, (3)

prescribed homogenous Dirichlet boundary conditions,

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ), (4)

and the additional final displacement measurement

u(x, T ) = uT (x), x ∈ Ω, (5)

or, the time-average displacement measurement
∫ T

0

ω(t)u(x, t)dt = UT (x), x ∈ Ω, (6)

where ω is a given weight function. One can also have the additional final speed measurement
ut(x, T ) = vT (x) for x ∈ Ω, see [9], but we do not investigate in detail this case herein because
it is similar to the displacement specification (5).
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3 Direct problem

Well-posedness of the direct problem (1)-(4) when f is given, is provided in Section 7 of [2]
for example. Suitable space are: F ∈ L2(QT ), ϕ ∈ H1

0 (Ω) with Lϕ ∈ L2(Ω), and ψ ∈ H1
0 (Ω),

then u ∈ C2(0, T ;L2(Ω)) with u(t) ∈ H1
0 (Ω) and Lu(t) ∈ L2(Ω) for t ∈ [0, T ].

One can also study weak solutions u ∈ L2(0, T ;H1
0 (Ω)) with ut ∈ L2(0, T ;L2(Ω)) and

utt ∈ L2(0, T ;H−1(Ω)). Such a weak solution exists and is unique provided that ϕ ∈ H1
0 (Ω),

ψ ∈ L2(Ω) and F ∈ L2(QT ). Note that, as usual, this implies u ∈ C([0, T ];L2(Ω)) and
ut ∈ C([0, T ];H−1(Ω)), which, in particular, yield that the restrictions at t = 0 of the
solution and its derivative make sense. Moreover, we have the estimate

max
0≤t≤T

(

||u(., t)||H1

0
(Ω) + ||ut(., t)||L2(Ω)

)

+ ||utt||L2(0,T ;H−1(Ω))

≤ C
(

||F ||L2(0,T ;L2(Ω)) + ||ϕ||H1

0
(Ω) + ||ψ||L2(Ω)

)

, (7)

for some positive constant C.
Similar considerations can be done for the formally adjoint backward hyperbolic problem

to (1)-(4),

vtt − L∗v = G(x, t), (x, t) ∈ QT , (8)

v(x, T ) = ζ(x), vt(x, T ) = ξ(x), x ∈ Ω, (9)

v(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ), (10)

where L∗ is the adjoint of L.
Furthermore, we have, using integration by parts, the following Green-type formula:

∫

Ω

(ut(x, T )ζ(x)− ψ(x)v(x, 0))dx−
∫

Ω

(u(x, T )ξ(x)− ϕ(x)vt(x, 0))dx

=

∫ T

0

∫

Ω

F (x, t)v(x, t)dxdt−
∫ T

0

∫

Ω

G(x, t)u(x, t)dxdt. (11)

3.1 Abstract setting formulation

It is possible to formulate the direct problem (1)-(4) in a more general abstract setting, as
described in Chapter 8 of [16], by considering the problem

u′′ = Lu(t) + F (t), t ∈ [0, T ], (12)

u(0) = ϕ, u′(0) = ψ, (13)

where L is a closed linear operator with a dense domain of definition D(L) on a Hilbert space
X. We assume that L generates a strongly continuous cosine function C(t) = cos(

√
−Lt),

such that equation (12) is hyperbolic. In the case of a self-adjoint operator, the previous
assumption is equivalent to say that L is semi-bounded from above, [16, p.525]. According
to [16, p.538], if

ϕ ∈ D(L) := {u ∈ X|C(t)u ∈ C2(R)}, (14)
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ψ ∈ E := {u ∈ X|C(t)u ∈ C1(R)}, (15)

F ∈ C1([0, T ];X)⊕ C([0, T ];D(L)), (16)

then the direct problem (12) and (13) has a unique solution in the class of functions

u ∈ C2([0, T ];X) ∩ C([0, T ];D(L)). (17)

Furthermore, one can represent explicitly this solution as

u(t) = C(t)ϕ+ S(t)ψ +

∫ t

0

S(t− s)F (s)ds, (18)

where S(t) =
∫ t

0
C(s)ds = 1√

−L sin(
√
−Lt) is the associated sine function.

4 Inverse problem

Consider first, for simplicity, the one-dimensional case, i.e. n = 1, and take Ω = (0, L), where
L > 0 represents the length of a vibrating string. Let us also take χ(x, t) = 0, g(x, t) = 1
and L = ∂2/∂x2. Then, in [3] it was remarked that the inverse force problem (1)-(5) has
a unique solution if and only if T/L /∈ Q, i.e. T/L is an irrational number. This follows
immediately from the separation of variables, whereas for ϕ = ψ = 0 and g = 1 the solution
of the inverse problem

utt − uxx = f(x), (x, t) ∈ (0, L)× (0, T ), (19)

u(x, 0) = ut(x, 0) = 0, x ∈ (0, L), (20)

u(0, t) = u(L, t) = 0, t ∈ (0, T ), (21)

u(x, T ) = 0, x ∈ (0, L), (22)

is given by

u(x, t) =

√
2

π2

∞
∑

k=1

ck
k2

(

1− cos

(

kπt

L

))

sin

(

kπx

L

)

, (23)

f(x) =
∞
∑

k=1

ck sin

(

kπx

L

)

, (24)

where

ck =

√
2

L

∫ L

0

f(x) sin

(

kπx

L

)

dx, k ≥ 1. (25)
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Now, in order to impose (22) we apply (23) at t = T to obtain

0 =

√
2

π2

∞
∑

k=1

ck
k2

(

1− cos

(

kπT

L

))

sin

(

kπx

L

)

, x ∈ (0, L). (26)

One can easily observe that ck = 0 for all k ≥ 1, and hence from (23) and (24), u = f = 0, if
and only if T/L /∈ Q. Moreover, this condition cannot be removed even if one additionally
prescribe ut(x, T ), as it can be easily seen by differentiating (23) with respect to t. However,
if we consider the additional time-average displacement measurement (6) (with say ω = 1)
instead of (5), by integrating (23) with respect to t and make it zero, we obtain

0 =

√
2

π2

∞
∑

k=1

ck
k2

(

T − L

kπ
sin

(

kπT

L

))

sin

(

kπx

L

)

, x ∈ (0, L). (27)

Since kπT
L

> sin
(

kπT
L

)

for all k ∈ N∗, we then obtain that ck = 0 for all k ∈ N∗ and hence,
from (23) and (24), that u = f = 0. Thus, the inverse problem (19)-(21) together with the
integral condition

∫ T

0

u(x, t)dt = 0, x ∈ (0, L), (28)

has only the trivial solution, which in turn implies that the solution of the inverse problem
given by equations (19)-(21) and the time-average displacement measurement

∫ T

0

u(x, t)dt = UT (x), x ∈ (0, L), (29)

is unique, with no restriction on the ratio T/L being irrational number or not. Of course, in
the case of an arbitrary integrable weight function ω(t) in (6), the necessary and sufficient
condition for uniqueness becomes

∫ T

0

ω(t)

(

1− cos

(

kπt

L

))

dt 6= 0, ∀ k ∈ N∗. (30)

4.1 Abstract setting formulation of inverse problems

Returning to the abstract setting of subsection 3.1 and viz. Section 2, we consider the inverse
problem of determining the displacement u and the force f satisfying

u′′ = Lu(t) + g(t)f, t ∈ [0, T ], (31)

subject to the initial conditions (13) and the additional measurement

u(T ) = uT (32)

or

∫ T

0

ω(t)u(t)dt = UT . (33)
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First, the following theorem gives the unique solvability of the inverse problem (13), (31)
and (32).

Theorem 1.

In the abstract settings of subsection 3.1, let L be a self-adjoint and semi-bounded from above
operator in the Hilbert space X and assume that the input data is admissible, i.e.

ϕ ∈ D(L), ψ ∈ E, g ∈ C1([0, T ];X), χ ∈ C1([0, T ];X)⊕ C([0, T ];D(L)), (34)

and

uT ∈ D(L). (35)

Then the inverse problem (13), (31) and (32) has a unique solution u ∈ C2([0, T ];X) ∩
C([0, T ];D(L)), f ∈ X if, see Corollary 8.2.7 of [16], g is non-negative and strictly in-
creasing, as a function of t ∈ [0, T ], or if, see Corollary 8.2.8 of [16], g ≡ 1 and 1 /∈ Z,
where

Z := {cos(
√
−λ T ) | λ ∈ Σ(L)\{0}}, (36)

and Σ(L) denotes the spectrum of the operator L.

In the above, the value g(s) is identified with the operator of multiplication by the number
g(s) in the space X.

Remark that in the previous one-dimensional setting of the inverse problem (19)-(22) the
condition that 1 /∈ Z recasts as 1−cos(

√
−λ T ) 6= 0, where λ = −n2π2/L2 for n ∈ N∗, which

is equivalent to say that T/L /∈ Q.
We note that for L = ∇2, Ω ∈ C1, ϕ, ψ, uT ∈ C1(Ω) satisfying compatibility conditions

and g ∈ C1(QT ) satisfying g(x, t) > 0, gt(x, t) > 0, ∀(x, t) ∈ QT , the existence of solution,
i.e. the solvability of the inverse problem (1)-(5) was also established in [1] in the classes of
functions f ∈ L2(Ω), u ∈ L2(0, T ;H1(Ω)), utt ∈ L2(QT ) and ∇2u ∈ L2(QT ).

Second, for the inverse problem (13), (31) and (33) we also have the existence and unique-
ness of solution as given by the following theorem.

Theorem 2.

In the abstract setting of Theorem 1 and with the same input admissible data (34), and

ω = 1, UT ∈ D(L), (37)

the inverse problem (13), (31) and (33) has a unique solution u ∈ C2([0, T ];X)∩C([0, T ];D(L)),
f ∈ X, if 0 6≡ g is non-negative, as a function of t ∈ [0, T ].

Proof. On applying (6) to (18) results in

Φ(L)f = UT − S(T )ϕ− (1− C(T ))

−L ψ −
∫ T

0

∫ t

0

S(t− s)χ(s)dsdt, (38)

where

Φ(L) =
∫ T

0

∫ t

0

g(s)S(t− s)dsdt =

∫ T

0

∫ t

0

g(s)
sin(

√
−L(t− s))√
−L

dsdt. (39)
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Since L is self-adjoint operator, it is semi-bounded from above and hence it is representable
as L =

∫ b

−∞ λdEλ, where b is some real number and Eλ is the spectral resolution of unity
of the operator L, see [16, p.502]. This has the property that every h ∈ X can be put
in correspondence with the measure on the real linear through the relation dµh(λ) = d <
Eλh, h >H . This suggests that for the expression (39) we define the function Φ : R → R as

Φ(λ) =











1√
−λ

∫ T

0

∫ t

0
g(s) sin(

√
−λ(t− s))dsdt, if λ < 0

∫ T

0

∫ t

0
g(s)(t− s)dsdt, if λ = 0

1√
λ

∫ T

0

∫ t

0
g(s) sinh(

√
λ(t− s))dsdt, if λ > 0.

(40)

We can also extend this function by analytical continuation to be an entire function on
the whole complex plane λ ∈ C. Since L is self-adjoint it follows that Σ(L) ⊂ R and we
first show that the function Φ defined by (39) has no zero on the real line. Clearly, since
0 6≡ g ∈ C1([0, T ]) is non-negative, Φ(λ) > 0 for λ ≥ 0. Consider now

Φ(λ) =
1√
−λ

∫ T

0

∫ t

0

g(s) sin(
√
−λ(t− s))dsdt, for λ < 0. (41)

Using the change of variables s 7−→ t− s and denoting
√
−λ = µ we show that

∫ T

0

∫ t

0

g(t− s) sin(µs)dsdt > 0, for µ > 0. (42)

Proceeding as in [16, p.512-513], if µ ≤ π/T then µs ≤ π for 0 ≤ s ≤ t ≤ T and thus
sin(µs) ≥ 0 and the inequality (42) follows immediately. If µ > π/T then let N ∈ N∗ be the
positive integer such that 2πN/µ is the nearest to T from the right. Defining g̃ : [0, T ] → R

by g̃(t) =
∫ t

0
g(t − s) sin(µs)ds, t ∈ [0, T ], it is easy to remark that g̃(t − π/µ) + g̃(t) =

∫ π/µ

0
g(t − s) sin(µs)ds ≥ 0, for t ∈ [π/µ, T ]. Extending the function g̃ to be zero on the

interval [T, 2πN/µ], the integral in (42) recasts as

∫ T

0

∫ t

0

g(t− s) sin(µs)dsdt =

∫ T

0

g̃(t)dt =
N
∑

k=1

∫ 2πk/µ

2π(k−1)/µ

g̃(t)dt

=
N
∑

k=1

(

∫ π(2k−1)/µ

2π(k−1)/µ

g̃(t)dt+

∫ 2kπ/µ

π(2k−1)/µ

g̃(t)dt

)

=
N
∑

k=1

∫ 2kπ/µ

π(2k−1)/µ

(g̃(t− π/µ) + g̃(t))dt

=
N
∑

k=1

∫ 2kπ/µ

(2k−1)π/µ

∫ π/µ

0

g(t− s) sin(µs)dsdt > 0,

where the last inequality holds strictly because 0 6≡ g(t) ≥ 0 and g ∈ C1[0, T ].
This concludes that the function Φ defined by (41) has no zeros on the real line (in fact

it is strictly positive for λ ∈ R). In particular, it implies that the solution of the inverse
problem is unique.

Integrating by parts in (41) and making the substitution t− s for s, we obtain

Φ(λ) = −1

λ

∫ T

0

(

g(t)− g(0) cos(
√
−λt)−

∫ t

0

g′(t− s) cos(
√
−λs)ds

)

dt

= −1

λ

(
∫ T

0

g(t)dt− g(0) sin(
√
−λT )√

−λ
−
∫ T

0

∫ t

0

g′(t− s) cos(
√
−λs)dsdt

)

, λ ∈ (−∞, 0).
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Since g ∈ C1[0, T ] it follows that

Φ(λ) = −1

λ

∫ T

0

g(t)dt+O

(

1

|λ|

)

, as λ→ −∞.

Thus Φ(λ) ≥ − c
λ
, as λ → −∞, where c =

∫ T

0
g(t)dt > 0. Finally, this inequality together

with the fact that the right hand-side of (38) is in D(L) imply the existence of a solution
u ∈ C2([0, T ];X) ∩ C([0, T ];D(L)), f ∈ X, see [16, p.553 and Th.8.2.2].

Remark. In the particular case χ = 0, g = 1 remark that (38) simplifies as

(

T − S(T )

−L

)

f = UT − S(T )ϕ− (1− C(T ))

−L ψ

which, since T > S(T ), it yields the solution for the force explicitly being given by

f =
−LUT + S(T )Lϕ− (1− C(T ))ψ

T − S(T )
. (43)

The solution for the displacement is also given explicitly by (18) which, for χ = 0, g = 1,
simplifies as

u(t) = C(t)ϕ+ S(t)ψ +

(

1− C(t)

−L

)

f

= C(t)ϕ+ S(t)ψ +

(

1− C(t)

T − S(T )

)(

UT − S(T )ϕ− (1− C(t))

−L ψ

)

. (44)

Even if one has proved that the solution exists and is unique, both inverse problems
(1)-(5) and (1)-(4), (6) are still ill-posed since the continuous dependence upon the input
data (5) or (6) is violated. This can easily be seen from the following example of instability.

Example of instability
Let Ω = (0, L = π) and, for n ∈ N∗ take

un(x, t) =
(1− cos(nt)) sin(nx)

n3/2
, (x, t) ∈ (0, π)× (0, T )

which satisfies the wave equation with homogenous initial and Dirichlet boundary conditions,

unT (x) = un(x, T ) =
(1− cos(nT )) sin(nx)

n3/2
, x ∈ (0, π)

UnT (x) =

∫ T

0

un(x, t)dt =
sin(nx)

n3/2

(

T − sin(nT )

n

)

, x ∈ (0, π)

and the force

fn(x) = n1/2 sin(nx), x ∈ (0, π).

One can observe that whilst all the input data tends to zero, the force fn(x) becomes oscil-
latory and unbounded, as n→ ∞.
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5 Variational formulation of the inverse problem

For the solution of the inverse problem (1)-(5), define the operator A : L2(Ω) → L2(Ω) by

Af = uf (·, T ), (45)

where uf (x, t) is the unique weak solution of the direct problem (1)-(4) corresponding to the
given force f . The operator A is bounded and affine. By A0 we denote the similar linear
operator defined for ϕ = ψ = 0. The inverse problem (1)-(5) recasts as

Af = uT . (46)

Since in practice uT is contaminated with random noisy errors it is convenient to minimize
the least-squares cost functional J : L2(Ω) → R+ defined by

J(f) =
1

2
||Af − uT ||2L2(Ω). (47)

It can be shown that J is weakly continuous on closed and convex subsets of L2(Ω), which
in turn, due to Weierstrass’ theorem implies that there exists a solution to the minimization
of (47), [9]. In what follows we will show that J is Frechet differentiable and derive its
gradient. For this, let uh solve (1)-(4) with f = h ∈ L2(Ω) and ϕ = ψ = 0. Moreover, let uf
solve (1)-(4). Then,

J(f + h)− J(f) =
1

2
||Af + A0h− uT ||2L2(Ω) −

1

2
||Af − uT ||2L2(Ω)

=

∫

Ω

(Af(x)− uT (x))A0h(x)dx+
1

2

∫

Ω

(A0h(x))
2dx. (48)

The first term in the right-hand side can, using the definition of the operator A0, be rewritten
as

∫

Ω

(Af(x)− uT (x))A0h(x)dx =

∫

Ω

(uf (x, T )− uT (x)) uh(x, T )dx. (49)

Let v1 be the solution to the adjoint problem (8)-(10) with ζ = G = 0 and ξ = Af − uT =
uf (., T )− uT . From Green’s formula (11) applied to v1 and uh it then follows that

∫

Ω

(uf (x, T )− uT (x))uh(x, T )dx = −
∫ T

0

∫

Ω

h(x)g(x, t)v1(x, t)dxdt

= −
∫

Ω

h(x)

(
∫ T

0

g(x, t)v1(x, t)dt

)

dx. (50)

From (48) and (50), and since ||A0h||2L2(Ω) can be estimated by ||h||2L2(Ω) due to (7), see

also [9] for one-dimensional explicit estimates, it follows that the functional J is Frechet
differentiable and its gradient is given by

J ′(f) = −
∫ T

0

g(x, t)v1(x, t)dt, (51)

where v1 solves

(v1)tt − L∗v1 = 0, (x, t) ∈ QT , (52)
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v1(x, T ) = 0, (v1)t(x, T ) = uf (x, T )− uT (x), x ∈ Ω, (53)

v1(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ). (54)

One can show that J is in fact twice Frechet differentiable and convex. For this, let v2 be
the solution of the adjoint problem (8)-(10) with ζ = G = 0 and ξ = uh(·, T ). From Green’s
formula (11) applied to the functions uh and v2 we obtain

−
∫

Ω

u2h(x, T )dx =

∫ T

0

∫

Ω

h(x)g(x, t)v2(x, t)dxdt. (55)

Following a similar argument as above we can obtain that

J ′′(f)h = −
∫ T

0

g(x, t)v2(x, t)dt. (56)

Then from (55) and (56), we obtain that

(J ′′(f)h, h)L2(Ω) = ||uh(., T )||2L2(Ω) ≥ 0, (57)

which implies that J is convex.
Similarly, for the solution of the inverse problem (1)-(4), (6), we define the operator

Ã : L2(Ω) → L2(Ω) by

Ãf =

∫ T

0

ω(t)uf (., t)dt, (58)

which is bounded and affine and by Ã0 denote its linear part. Then the inverse problem
(1)-(4), (6) recasts as

Ãf = UT . (59)

As in the previous case, since the right-hand side is contaminated with noise, we seek a
quasi-solution to (59) in the form of minimizing the cost functional J̃ : L2(Ω) → R+ defined
by

J̃(f) :=
1

2
||Ãf − UT ||2L2(Ω). (60)

As in (48) and (50), we obtain that

J̃(f + h)− J̃(f) =
1

2

∫

Ω

(Ã0h(x))
2dx+

∫

Ω

(
∫ T

0

ω(t)uh(x, t)dt

)

×
(
∫ T

0

ω(t)uf (x, t)dt− UT (x)

)

dx. (61)

We discuss first the particular case when the weight function ω(t) is a non-zero constant,
say equal to unity, and then the general case.
(i) In the particular case when ω(t) ≡ 1, i.e. (6) recasts as

∫ T

0

u(x, t)dt = UT (x), x ∈ Ω, (62)
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expression (61) becomes

J̃(f + h)− J̃(f) =
1

2

∫

Ω

(Ã0h(x))
2dx+

∫

Ω

(
∫ T

0

uh(x, t)dt

)(
∫ T

0

uf (x, t)dt− UT (x)

)

dx.

(63)

Let ṽ1 be the solution of the adjoint problem (8)-(10) with ζ = G = 0 and ξ = Ãf − UT =
∫ T

0
uf (., t)dt− UT . It is then straightforward to observe that the function

wh(x, t) :=

∫ t

0

uh(x, s)ds, (64)

satisfies the wave equation with homogenous initial and boundary conditions and right-hand

side equal to
(

∫ T

0
g(x, s)ds

)

h(x). Then, from Green’s formula (11) applied to wh and ṽ1 it

follows from (63) that

J̃(f + δ)− J̃(f) =
1

2

∫

Ω

(Ã0h(x))
2dx−

∫

Ω

∫ T

0

h(x)

∫ t

0

g(x, s)ds ṽ1(x, t)dtdx. (65)

From this it follows that

J̃ ′(f) = −
∫ T

0

(
∫ t

0

g(x, s)ds

)

ṽ1(x, t)dt. (66)

(ii) In the general case, we rewrite (61) as

J̃(f + δ)− J̃(f) =
1

2

∫

Ω

(Ãh(x))2dx

+

∫

Ω

∫ T

0

ω(t)uh(x, t)

(
∫ T

0

ω(τ)uf (x, τ)dτ − UT (x)

)

dtdx. (67)

Let Ṽ1 be the solution of the adjoint problem (8)-(10) with ξ = ζ = 0 and G(x, t) =

ω(t)
(

∫ T

0
ω(τ)uf (x, τ)dτ − UT

)

. Then, Green’s formula (11) applied to Ṽ1 and uh implies

that the last term in (67) is equal to
∫ T

0

∫

Ω

h(x)g(x, t)Ṽ1(x, t)dxdt,

and consequently,

J̃ ′(f) =

∫ T

0

g(x, t)Ṽ1(x, t)dt. (68)

Let us finally show that (68) reduces to (66) when ω(t) ≡ 1. In such a situation, the problems
for ṽ1 and Ṽ1 are given by











ṽ1tt − L∗ṽ1xx = 0,

ṽ1(x, T ) = 0, ṽ1t(x, T ) =
∫ T

0
uf (x, t)dt− UT (x), x ∈ Ω,

ṽ1(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),










Ṽ1tt − L∗Ṽ1xx =
∫ T

0
uf (x, t)dt− UT (x),

Ṽ1(x, T ) = 0, Ṽ1t(x, T ) = 0, x ∈ Ω

Ṽ1(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ).
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One can observe that Ṽ1t(x, t) = ṽ1(x, t). Then, starting from (68) we derive, using integra-
tion by parts, that

J̃ ′(f) =

∫ T

0

g(x, t)Ṽ1(x, t)dt =

(
∫ T

0

g(x, s)ds

)

Ṽ1(x, t)
∣

∣

∣

t=T

t=0

−
∫ T

0

(
∫ t

0

g(x, s)ds

)

Ṽ1t(x, t)dt = −
∫ T

0

(
∫ t

0

g(x, s)ds

)

ṽ1(x, t)dt. (69)

Hence, (66) and (68) coincide in the case ω(t) ≡ 1.

6 An iterative procedure for the inverse problem

Once the gradient of the functional J (or J̃) has been explicitly derived, as described in the
previous section, we can apply the iterative Landweber method, see e.g. [7], for obtaining a
stable solution to the inverse problem, as follows:

(i) Choose an arbitrary function f0 ∈ L2(Ω). Let u0 be the solution of the direct problem
(1)-(4) with f = f0.

(ii) Assume that fk and uk have been constructed. For the inverse problem (1)-(5), let vk
solve the adjoint problem (8)-(10) with ζ = G = 0 and

ξk(x) = uk(x, T )− uT (x), x ∈ Ω, (70)

and calculate the gradient (51) given by

zk(x) = −
∫ T

0

g(x, t)vk(x, t)dt, x ∈ Ω. (71)

For the inverse problem (1)-(4) and (62) let ṽk solve the adjoint problem (8)-(10) with
ζ = G = 0 and

ξk(x) =

∫ T

0

uk(x, t)dt− UT (x), x ∈ Ω, (72)

and calculate the gradient (66) given by

zk(x) = −
∫ T

0

(
∫ t

0

g(x, s)ds

)

ṽk(x, t)dt, x ∈ Ω. (73)

(iii) Construct the new iterate for the force given by

fk+1(x) = fk(x)− γzk(x), x ∈ Ω, (74)

where 0 < γ < 2
||A||2 (respectively 2

||Ã||2 ) is a relaxation factor to be prescribed and the

spectral norm of the operator A (respectively Ã) is defined as

||A|| = sup
f∈L2(Ω)\{0}

||Af ||L2(Ω)

||f ||L2(Ω)

. (75)

Let uk+1 be the solution of the direct problem (1)-(4) with f = fk+1.
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(iv) Repeat steps (ii) and (iii) until convergence is achieved in the case of exact data uT (or
UT ). In the case of noisy data

||uT − uǫT ||L2(Ω) ≤ ǫ, or ||UT − U ǫ
T ||L2(Ω) ≤ ǫ (76)

we can use the Morozov discrepancy principle, see e.g. [5,7], to terminate the iterations.
This suggests choosing the stopping index k = k(ǫ) as the smallest k for which

||uǫk(., T )− uǫT ||L2(Ω) ≤ τǫ, or

∥

∥

∥

∥

∥

∫ T

0

ω(t)uǫk(., t)− U ǫ
T

∥

∥

∥

∥

∥

L2(Ω)

≤ τǫ, (77)

where τ > 1 is some constant to be prescribed. According to (47) and (60), criterion
(77) can be rewritten as

J(fk) ≤ τ 2
ǫ2

2
, or J̃(fk) ≤ τ 2

ǫ2

2
. (78)

7 Numerical results and discussion

In all examples in this section we take, for simplicity, ω = T = 1, χ = 0 and L = ∇2 the
Laplacian operator. The first five examples are one-dimensional, i.e. n = 1 and Ω = (0, L)
with L = 1 for simplicity, whilst the sixth example shows the extension of the analysis to
higher dimensions, e.g. n = 2-dimensions. We take the initial guess arbitrary such as f0 ≡ 0.
Also, except for Example 5, where we investigate the influence of the relaxation parameter
γ on the speed of convergence, in all other examples we take γ = 1.

7.1 Example 1

Consider first the direct problem (1)-(4) given by wave equation

utt − uxx = f(x)g(x, t), (x, t) ∈ (0, 1)× (0, 1), (79)

and the input data

u(x, 0) = ϕ(x) = 2 sin(πx), ut(x, 0) = ψ(x) = 0, x ∈ [0, 1], (80)

u(0, t) = u(1, t) = 0, t ∈ (0, 1], (81)

g(x, t) = 1, (x, t) ∈ (0, 1)× (0, 1). (82)

f(x) = π2 sin(πx), x ∈ (0, 1). (83)

The exact solution of this problem is given by

u(x, t) = sin(πx)(cos(πt) + 1), (x, t) ∈ [0, 1]× [0, 1]. (84)

We will illustrate the numerical results for obtaining the final displacement

u(x, T ) = u(x, 1) = uT (x) = 0, x ∈ [0, 1], (85)
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and the time-average displacement

∫ T

0

u(x, t)dt =

∫ 1

0

u(x, t)dt = UT (x) = sin(πx), x ∈ [0, 1], (86)

as this will become the input data in the inverse problem later on. The discrete finite-
difference form of the problem (79)-(81) is as follows. We divide the solution domain (0, L)×
(0, T ) into M and N subintervals of equal space length ∆x and time-step ∆t, where ∆x =
L/M and ∆t = T/N . We denote ui,j := u(xi, tj), where xi = i∆x, tj = j∆t, and fi := f(xi),
and gi,j := g(xi, tj) for i = 0,M , j = 0, N . Then, a central-difference approximation to
equations (79)-(81) at the mesh points (xi, tj) = (i∆x, j∆t) of the rectangular mesh covering
the solution domain (0, L)× (0, T ) is,

ui,j+1 = r2ui+1,j + 2(1− r2)ui,j + r2ui−1,j − ui,j−1 + (∆t)2figi,j, (87)

i = 1, (M − 1), j = 1, (N − 1),

ui,0 = ϕ(xi), i = 0,M,
ui,1 − ui,−1

2∆t
= ψ(xi), i = 1, (M − 1), (88)

u0,j = 0, uM,j = 0, j = 1, N, (89)

where r = ∆t/∆x. Equation (87) represents an explicit FDM which is stable if r ≤ 1, giving
approximate values for the solution at mesh points along t = 2∆t, 3∆t, ..., as soon as the
solution at the mesh points along t = ∆t has been determined. Putting j = 0 in equation
(87) and using (88), we obtain

ui,1 =
1

2
r2ϕ(xi+1) + (1− r2)ϕ(xi) +

1

2
r2ϕ(xi−1) + (∆t)ψ(xi) +

1

2
(∆t)2figi,0,

i = 1, (M − 1). (90)

For finding the numerical solution to (85), we put j = N − 1 in (87). And for (86) we use
the trapezoidal rule approximation

∫ T

0

u(xi, t)dt =
∆t

2

(

ϕ(xi) + 2
N−1
∑

j=1

u(xi, tj) + u(xi, tN)

)

, i = 1,M − 1. (91)

The absolute errors between the exact solution (85) and the numerical solution for uT , and
also between (86) and (91) for UT , are shown in Figure 1. From this figure it can be seen
that the numerical solutions for uT and UT converge to the exact solutions (85) and (86),
respectively, as the FDM mesh size decreases. We consider next solving the inverse problem
with fixed N =M = 80 and γ = 1.

14



(a)

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

x

|u
T
e
x
a
c
t
−

u
T
n
u
m
e
r
i
c
a
l
|

 

 

N = M = 10

N = M = 20

N = M = 40

N = M = 80

(b)

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

x

|U
T
e
x
a
c
t
−

U
T
n
u
m
e
r
i
c
a
l
|

 

 

N = M = 10

N = M = 20

N = M = 40

N = M = 80

Figure 1: The absolute errors between exact and numerical solutions for (a) uT (x) and (b)
UT (x), for N =M ∈ {10, 20, 40, 80} for the direct problem of Example 1.

7.1.1 Inverse problem

Since from (82) we have g ≡ 1, and also since T/L = 1 ∈ Q we do not have the uniqueness
of solution of the inverse problem (79)-(81) when measuring the final displacement (85).
Therefore, for Example 1 we only consider the inverse problem (79)-(81) with the time-
average displacement measurement (86) which, according to the discussion in subsection 4,
has a unique solution given by equations (83) and (84).

The objective function (60) given by

J̃(fk) =
1

2
||ξk||2 =

1

2

M−1
∑

i=1

ξ2k(xi), (92)

where ξk is given by (72), is plotted in Figure 2(a), as a function of the number of iterations
k. From this figure it can be seen that convergence of J̃ is achieved after about 300 iterations.
Figure 2(b) shows the error between the exact solution f and numerical solution fk defined
by

E(fk) = ||fexact − fk|| =

√

√

√

√

M−1
∑

i=1

(f(xi)− fk(xi))2, (93)

as a function of the number of iterations. From this figure it can be seen a monotonic
decreasing convergence to zero of the error (93).
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Figure 2: (a) The objective function J̃(fk) and (b) the accuracy error E(fk), versus the
number of iterations k = 1, 500, no noise for the inverse problem of Example 1.

Figure 3 shows the numerical solution fk at various iteration numbers k. From this figure
a monotonic increasing convergence of the numerical solution fk towards the exact solution
(83) can be clearly observed.
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Figure 3: The numerical solution fk at various iteration numbers k, in comparison with the
exact solution (83), no noise for the inverse problem of Example 1.

In practice, the additional observation (6) comes from measurement which is inherently
contaminated with errors. We therefore model this by replacing the exact data UT by the
noisy data

U ǫ
T (xi) = UT (xi) + ǫi, i = 1, (M − 1), (94)

where (ǫi)i=1,M−1 are random noisy variables generated (using the MATLAB routine ’normrd’)
from a Gaussian normal distribution with mean zero and standard deviation σ = p ×
maxx∈[0,L] |UT (x)|, where p represents the percentage of noise. The total amount of noise
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introduced in the objective functional (60) is then given by

1

2
ǫ2 =

1

2

M−1
∑

i=1

ǫ2i . (95)

In order to investigate the stability of the numerical solution we include some p ∈
{10, 30, 50}% noise into the input data (86), as given by equation (94). The objective
functional J̃(fk) and the errors E(fk) are shown in Figure 4 for k = 1, 500 iterations. In
Figure 4(a) the threshold τ 2 ǫ

2

2
(with τ = 1.15) in the stopping criterion (78) is included by

horizontal line. Intersecting the horizontal line y = τ 2 ǫ
2

2
with the graph of the objective

functional J̃(fk) yields the stopping iteration number kdiscr given by the discrepancy prin-
ciple criterion (78). On the other hand, the minimum of the curve E(fk) in Figure 4(b)
yields the optimal iteration number kopt. For various percentages of noise p, the values of
kdiscr and kopt together with the corresponding accuracy errors (93) are given in Table 1 for
better illustrative purposes. From Figures 4(a), 4(b) and Table 1 it can be seen that there
is not much difference between kopt and kdiscr for all percentages of noise p considered and
this adds to the robustness of the numerical iterative method employed.
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Figure 4: (a) The objective function J̃(fk) and (b) the accuracy error E(fk), versus the
number of iterations k = 1, 500, for p = 10% (—), p = 30% (- - -) and p = 50% (· · ·) noise
for the inverse problem of Example 1. The horizontal lines in (a) represent the threshold
τ 2ǫ2/2 with τ = 1.15.
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Table 1: The stopping iteration number kdiscr chosen according to the discrepancy principle
criterion (78) (with τ = 1.15), as illustrated in Figure 4(a), and the optimal iteration number
kopt chosen according to the minimum of the accuracy error function (93) in Figure 4(b) for
various percentages of noise p ∈ {10, 30, 50}% for Example 1. The corresponding accuracy
errors E(fkdiscr) and E(fkopt) are also included.

p 10% 30% 50%
kopt 373 276 232

E(fkopt) 1.8471 4.2181 6.0124
kdiscr 300 245 205

E(fkdiscr) 2.5213 4.5269 6.4347

Figures 5(a) and 5(b) show the regularized numerical solution for f(x) obtained with
various values of the iteration numbers listed in Table 1, namely, kopt ∈ {373, 276, 232} and
kdiscr ∈ {240, 225, 220}, respectively, for p ∈ {10, 30, 50}% noisy data. From these figures it
can be seen that there is not much difference obtained between the corresponding curves in
Figures 5(a) and 5(b), except perhaps slightly for p = 10%. Moreover, the numerical results
illustrated in Figure 5(b) reveal that stable numerical solutions are obtained if one stops the
iteration process according to the discrepancy principle (78). Stability is further maintained
even for large percentages of noise such as p = 50%. Furthermore, as expected, numerical
results in Figure 5(b) become more accurate as the percentage of noise p decreases.
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Figure 5: The exact solution f in comparison with the numerical solution fk for (a) kopt ∈
{373, 276, 232} and (b) kdiscr ∈ {300, 245, 205}, for p ∈ {10, 30, 50}% noise, for the inverse
problem of Example 1.

7.2 Example 2

Consider the inverse problem given by the wave equation (79) with the input data (81),

u(x, 0) = ϕ(x) = sin(πx), ut(x, 0) = ψ(x) = sin(πx), x ∈ [0, 1], (96)

g(x, t) = et(π2 + 1), (x, t) ∈ (0, 1)× (0, 1), (97)
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and the diplacement measurement at the final time t = T = 1

u(x, t) = u(x, 1) = uT (x) = sin(πx)e, x ∈ [0, 1], (98)

or, and the time-average displacement

∫ T

0

u(x, t)dt =

∫ 1

0

u(x, t)dt = UT (x) = sin(πx)(e− 1), x ∈ [0, 1]. (99)

One can easily observe that the function (97) satisfies g(x, t) ≥ 0, gt(x, t) > 0, ∀(x, t) ∈ QT

and hence, according to Theorems 1 and 2, both the inverse problems (79), (81), (96), (98),
and (79), (81), (96), (99) have unique solutions. In fact, it can readily be checked by direct
substitution that the analytical solution of both problems is given by

u(x, t) = sin(πx)et, (x, t) ∈ [0, 1]× [0, 1], (100)

f(x) = sin(πx), x ∈ (0, 1). (101)

In the numerical simulations we fix N =M = 80 and γ = 1.
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Figure 6: (a) The objective functions J(fk), J̃(fk) and (b) the accuracy error E(fk), versus
the number of iterations k = 1, 50, no noise for the inverse problem of Example 2 with the
displacement measurement (98) (- - -) and with the time-average displacement measurement
(99) (—).

For exact data, i.e. no noise in (98) and (99), Figures 6 and 7 are analogous to Figures
2 and 3 of Example 1 and similar conclusions can be drawn, except that now, for Example
2 with the time-average displacement measurement (99), the convergence is about 10 times
faster than for Example 1. Furthermore, by inspecting Figures 6 and 7 it can be seen that
for Example 2 the convergence is 5 times faster when using the displacement measurement
(98) than when using the time-average displacement measurement (99).
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Figure 7: The numerical solution fk at various iteration numbers k, in comparison with the
exact solution (101), no noise for the inverse problem of Example 2 with (a) the displacement
measurement (98), and (b) the time-average displacement measurement (99).

In order to investigate the stability of the numerical solutions we include some p ∈
{1, 3, 5}% noise into the input data (98) (or (99)), as given by a similar expression to (94).
For this noisy data, Figures 8, 9 and Table 2 are analogous to Figures 4, 5 and Table 1 of
Example 1 and similar conclusions can be drawn. Stability is achieved if the iterations are
stopped at the index kdiscr which is much closer to kopt for Example 2 than for Example 1
because the amount of noise is much smaller (10 times) in the former case. For the same
reason, the agreement between the numerical and analytical solution is much better in Figure
9 than in Figure 5. The constant τ > 1 giving the threshold τ 2ǫ2/2 seems also important
and, for some interesting discussion on its choice, we refer to [5].

20



(a)

0 10 20 30 40 50
10

−2

10
−1

10
0

10
1

10
2

10
3

k

J
(f

k
)

 

 

(b)

0 10 20 30 40 50
10

−2

10
−1

10
0

10
1

k

E
(f

k
)

 

 

(c)

0 10 20 30 40 50
10

−2

10
−1

10
0

10
1

10
2

k

J̃
(f

k
)

 

 

(d)

0 10 20 30 40 50
10

−2

10
−1

10
0

10
1

k

E
(f

k
)

 

 

Figure 8: (a) The objective function J(fk) and (b) the corresponding accuracy error E(fk)
for the inverse problem of Example 2 with the displacement measurement (98), and (c)
the objective function J̃(fk) and (d) the corresponding accuracy error E(fk) for the inverse
problem of Example 2 with the time-average displace measurement (99). All curves are as
functions of the number of iterations k = 1, 50, for p = 1% (—), p = 3% (- - -) and p = 5%
(· · ·) noise. The horizontal lines in (a) and (c) represent the threshold τ 2ǫ2/2 with τ = 1.15
and τ = 1.25, respectively.
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Table 2: The stopping iteration number kdiscr chosen according to the discrepancy principle
criterion (78), as illustrated in Figures 8(a) and 8(c), and the optimal iteration number kopt
chosen according to the minimum of the accuracy error function (93) in Figures 8(b) and
8(d), for various percentages of noise p ∈ {1, 3, 5}% for Example 2 with the displacement
measurement (98) and τ = 1.15 (upper part of the table) and with the time-average displace-
ment measurement (99) and τ = 1.25 (lower part of the table). The corresponding accuracy
errors E(fkdiscr) and E(fkopt) are also included.

p 1% 3% 5%

kopt 7 6 6
E(fkopt) 0.0102 0.0286 0.0464
kdiscr 6 5 4

E(fkdiscr) 0.0107 0.0313 0.0632

kopt 36 30 27
E(fkopt) 0.0286 0.0725 0.1102
kdiscr 33 27 24

E(fkdiscr) 0.0310 0.0778 0.1200

So far, we have tested successfully examples for which analytical solutions for the dis-
placement and force are available, as given by equations (83) and (84) for Example 1, and
(100) and (101) for Example 2. The next three examples that we test concern quite arbi-
trary input data for which an analytical solution for the displacement u(x, t) is not readily
available.
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Figure 9: The numerical solution fk at various iteration numbers k, in comparison with the
exact solution (101), for p ∈ {1, 3, 5}% noise for the inverse problem of Example 2 with
the displacement measurement (98) for (a) kopt ∈ {7, 6, 6}, (b) kdiscr ∈ {6, 5, 4}, and with
the time-average displacement measurement (99) for (c) kopt ∈ {36, 30, 27}, (d) kdiscr ∈
{33, 27, 24}.

7.3 Example 3

Consider first the direct problem given by the wave equation (79) with the input data (81),

u(x, 0) = ϕ(x) = sin(πx), ut(x, 0) = ψ(x) = 0, x ∈ [0, 1], (102)

g(x, t) = 1 + t, t ∈ [0, 1], (103)

f(x) =
1

σ̃
√
2π

exp

(

−(x− µ)2

2σ̃2

)

, (104)
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where σ̃ = 0.1 and µ = 0.5. Remark that for this example, the force (104) is a Gaussian
normal function with mean µ and standard deviation σ̃. As σ̃ → 0, expression (104) mimics
the Dirac delta distribution δ(x− µ).

Unlike in the previous two examples, for the above direct problem an explicit analytical
solution for the displacement u(x, t) is not readily available and therefore, the values (5) and

(6) of u(x, 1) and
∫ 1

0
u(x, t)dt, illustrated in Figures 10(a) and 10(b), respectively, have been

obtained numerically using the FDM, at described in subsection 7.1. From these figures, a
rapid convergence of the numerical results can be observed.

We next solve the inverse problems using the numerically simulated data with N =
M = 80 from Figure 10. In the numerical solutions of the direct and adjoint problems of
the iterative procedure described in Section 6 we also take N = M = 80 and γ = 1. We
deliberately use the same mesh discretisation N = M = 80 in order to check for exact
data the numerical convergence of the Landweber method proposed in the absence of any
numerical discretisation error, the only noise present being the O(10−16) double precision
computer round-off errors. Note that we do not commit an inverse crime since the initial
guess is arbitrary, we also add random noise to the input data and the inverse iterative
procedure is totally different than the direct problem solver.
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Figure 10: Numerical solution for (a) u(x, 1) and (b)
∫ 1

0
u(x, t)dt, for various N = M ∈

{5, 10, 20, 80}, for the direct problem of Example 3.

7.3.1 Inverse problems

As in Example 2, the function (103) satisfies g(x, t) ≥ 0, gt(x, t) > 0, ∀(x, t) ∈ QT and hence,
according to Theorems 1 and 2, both the inverse problems (79), (81), (102) with the input (5)
or (6) represented in Figure 10(a) or 10(b), respectively, have unique solutions. First consider
the case without noise, i.e. p = 0. Figure 11 shows the objective functions (47) and (60),
and the corresponding accuracy error (93), versus the number of iterations. Also, Figure 12
shows the convergence of the corresponding numerical solutions, as the number of iterations
increases. From both figures it can be seen that the number of iterations necessary to achieve
a high level of accuracy is large of O(105). It is much larger than in the previous Examples 1
and 2 because the force function (104) to be retrieved has a small standard deviation σ̃ and
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therefore a sharper peak centred at the mean value µ = 0.5 than the trigonometric functions
(83) and (101). By comparing the results in Figures 11 and 12 one can also observe that the
convergence for the inverse problem with the displacement measurement (5) is much faster
(and for some number of iteration more accurate) than that with time-average displacement
measurement (29).
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Figure 11: (a) The objective functions J(fk), J̃(fk) and (b) the accuracy error E(fk), versus
the number of iterations k = 1, 105, no noise for the inverse problem of Example 3 with the
displacement measurement (5) (- - -) and with the time-average displacement measurement
(29) (—).

(a)

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x

f
k
(x

)

 

 

fexact
fk=101

fk=103

fk=105

(b)

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x

f
k
(x

)

 

 

fexact
fk=101

fk=103

fk=105

Figure 12: The numerical solution fk at various iteration numbers k, in comparison with the
exact solution (104), no noise for the inverse problem of Example 3 with (a) the displacement
measurement (5), and (b) the time-average displacement measurement (29).

Next we add some p ∈ {1, 3, 5}% noise in the input data with N = M = 80 of Figure
10. Figures 13, 14 and Table 3 are analogous to Figures 8, 9 and Table 2 of Example 2 and
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similar quantitative conclusions can be drawn in terms of comparing the inverse problems
with either the displacement measurement (5) numerically simulated in Figure 10(a) or with
the time-average measurement (29) numerically simulated in Figure 10(b). Of course, since
more iterations are required for Example 3 than for Example 2, the thresholds kdiscr and kopt
are much higher (and also more different between themselves) in Table 3 than in Table 2.
Furthermore, the accuracy of the numerical results in Figure 9 for Example 2 is much higher
than that in Figure 14 for Example 3, as expected since the trigonometric source (101) is
less complicated than the Gaussian normal bell-shaped function (104).
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Figure 13: (a) The objective function J(fk) and (b) the corresponding accuracy error E(fk)
for the inverse problem of Example 3 with the displacement measurement from Figure 10(a)
with N =M = 80, and (c) the objective function J̃(fk) and (d) the corresponding accuracy
error E(fk) for the inverse problem of Example 3 with the time-average displace measurement
of Figure 10(b) with N = M = 80. All curves are functions of the number of iterations
k = 1, 105, for p = 1% (—), p = 3% (- - -) and p = 5% (· · ·) noise. The horizontal lines in
(a) and (c) represent the threshold τ 2ǫ2/2 with τ = 1.2 and τ = 1.1, respectively.
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Table 3: The stopping iteration number kdiscr chosen according to the discrepancy principle
criterion (78), as illustrated in Figures 13(a), 13(c), and the optimal iteration number kopt
chosen according to the minimum of the accuracy error function (93) in Figures 13(b),
13(d), for various percentages of noise p ∈ {1, 3, 5}% for Example 3 with the displacement
measurement from Figure 10(a) with N =M = 80 and τ = 1.2 (upper part of the table) and
with the time-average displacement measurement from Figure 10(b) with N =M = 80 and
τ = 1.1 (lower part of the table). The corresponding accuracy errors E(fkdiscr) and E(fkopt)
are also included.

p 1% 3% 5%

kopt 34080 20363 15577
E(fkopt) 0.5899 1.3122 1.9840
kdiscr 17712 7949 7012

E(fkdiscr) 0.9448 2.0762 2.5206

kopt 95908 49208 26760
E(fkopt) 1.1314 2.6532 3.8913
kdiscr 64996 35905 14998

E(fkdiscr) 1.2761 2.7219 4.1004
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Figure 14: The numerical solution fk at various iteration numbers k, in comparison with
the exact solution (104), for p ∈ {1, 3, 5}% noise for the inverse problem of Example 3
with the displacement measurement from Figure 10(a) with N = M = 80 for (a) kopt ∈
{34080, 20363, 15577}, (b) kdiscr ∈ {17712, 7949, 7012}, and with the time-average displace-
ment measurement from Figure 10(b) with N =M = 80 for (c) kopt ∈ {95908, 49208, 26760},
(d) kdiscr ∈ {64996, 35905, 14998}.

7.4 Example 4

Consider first the direct problem given by the wave equation (79) with the input data (81),

u(x, 0) = ϕ(x) = 0, ut(x, 0) = ψ(x) = 0, x ∈ [0, 1], (105)

g(x, t) = 1 + t, t ∈ [0, 1], (106)

f(x) =

{

x if 0 ≤ x ≤ 1
2
,

1− x if 1
2
< x ≤ 1.

(107)
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Remark that for this example, the force (107) has a triangular shape, being continuous but
non-differentiable at the peak x = 1/2. This example also does not possess an explicit
analytical solution for the displacement u(x, t) being readily available.
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Figure 15: Numerical solution for u(x, 1), for various N =M ∈ {5, 10, 20, 80}, for the direct
problem of Example 4.

Figure 15 shows the rapid convergence of the FDM numerical solution u(x, 1) of the
direct problem (79), (81) and (105), as N =M increases. The numerically simulated u(x, 1)
with N = M = 80 is used as input data (5) in the inverse problem (79), (81), (105) whose
existence and uniqueness of solution is guaranteed from Theorem 1 since g(x, t) given by
(106) satisfies g(x, t) ≥ 0, gt(x, t) > 0, ∀(x, t) ∈ QT . We fix N =M = 80 and γ = 1.

It was observed in Example 3 and else where that the convergence of the Landweber
iterative method described in Section 6 can become prohibitely show. One way to increase
the rate of convergence is to increase the value of the relaxation parameter γ in (74) and
we shall investigate this effect for the next Example 5. Alternatively, one can speed up the
convergence of the minimization of the least-squares functional (47) or (60) by employing the
convergent and regularizing conjugate gradient method (CGM) for the stable reconstruction
of the displacement u and force f . In addition, the CGM does not require any choice of a
relaxation parameter γ, as the Landweber method does in order to iterate in formula (74).
Similarly, as described in [8, 12] for the heat equation, this algorithm runs as follows:

Let steps (i) and (ii) be the same as in the algorithm of Section 6. The next steps are as
follows:

(iii) Calculate

dk(x) = −zk(x) + βk−1dk−1(x), (108)

with the convention that β−1 = 0 and

βk−1 =
||zk||2L2(Ω)

||zk−1||2L2(Ω)

, k ≥ 1 (109)

29



(iv) Solve the direct problem (1)-(4) with ϕ = ψ = 0 and f = dk to determine A0dk or
Ã0dk, where the operators A0 and Ã0 have been defined in Section 3. Set the direction
search

αk =
||zk||2L2(Ω)

||A0dk||2L2(Ω)

, or αk =
||zk||2L2(Ω)

||Ã0dk||2L2(Ω)

, k ≥ 0, (110)

and pass to the new iteration by letting

fk+1(x) = fk(x) + αkdk(x). (111)

(v) Let uk+1 solve the direct problem (1)-(4) with f = fk+1 and go back (repeat) steps
(ii)-(iv) until the discrepancy principle stopping criterion (78) is satisfied.

Note that for Ω = (0, L) the L2(0, L) integrals in (109) and (110) are calculated using the
trapezoidal rule which, for the homogeneous Dirichlet boundary data (81), is given by

||zk||2L2(0,L) = (∆x)
M−1
∑

i=1

z2k(xi), (112)

and a similar expression exists for ||A0dk||2L2(0,L).
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Figure 16: (a) The objective function J(fk) and (b) the accuracy error E(fk), versus the
number of iterations k = 1, 105, obtained using the Landweber method (—) and the CGM
(- - -), no noise for the inverse problem of Example 4.
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Figure 17: Numerical solution fk for various iteration numbers k ∈ {101, 103, 105}, in com-
parison with the exact solution (107), obtained using (a) the Landweber method and (b) the
CGM, no noise for the inverse problem of Example 4.

The objective function (47), the accuracy error (93) and the numerical solution for the
force at various iteration numbers obtained using the Landweber method and the CGM
are plotted in Figures 16(a), 16(b) and 17, respectively. From these figures it can be seen
that it takes a large number of iterations of O(105) to converge with a good accuracy to
the exact solution (107), similarly to what happened for Example 3, when the Lanweber
method is employed. In comparison to the previous Examples 1 and 2 this is to be expected
because the force function (107) to be retrieved is non-smooth possessing a sharp corner at
the peak x = 1/2. Moreover, the behaviour of the convergence is similar to that of Example
3 for which the Gaussian normal force function (104) to be retrieved, although smooth, it
possesses also a sharp peak at x = 1/2.

On the other hand, the convergence is much faster when the CGM is employed. When
we add some p ∈ {1, 3, 5}% noise in the input data (5), the conclusions are similar to those
drawn from Example 3 if one compares Figures 18, 19 and Table 4 with Figures 13, 14 and
the upper part of Table 3. Furthermore, the numerical details included in Table 4 show that
the CGM is about 10 times faster than the Landweber method.
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Figure 18: (a) and (c) The objective function J(fk), and (b) and (d) the accuracy error
E(fk), versus the number of iterations k = 1, 105, obtained using the Landweber and CGM
methods, respectively, for p = 1% (—), p = 3% (- - -) and p = 5% (· · ·) noise for the inverse
problem of Example 4. The horizontal lines represents the threshold τ 2 ǫ

2

2
with τ = 1.15.

Table 4: The stopping iteration numbers kdiscr chosen according to the discrepancy principle
criterion (78) (with τ = 1.15), as illustrated in Figures 18(a) and 18(c), and the optimal
iteration numbers kopt chosen according to the minimum of the accuracy error function (93)
in Figures 18(b) and 18(d), for various percentages of noise p ∈ {1, 3, 5}% for Example
4. The corresponding accuracy errors E(fkdiscr) and E(fkopt) are also included. The CGM
results are included in brackets

p 1% 3% 5%
kopt 10171 3429 68

(2908) (295) (12)
E(fkopt) 0.1202 0.3009 0.3198

(0.1090) (0.2943) (0.3167)
kdiscr 2995 95 70

(130) (21) (11)
E(fkdiscr) 0.1507 0.3105 0.3199

(0.2341) (0.3108) (0.3168)
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Figure 19: The exact solution f in comparison with numerical solution fk for (a) and (c)
kopt ∈ {10171, 3429, 68} and kopt ∈ {2908, 295, 12}, and (b) and (d) kdiscr ∈ {2995, 95, 70}
and kdiscr ∈ {130, 21, 11}, obtained using the Landweber and CGM methods, respectively,
for p ∈ {1, 3, 5}% noise for the inverse problem of Example 4.

We finally note that similar results have been obtained for the inverse problem given by
equations (79), (81), (105) with the integral measurement (29) and therefore, they are not
presented.

7.5 Example 5

The previous example investigated a severe test given by the non-smooth triangular shape
force function (107). In this subsection, we consider an even more severe test example given
by the discontinuous force

f(x) =











0 if 0 ≤ x < 1
3
,

1 if 1
3
≤ x ≤ 2

3
,

0 if 2
3
< x ≤ 1.

(113)
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We take the same input data (105) and (106), as in Example 4. Then, on solving the direct
problem given by equations (79), (81), (105) with the forcing term given by the product
of the functions in (106) and (113), we obtain the numerical results for the time-average

displacement
∫ 1

0
u(x, t)dt illustrated in Figure 20. From this figure it can be seen that a

convergent FDM numerical solution is achieved.
For brevity, in what follows we only illustrate the numerical results obtained for the

inverse problem (1)-(4), (29), noting that similar results have been obtained for the inverse
problem (1)-(5).
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Figure 20: Numerical solution for
∫ 1

0
u(x, t)dt, for various N = M ∈ {5, 10, 20, 80}, for the

direct problem of Example 5.

The numerically simulated data for
∫ 1

0
u(x, t)dt obtained with N =M = 80 is used as in-

put (6) in the inverse problem given by equations (79), (81) and (105). Again, as in Examples
2 and 3 the function g given by equation (103) (or (106)) satisfies 0 6≡ g(x, t) ≥ 0, ∀(x, t) ∈ QT

and hence, according to Theorem 2, the inverse problem has a unique solution. As expected,
for exact data a very slow convergence of the objective function (60) is encountered by the
Landweber iteration method because the force function (113) to be retrieved is discontinuous
at the points x ∈ {1/3, 2/3}. In fact, we had to increase the value of the relaxation factor γ
in order to achieve convergence in a reasonable number of iterations.

Figure 21 shows the objective function (60) and the accuracy error (93), versus the
number of iterations k = 1, 105, for various values of the relaxation parameter γ ∈ {1, 5, 15}.
From this figure it can be seen that the rate of convergence increases as we increase γ from
1 to 5 and then to 15. The corresponding numerical solutions for the force fk(x) are shown
in Figure 22 for various numbers of iterations k ∈ {101, 103, 105}, and again more accurate
results are obtained as we increase k and/or γ.
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Figure 21: (a) The objective function J̃(fk) and (b) the accuracy error E(fk), versus the
number of iterations k = 1, 105, for various γ = 1 (—), γ = 5 (- - -) and γ = 15 (− • −), no
noise for the inverse problem of Example 5.
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Figure 22: Numerical solution fk for various iteration numbers k ∈ {101, 103, 105}, in com-
parison with the exact solution (113), for (a) γ = 1, (b) γ = 5 and (c) γ = 15, no noise for
the inverse problem of Example 5.

In order to investigate the stability of the numerical solution we include some p ∈
{1, 3, 5}% noise into the input data, as given by equation (94), and the numerical results
obtained with γ = 15 are presented in Figures 23, 24 and Table 5. As in the previous ex-
amples, Figure 23 and Table 5 justify the choice of the stopping iteration number kdiscr and
furthermore, the numerical solutions illustrated in Figure 24 show that stable and reasonably
accurate results are obtained for recovering the severely discontinuous force function (113).
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Figure 23: (a) The objective function J̃(fk) and (b) the accuracy error E(fk), versus the
number of iterations k = 1, 105, for p = 1% (—), p = 3% (- - -) and p = 5% (· · ·) noise for
the inverse problem of Example 5 obtained with γ = 15. The horizontal lines represents the
threshold τ 2 ǫ

2

2
with τ = 1.1.

Table 5: The stopping iteration number kdiscr chosen according to the discrepancy principle
criterion (78) (with τ = 1.1), as illustrated in Figure 23(a), and the optimal iteration number
kopt chosen according to the minimum of the accuracy error function (93) in Figure 23(b),
for various percentages of noise p ∈ {1, 3, 5}% for Example 5 obtained with γ = 15. The
corresponding accuracy errors E(fkdiscr) and E(fkopt) are also included.

p 1% 3% 5%
kopt 14823 2275 1523

E(fkopt) 1.5342 1.8471 2.0906
kdiscr 9599 2000 1000

E(fkdiscr) 1.5466 1.8488 2.1319

In the next section we present a numerical extension to two-dimensions.

37



(a)

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

f
k
(x

)

 

 

fexact
fk=14823,p=1%

fk=2275,p=3%

fk=1523,p=5%

(b)

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

f
k
(x

)

 

 

fexact
fk=9599,p=1%

fk=2000,p=3%

fk=1000,p=5%

Figure 24: The exact solution (113) for f in comparison with the numerical solution fk for
(a) kopt ∈ {14823, 2275, 1523} and (b) kdiscr ∈ {9599, 2000, 1000}, for p ∈ {1, 3, 5}% noise for
the inverse problem of Example 5 obtained with γ = 15.

8 Two-dimensions

In this section, we consider the initial boundary value problem (1)-(4) in two-dimensions,
i.e. n = 2 and Ω = (0, L)× (0, L) with L > 0, given by

utt(x, y, t) = uxx(x, y, t) + uyy(x, y, t) + f(x, y)g(x, y, t),

(x, y, t) ∈ (0, L)× (0, L)× (0, T ], (114)

u(x, y, 0) = ϕ(x, y), ut(x, y, 0) = ψ(x, y), (x, y) ∈ (0, L)× (0, L), (115)

u(x, y, t) = 0, (x, y) ∈ ∂Ω× (0, T ). (116)

The discrete form of this direct problem is as follows. We divide the solution domain (0, L)×
(0, L) × (0, T ) into M , N and K subintervals of equal space lengths ∆x, ∆y and time step
∆t, where ∆x = L/M , ∆y = L/N and ∆t = T/K. We denote ui,j,k = u(xi, yj, tk), where
xi = i∆x, yj = j∆y, tk = k∆t, and fi,j = f(xi, yj), gi,j,k = g(xi, yj, tk) for i = 0,M , j = 0, N ,
k = 0, K. Then, a central-difference approximation to equations (114)-(116) at the mesh
points (xi, yj, tk) = (i∆x, j∆y, k∆t) is

ui,j,k+1 = rx(ui+1,j,k + ui−1,j,k) + ry(ui,j+1,k + ui,j−1,k) + 2rxy1ui,j,k − ui,j,k−1

+(∆t)2fi,jgi,j,k, i = 1, (M − 1), j = 1, (N − 1), k = 1, (K − 1), (117)

ui,j,0 = ϕ(xi, yj), i = 0,M, j = 0, N,
ui,j,1 − ui,j,−1

2∆t
= ψ(xi, yj), i = 1, (M − 1), j = 1, N − 1, (118)

u0,j,k = uM,j,k = ui,0,k = ui,N,k = 0, i = 1, (M − 1), j = 1, (N − 1), k = 1, K, (119)
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where rx = (∆t)2

(∆x)2
, ry = (∆t)2

(∆y)2
, and rxy1 = 1 − rx − ry. This is an explicit formula which is

stable if 4(∆t)2

(∆x)2+(∆y)2
≤ 1, giving approximation values for the solution at mesh points along

t = 2∆t, 3∆t, ..., as soon as the mesh values along t = ∆t have been determined. Putting
j = 0 in equation (117) and using (118), we obtain

ui,j,1 =
rx
2
(ϕ(xi+1, yj) + ϕ(xi−1, yj)) +

rx
2
(ϕ(xi, yj+1) + ϕ(xi, yj−1)) + rxy1ϕ(xi, yj)

+ (∆t)ψ(xi, yj) +
1

2
(∆t)2fi,jgi,j,0, i = 1, (M − 1), j = 1, N − 1. (120)

8.1 Example 6

Consider first the direct problem given by the two-dimensional wave equation (114) with
L = T = 1, the initial conditions (115) given by

u(x, y, 0) = ϕ(x, y) = 2 sin(πx) sin(πy), ut(x, y, 0) = ψ(x, y) = 0,

x ∈ [0, 1], y ∈ [0, 1], (121)

and the homogenous Dirichlet boundary conditions (116) given by

u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 1, t) = 0, x ∈ (0, 1), y ∈ (0, 1), t ∈ (0, 1), (122)

when

g(x, y, t) = 2 + cos(πt), (x, y, t) ∈ (0, 1)× (0, 1)× (0, 1), (123)

f(x, y) = π2 sin(πx) sin(πy), (x, y) ∈ (0, 1)× (0, 1). (124)

The exact solution is given by

u(x, y, t) = sin(πx) sin(πy) (1 + cos(πt)) , (x, y, t) ∈ [0, 1]× [0, 1]× [0, 1]. (125)

The time-average displacement (62) is given by

UT (x, y) =

∫ 1

0

u(x, y, t)dt = sin(πx) sin(πy), (x, y) ∈ (0, 1)× (0, 1). (126)

This example is similar in behaviour to the one-dimensional Example 1. The absolute errors
between (126) and the numerical values obtained using the trapezoidal rule approximation

∫ 1

0

u(xi, yj, t)dt =
∆t

2

(

ϕ(xi, yj) + 2
K−1
∑

k=1

u(xi, yj, tk) + u(xi, yj, tK)

)

,

i = 1,M − 1, j = 1, N − 1 (127)

are shown in Figure 25, and one can observe that an excellent agreement and convergence
are obtained.
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Figure 25: The absolute errors between the exact (126) and numerical solutions (127) for
∫ 1

0
u(x, y, t)dt for various N = M ∈ {10, 20, 40, 80} and K = 2N ∈ {20, 40, 80, 160} in

(a)-(d), respectively, for the direct problem of Example 6.

8.1.1 Inverse problem

In this subsection, we consider solving the inverse problem given by the wave equation (114)
with g given by (123), subject to the initial conditions (121), the homogeneous Dirichlet
boundary conditions (122) and the additional time-average displacement measurement (126)
using the FDM with N =M = 80, K = 160 and the iterative Landweber method described
in Section 6 with the relaxation parameter γ = 1. The analytical solution of the above
inverse problem of Example 6 is given by equations (124) and (125).

The objective function (60) given by

J̃(fk) =
1

2
||ξk||2 =

1

2

M−1
∑

i=1

N−1
∑

j=1

ξ2k(xi, yj), (128)

where ξk is given by (72), is plotted in Figure 26(a), as a function of the number of iterations
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k. Whilst Figure 26(b) shows the accuracy error

E(fk) = ||fexact − fk|| =

√

√

√

√

M−1
∑

i=1

N−1
∑

j=1

(f(xi, yj)− fk(xi, yj))2. (129)

From these figures it can be seen that convergence of both functions (128) and (129) is
achieved in about 300 to 500 iterations.
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Figure 26: (a) The objective function (128) and (b) the accuracy error (129), versus the
number of iterations k = 1, 500, no noise for the inverse problem of Example 6.

Figure 27 shows the numerical force solution fk at various iteration numbers k and a
monotonic increasing convergence to the exact solution (124) can be clearly observed.
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Figure 27: The numerical solution fk for k ∈ {5, 50, 500}, in comparison with the exact
solution (124), no noise for the inverse problem of Example 6.

In practice, the additional observation (126) comes from measurement which is inherently
contaminated with errors. We therefore model this by replacing the exact data UT by the
noisy data

U ǫ
T (xi, yj) = UT (xi, yj) + ǫi,j, i = 1, (M − 1), j = 1, (N − 1), (130)

where (ǫi,j)i=1,M−1,j=1,N−1 are random noisy variables generated (using the MATLAB routine
’normrd’) from a Gaussian normal distribution with mean zero and standard deviation σ =
p ×maxx,y∈[0,L] |UT (x, y)|, where p represents the percentage of noise. The total amount of
noise introduced in the cost functional (60) is then given by

1

2
ǫ2 =

1

2

M−1
∑

i=1

N−1
∑

j=1

ǫ2i,j. (131)

In order to investigate the stability of the numerical solution we include some p ∈ {1, 3, 5}%
noise into the input data (126), as given by equation (130). The objective function (128) and
the accuracy error (129) are shown in Figures 28(a) and 28(b), respectively, for k = 1, 1000
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and p ∈ {1, 3, 5}% noisy data. These figures yield the values of the stopping iteration
numbers kdiscr and kopt, as given in Table 6.
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Figure 28: (a) The objective function (128) and (b) the accuracy error (129), versus the
number of iterations k = 1, 1000, for p = 1% (—), p = 3% (- - -) and p = 5% (· · ·) noise for
the inverse problem of Example 6. The horizontal lines represents the threshold τ 2 ǫ

2

2
with

τ = 1.05.

Table 6: The stopping iteration number kdiscr chosen according to the discrepancy principle
criterion (78) (with τ = 1.05), as illustrated in Figure 28(a), and the optimal iteration
number kopt chosen according to the minimum of the accuracy error function (129) in Figure
28(b), for various percentages of noise p ∈ {1, 3, 5}% for Example 6. The corresponding
accuracy errors E(fkdiscr) and E(fkopt) are also included.

p 1% 3% 5%
kopt 906 769 711

E(fkopt) 0.3285 0.8425 1.3057
kdiscr 796 599 597

E(fkdiscr) 0.4013 1.7573 1.8598

Finally, Figure 29 shows the analytical solution (124) for the force f(x, y) in comparison
with the numerical force fkdiscr(x, y) for various percentages of noise p ∈ {1, 3, 5}%. From
this figure accurate and stable numerical predictions of the force can be observed.
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Figure 29: The exact solution (124) for f in comparison with the numerical solution fk
for kdiscr ∈ {796, 599, 597} for p ∈ {1, 3, 5}% noise, respectively, for the inverse problem of
Example 6.

9 Conclusions

In this paper, the determination of the displacement and the space-dependent force act-
ing on a vibrating structure from measured final or time-average displacement in the wave
equation has been investigated. The linear inverse problems are uniquely solvable, but they
are still ill-posed since small errors in the input data cause large errors in the output force.
The problem has been discretised numerically using the FDM, and the Landweber method
and CGM have been presented and discussed illustrating the convergence of the iterative
procedures for exact input data and their stability for noisy data. Numerical results have
been presented for both smooth and non-smooth examples. Furthermore, an extension to
a two-dimensional example has also been illustrated in Section 8. Future work will consist
in investigating the nonlinear inverse problem in which the unknown force depends on the
displacement.
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