
This is a repository copy of Modified shear stress transport model with curvature 
correction for the prediction of swirling flow in a cyclone separator.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/97729/

Version: Accepted Version

Article:

Alahmadi, Y.H. and Nowakowski, A.F. (2016) Modified shear stress transport model with 
curvature correction for the prediction of swirling flow in a cyclone separator. Chemical 
Engineering Science, 147. pp. 150-165. ISSN 0009-2509 

https://doi.org/10.1016/j.ces.2016.03.023

Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Author’s Accepted Manuscript

Modified shear stress transport model with

curvature correction for the prediction of swirling

flow in a cyclone separator

Yaser H. Alahmadi, Andrzej F. Nowakowski

PII: S0009-2509(16)30121-X

DOI: http://dx.doi.org/10.1016/j.ces.2016.03.023

Reference: CES12859

To appear in: Chemical Engineering Science

Received date: 3 November 2015

Revised date: 6 March 2016

Accepted date: 13 March 2016

Cite this article as: Yaser H. Alahmadi and Andrzej F. Nowakowski, Modified

shear stress transport model with curvature correction for the prediction of

swirling flow in a cyclone separator, Chemical Engineering Science,
http://dx.doi.org/10.1016/j.ces.2016.03.023

This is a PDF file of an unedited manuscript that has been accepted for

publication. As a service to our customers we are providing this early version of

the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting galley proof before it is published in its final citable form.

Please note that during the production process errors may be discovered which

could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/ces

http://www.elsevier.com/locate/ces
http://dx.doi.org/10.1016/j.ces.2016.03.023
http://dx.doi.org/10.1016/j.ces.2016.03.023


Modified shear stress transport model with curvature correction

for the prediction of swirling flow in a cyclone separator

Yaser H. Alahmadi, Andrzej F. Nowakowski∗

Sheffield Fluid Mechanics Group SFMG, Department of Mechanical Engineering

The University of Sheffield, Sir Frederick Mappin Building, Mappin Street, Sheffield, S1 3JD, UK

Abstract

The paper investigates the confined swirling flow in a cyclone. The numerical simulations are

performed using a proposed eddy viscosity turbulence model, which accounts for the effects

of the streamline curvature and rotation. This distinguishes the current model from the

conventional Eddy Viscosity Models (EVMs) that are known to fail to predict the Rank-

ine vortex in swirling flows. Although computationally more expensive approaches, the

Reynolds Stress Model (RSM) and Large Eddy Simulation (LES), have demonstrated a

high capability of dealing with such flows, these techniques are often unsuited for use in

complex design studies where computational speed and robustness are key factors. In the

present approach, the Shear Stress Transport with Curvature Correction (SSTCC) turbu-

lence model is modified by the introduction of the Richardson number to account for the

rotation and curvature effects. The numerical predictions were validated using experimental

results and also compared to the data obtained using the RSM model and various EVMs

without the proposed modifications. The investigations started with a benchmark case of

a flow through a channel duct with a U-turn, after which more challenging simulations of

a high swirling flow within a cyclone separator device were performed. The results show

that the proposed model is competitive in terms of accuracy when compared to RSM and

proves to be superior to the RSM model in terms of computational cost. Furthermore, it is

found that the proposed model preserves the ability to represent the Rankine vortex pro-

file at different longitudinal levels of the cyclone. It is also more efficient in terms of the

computational cost than the SSTCC model without the introduced modifications.
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1. Introduction

Vortex and swirling flows occur in a wide range of different mechanical apparatus, for

instance, in dust collection devices, spray dryers, vortex tubes and combustion chambers.

In addition, vortices and swirling flows are commonly encountered in nature in atmospheric

phenomena, such as tornadoes and dust devils. A superb prologue to the swirling flows

found in nature and in technology is given by Lugt [1].

A cyclone separator is a fixed and stationary mechanical device that separates dispersed

solid particles from a carrier gas stream by employing a centrifugal force. The tangential

inlet at the top of the device plays an important role in the mechanism and working principle

of the cyclone. The dimensions of the inlet and the vortex finder cause the flow to descend

in a spiral motion. This creates a centrifugal force that deposits the solid particles onto the

cyclone body wall, after which the particles spiral down with the descending flow. At the

end of the conical part of the cyclone, the solid particles are trapped at the hopper section

or are discharged via an apex exit (see Fig. 1). The gas phase reverses and ascends axially

in a spiral motion at the core of the cyclone and exits through the upper exit pipe.

Cyclones are common in many (heavy or light) industrial applications and they are

designed as classifiers or separators. Their widespread presence is due to several factors,

among which the complete absence of moving parts, the low maintenance cost, the low

running cost and the simple geometry are considered as crucial.

A large number of numerical and experimental studies have been conducted to investigate

the flow within the cyclone. The majority of the numerical simulations were performed by

using either the turbulent resolving approaches (Large Eddy Simulation (LES) or Detached

Eddy Simulation (DES)) or the Reynolds Stress Model (RSM) [2]. It should be noted
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that the flow within the cyclone is characterized as a strong swirling flow with a strong

streamline curvature. In this scenario, the conventional Eddy Viscosity Models (EVMs) fail

to predict the effects of strong streamline curvatures. This is unfortunate, as the robustness

and computational cost of the EVMs are superior to RSM [3, 4].

It is well known that a major drawback of the EVMs is their incapacity to capture the

effects resulting from the rotating system. More specifically, if the flow exhibits a swirl

motion, EVMs fail to represent the near wall region ”free-loss vortex” part of the Rankine

vortex. This is attributed to the use of the Boussinesq hypothesis that assumes that the

eddy viscosity is an isotropic scalar which is untrue for more complex flows such as cyclones.

In order to handle this weakness, many modifications aimed at the sensitization of EVMs to

rotation and curvature have been suggested (see Refs. [5, 6, 7]). These attempts are limited

and not universal, especially when dealing with 3D flows. Moreover, these corrections are

not Galilean-invariant. In 1997, Spalart and Shur [8] proposed an empirical alteration to

EVMs to account for the system of rotation and streamline curvature, which in a sense is

close to an idea of Knight and Saffman [9]. The former is more efficient as it measures the

extra influence of the invariant contributor to the turbulence. It is also relatively easy to

apply to 3D flows and unifies the description of the curvature and rotation effects in the

mathematical model. Also in 1997, Hellsten [10] proposed some improvement to the well

known k − ω SST turbulence model. The modification included the sensitization for the

effects of system rotation and streamline curvature. Among several different definitions of

Richardson number (Ri), Hellsten realisation replaces the turbulent time scale appearing in

the Khodak and Hirch [11] definition by the mean-flow time scale 1/Sij. This results in a

new and simple definition of the Ri number which can be written as follows

Ri =
Ωij

Sij

(

Ωij

Sij

− 1

)

(1)

By 2009, Smirnov and Menter [3] had adapted the rotation-curvature correction func-

tion proposed earlier in [8] to the shear stress transport k − ω model (SST k − ω). The

correction function was applied to the production term in both the k and ω transport equa-
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tions. As a result, the corrected model, denoted as the SSTCC, becomes more accurate,

computationally efficient and robust than its predecessor. In 2013, a new simpler rotation

and curvature correction method for the S-A model was proposed by Zhang and Yang [12].

These modifications avoid the calculations of the components of the Lagrangian derivatives

of the strain rate tensor (DSij/Dt) by implementing Ri number. The model is denoted as

SARCM, where the M stands for modified.

In this work, the definition of Ri number suggested by Hellsten is used to avoid the need

to calculate the complex term (DSij/Dt), that appears in the non-dimensional argument

r̃. This leads to a simpler version of the SSTCC, which is realized by implementing the

Ri number. As a result, the obtained numerical code requires less computational time

and is also competitive in terms of accuracy when compared to the RSM model. The new

formula for r̃ is applied into the rotation function developed in [3]. The proposed model is

denoted as SSTCCM. Then, the two altered models, namely (SARCM and SSTCCM) and

the conventional k − ω SST model, are implemented to study the flow within the cyclone.

The swirl velocity components characterized by the tangential and axial velocity profile are

compared with RSM and experimental data.

The paper is organized as follows. Section 2 provides a brief introduction to the swirling

flow inside cyclones. The physical and analytical description of the vortex pattern is re-

visited. Section 3 describes the governing equations and turbulence modelling, which is

followed by an explanation of the numerical implementation of the proposed approach. The

results of the computational work are presented in section 5. First, a U-duct problem is

utilized for verification and validation studies. Then, a Stairmand cyclone model is numer-

ically investigated to demonstrate the capabilities of the proposed formulation in a swirling

flow regime. The conclusion is presented in section 6.

2. Swirl flow in cyclones

The behaviour of the swirling flow can be defined as a combination of the tangential

velocity component with the axial one. When real swirling flow problems are analyzed in a
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Figure 1: Motion of collected particles inside cyclone separator.

confined domain, the tangential velocity component of such flows is bounded with two lim-

iting regimes; namely the solid body rotation and the free vortex [13]. The aforementioned

type is also known as a forced vortex flow. By assuming that the fluid behaves like a solid

body or has infinite viscosity, the angular velocity of a fluid element remains constant at

different radial positions. Hence, a swirling flow with a constant angular velocity is called

the forced vortex flow or in the other context, solid-body rotation, so that:

υθ = Ωr (2)

Where υθ is the tangential velocity, Ω is the angular velocity and r is the radial position.

The second extreme contrasts with the forced vortex flow, where the fluid has no viscosity.

In this case, the motions of the fluid elements at all radial positions do not influence each

other in any way. For such a fluid, the relation between the radial position and the tangential

velocity is inversely proportional. Therefore, as the fluid element moves toward the center

of the circulation, its tangential velocity increases. This relation can be referred to as the

conservation of the moment-of-momentum (mass times tangential velocity times radius of

rotation: mυθr). As the moment-of-momentum is conserved, the quantity mυθr is constant.
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This implies that υθr = constant for a mass conserved fluid element, so that:

υθ =
constant

r
(3)

This limiting frictionless case is represented by (3). This equation demonstrates that the

tangential velocity increases as the fluid element moves toward the center of the rotation.

Forced vortex

Loss-free vortex

Real vortex

Figure 2: Tangential velocity distribution of the two extremes vortex flows and a

real vortex flow.

As shown in Fig. 2, the swirl flow acts as an intermediary between the solid-body rotation

and the loss free vortex. In real fluid, the viscose effects and the presence of turbulence are

the two main sources that cause the transportation of the moment-of-momentum between

the fluid elements at different radii [14]. Thus, in the inner core region, the tangential

velocity of the swirling flow nearly matches that of the solid-body rotation. This inner core

is surrounded by a nearly loss free vortex. The tangential velocity distribution which acts

as an intermediary between these two extremes is known as the ”Rankine vortex”.

Further, to understand fully the mechanism of the cyclone, it is necessary to understand

the flow behaviour of the gases within it. In 1939, Shepherd and Lapple [15], investigated

experimentally the velocity profile of the flow inside the cyclone. Their investigation has

shown that the flow within the cyclone consists primarily of two flow regimes. The first

regime is an outer downward spiral while the other is an inner upward spiral with lower

velocity and smaller diameter, as shown in Fig. 3.
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Separation zone

Vortex finder

Tangential inlet

Dust outlet

Figure 3: Sketch of the flow pattern inside cyclone separator.

The outer downward flow is of a great importance as it is responsible for transporting

the solid particles toward the cyclone wall. These flow pattern are known as ’the outer

vortex and the inner vortex’. The fluid transfers from the outer vortex to the inner vortex.

The transfer process starts just below the vortex finder down through the conical part to a

point close to the apex of the cyclone. The measurement of Ter Linden [16] showed that in

the upper part of the cyclone, the cylindrical part, the inner and outer vortex interface at

a radius that is approximately equal to the radius of the vortex finder. The gas flow in the

cyclone is, by nature, a three dimensional flow and is mainly dominated by the tangential

velocity and strong shear.

The second velocity component which plays a major role in the reverse flow cyclone is

the axial velocity component of the underlying gas flow. For instance, the transportation of

the solid particles toward the apex of the cyclone is influenced mainly by the axial velocity

rather than the gravitational force. In the outer vortex region (the near wall region), the

direction of the axial velocity is downward and the gas moves toward the apex, while for the

inner vortex region (the near centre line region) the direction is upward and the gas moves

toward the vortex finder [17]. Figure 4 provides a sketch of the axial velocity profile where

7



the near wall flow is presented in a negative direction to indicate that the flow is moving

downward, while near the center or the core of the cyclone is represented by a positive

direction to indicate that the flow is moving upward.

LC Wall

Figure 4: Sketch of the axial velocity profile in cyclone separators.

It is argued that the vortex finder diameter has the major influence on the axial velocity

profile. Figure 5 shows two different patterns of the axial velocity profile, namely, the

inverted V pattern to the left and the inverted W pattern to the right. Both profiles are

taken at the same horizontal position below the vortex finder. For smaller vortex finder

diameters, the axial velocity profile is more likely to take the form of the inverted V pattern,

and for larger diameters, it turns into the inverted W pattern. The phenomenon of the shift

in the axial velocity profile between these two patterns as the vortex diameter changes was

investigated by Horvath et al. [18], who studied the effect of the size of the vortex finder

on the axial velocity profile. They observed that, when the dimensionless diameter of the

vortex finder Dx/D is less than 0.45, the axial velocity has a stable V pattern profile. For

higher ratios of De/D, this pattern is unstable, and only when the ratio is greater than 0.53,

stable W pattern is observed. This is a consequence of a low pressure zone occurring at the

core of the vortex, that leads to an increase in the back flow and of the air from outside to

the core, hence, a W pattern is more stable for larger vortex diameter. These characteristics

of the swirling flow pattern constitute a challenge when designing a turbulence model for

practical applications.
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Figure 5: The axial velocity profile in cyclone separators the inverted V pattern

on the left and the inverted W pattern on the right [18].

3. Governing equations and turbulence modelling

Cyclone separators operate normally at a range of Re = 105 to 106. Such a flow is

considered to be fully turbulent. The fundamental physics of the fluid flow is described and

governed mathematically by the Navier-Stokes equations. The conservation forms of the

incompressible Navier-Stokes equations are given by the continuity and momentum equation,

respectively:
∂ui

∂xi
= 0 (4)

ρ
∂ui

∂t
+ ρ

∂uiuj

∂xj
= − ∂p

∂xi
+

∂

∂xj
(2µsij) (5)

where u and p have their usual meaning of velocity and pressure, and the term sij is the

strain-rate tensor, which is written as:

sij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

(6)

The flow variables in equations (4) and (5) are decomposed into mean and fluctuating

quantities. Then the time average process is applied, which yields the final form of the

Reynolds averaged Navier-Stokes equations that can be written as follows:

∂ui

∂xi
= 0 (7)
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ρ
∂ui

∂t
+ ρ

∂uiuj

∂xj

= − ∂p

∂xi

+
∂

∂xj

(

2µSij − ρu′

iu
′

j

)

(8)

where the term Sij is the time averaged quantity of the strain-rate tensor. The appearance

of the additional term (τij = −ρu′

iu
′

j) is known as the Reynolds stress tensor. The system

of the equations has to be closed in order to find a solution to the mathematical problem.

This can be achieved by postulating a specific term of τij in a framework of designing a

turbulence model.

3.1. Standard Spalart-Allmaras (SA) turbulence model

The standard SA turbulence model was presented first by Spalart and Allmaras in

1992 [19]. It is a one-equation turbulence model. The SA model employs the Boussinesq

hypothesis to relate the Reynolds stresses to the mean rate of deformation.

τij = −ρu′

iu
′

j = 2µtSij = 2νtρSij = ρν̃fv1

(

∂ui

∂xj

+
∂uj

∂xi

)

(9)

The transport equation for the viscosity-like variable ν̃ is given by

∂

∂t
(ρν̃) +

∂

∂xi
(ρν̃ui) = cb1ρS̃ν̃ +

1

σ

[

∂

∂xj

{

(µ+ ρν̃)
∂ν̃

∂xj

}

+ cb2ρ

(

∂ν̃

∂xj

)2
]

− Yν (10)

where

νt = ν̃fv1, fv1 =
χ3

χ3 + c3v1
, χ =

ν̃

ν
, S̃ ≡ Ω +

ν̃

κ2d2
fv2 (11)

Where Ω ≡
√

2ωijωij is the magnitude of the vorticity, d is the distance from the field

point to the nearest wall and ωij is the mean rate-of-rotation tensor, defined by:

ωij =
1

2

(

∂ui

∂xj

− ∂uj

∂xi

)

(12)

The destruction of turbulent viscosity that occurs in the near-wall region due to wall

blocking and viscous damping is given by:

Yν = cw1ρfw

(

ν̃

d

)2

(13)
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The fw function is used to accelerate the decaying behaviour of destruction and it is

given by

fw = g

(

1 + c6ω3
g6 + c6ω3

)1/6

(14)

In order to prevent a large value of fw a limiter function g is used

g = r + cω2
(

r6 − r
)

(15)

Where r is defined as

r ≡ ν̃

S̃κ2d2
(16)

The eight constant closure coefficients of the SA model are given in Table 1.

Table 1: Spalart-Allmaras closure constants.

κ cv1 cb1 cb2 σ cw1 cw2 cw3

0.4187 7.1 0.1355 0.622 2/3 3.2059 0.3 2.0

3.2. Zhang and Yang’s simpler SARCM turbulence model

As the standard SA model does not account for system rotation and streamline curva-

tures, Spalart and Shur [8] proposed an empirical alteration for this purpose. The formula-

tion of SARC is similar to the original standard SA model except that the production term

of turbulence viscosity in equation (10) is multiplied by a rotation function fr1, which is

given by:

fr1 (r
∗, r̃) = (1 + cr1)

2r∗

1 + r∗
[

1− cr3tan
−1 (cr2r̃)

]

− cr1 (17)

The calculation of the Lagrangian derivative of the strain rate tensor that exists in

the SARC mode is a complex term and time consuming to implement. Thus, in order to

avoid the calculation of the higher order derivatives, Zhang and Yang [12] implemented

11



the Richardson number Ri and redefined the argument (r̃) proposed in [8]. Therefore, the

parameters r∗ and r̃ are given by:

r∗ =
S

Ω
(18)

r̃ =
Ω

S

(

Ω

S
− 1

)

(19)

Here

Sij = 0.5

(

∂ui

∂xj
+

∂uj

∂xi

)

, ωij =

(

0.5

(

∂ui

∂xj
− ∂uj

∂xi

)

+ 2εmjiΩm

)

(20)

S =
√

2SijSij, Ω =
√

2ωijωij, (21)

The empirical constants cr1, cr2 and cr3 that appear in equation (17) are given the values

1.0, 2.0 and 1.0, respectively.

3.3. Smirnov and Menter SSTCC model

The shear stress transport model is an improved version of the two equations k−ω model.

It was introduced in 1994 by F.R. Menter [20]. The model combines the two turbulence

models (k−ω and k−ǫ). In the inner part of the boundary layer, the k − ω model is used

and switches to the k−ǫ in the free shear flow. The SST model employs the Boussinesq

hypothesis to relate the Reynolds stresses to the mean rate of deformation as follows:

τij = −ρu′

iu
′

j = µt

(

2Sij −
2

3

∂uk

∂xkδij

)

− 2

3
ρkδij (22)

The conservation form of the transport equations for both the turbulence kinetic energy

k and the turbulent frequency ω can be written as:

ρ
∂(k)

∂t
+ ρ

∂(ujk)

∂xj
= Pk − β∗ρkω +

∂

∂xj

[

(µ+ σkµt)
∂k

∂xj

]

(23)
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ρ
∂(ω)

∂t
+ ρ

∂(ujω)

∂xj
= Pk

ρ

µt
− βρω2 +

∂

∂xj

[

(µ+ σωµt)
∂ω

∂xj

]

+ 2 (1− F1)
ρσω2

ω

∂k

∂xj

∂ω

∂xj
(24)

The production term Pk is defined as:

Pk = τij
∂ui

∂xj
=

[

µt

(

2Sij −
2

3

∂uk

∂xk
δij

)

− 2

3
ρkδij

]

∂ui

∂xj
(25)

where the turbulent viscosity is defined as follows:

µt =
ρa1k

max (a1ω,ΩF2)
(26)

The blinding function F1 in the freestream is zero (k−ε model), and in the boundary layer

is equal to one (k−ω model), given by:

F1 = tanh
(

arg41
)

(27)

arg1 = min

[

max

( √
k

β∗ωd
,
500ν

d2ω

)

,
4ρσω2k

CDkωd2

]

(28)

CDkω = max

(

2ρσω2
1

ω

∂k

∂xj

∂ω

∂xj
, 10−20

)

(29)

F2 = tanh
(

arg22
)

(30)

arg2 = max

(

2

√
k

β∗ωd
,
500ν

d2ω

)

(31)

The constant closure coefficients of the SST model are given in Table 2.

Table 2: SST k−ω closure constants.

κ σk σω σω2 β1 β2 β∗ a1

0.4187 0.85 0.5 0.856 0.0785 0.0828 0.09 0.31

13



Smirnov and Menter [3] modified the rotation function equation (17) which was proposed

by Spalart and Shur [8]. The rotation function was applied to control the production term

of the original two equation SST model. Hence, the kinetic energy equation in the original

SST model is modified as follows:

∂(ρk)

∂t
+

∂(ρujk)

∂xj

= Pkfrot − β∗ρkω +
∂

∂xj

[

µef
∂k

∂xj

]

(32)

and the specific dissipation rate in the original SST model is modified as follows:

∂(ρω)

∂t
+

∂(ρujω)

∂xj
= α

ρPk

µt
frot −Dω + Cdω +

∂

∂xj

[

µef
∂ω

∂xj

]

(33)

The rotation function frot is defined as

frot = max {min (fr1, 1.25) , 0.0} (34)

The term fr1 is the rotation function defined in equation (17). Unlike the production

term in SA model equation (10), which is based on the vorticity tensor Ω that characterizes

the rotation, the production term Pk is based on the strain tensor rate S that characterizes

the deformation, and hence Pk is higher than S̃, which justify the use of the limiter in the

rotating function frot [3]. Further modification is applied to the dimensionless quantity r̃

and redefined as follows:

r̃ =
2ωikSjk

D3Ω

(

DSij

Dt
+ (εimnSjn + εjmnSin)Ωm

)

(35)

where DSij/Dt is the Lagrangian derivative and the term D is given by:

D =
√

0.5 (S2 + Ω2) (36)

3.4. The proposed SSTCCM model

The present model builds on the shear stress transport k−ω model (SST k−ω) and also

on the rotation function which was proposed in [3]. In the proposed model, the Richardson

number Ri defined by Hellsten [10] is used to avoid calculating the terms D3 and the complex

14



Lagrangian derivatives. The modified rotation function is used to control the production

term that appears in the transport equations. The incompressible form of the transport

equations of the turbulent kinetic energy and its specific dissipation for the new SSTCCM

model are exactly the same as those given by equations (32) and (33). The dimensionless

quantities r̃ and r∗ are defined as follows

r̃ =
Ω

S

(

Ω

S
− 1

)

r∗ =
S

Ω
(37)

The recommended boundary conditions for the farfield and at the wall for this model are

given in Table 6. Table 3 summarize the implemented sensitized EVMs.

Table 3: Different sensitization of turbulence models to rotation and curvature.

Models Rotation function r∗ argument r̃ argument

SARC fr1
S

Ω

2ωikSjk

D4

(

DSij

Dt

)

SARCM fr1
S

Ω

Ω

S

(

Ω

S
− 1

)

SSTCC max (min (fr1, 1.25), 0.0)
S

Ω

2ωikSjk

D4

(

DSij

Dt

)

SSTCCM max (min (fr1, 1.25), 0.0)
S

Ω

Ω

S

(

Ω

S
− 1

)

4. Numerical implementation and simulation setup

4.1. Solver and algorithm

The turbulence model discussed in Section 3 was implemented using the open source

OpenFoam-2.4.0 numerical platform [21]. The ease of accessing and modifying the platform

code facilitated the implementation of the proposed equations. The incompressible turbulent
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flow was approximated using an unsteady solver and the finite volume method was utilised

for the spatial discretization. The second-order in time and space numerical framework

used in all simulations consisted of the velocity-pressure coupling algorithm (PIMPLE, see

description in [22]) and the linear-upwind scheme.

4.2. Grid generation and numerical setting for the 2D U-duct

The turbulent gas flows through a channel with a U-duct section is characterized by a

strong streamline curvature, which contains massive flow separation and reattachment on the

inner wall of the duct. It is well known that the standard EVMs fail to accurately predict such

flow features and thus this should also provide a severe test for the proposed model. Figure

6 shows the computational domain used in the present study. Where the U-duct width is

H = 0.0381 m, the inlet section is located at x = −10H and the outlet section at x = −12H ,

with inner radius Rinner = 0.0191 m and outer radius Router = 0.0572 m. The grid is

generated by using structured hexahedral elements, and a high resolution discretisation is

applied close to the wall with a y+ value less than 0.5. The total number of the grid cells is

40, 600. A grid independence study was performed on the mesh by doubling the number of

grid points in each direction. This resulted in a negligible difference for all of the primitive

variables.

Figure 6: Dimensional geometry of the channel duct with a U-turn.

All boundary conditions, which include the pressure and the turbulent quantities, are

summarized in Table 4. The parameters U and L in this table have their usual meaning

and they denote the inlet velocity and the characteristic length. The characteristic velocity
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U = 31.1 m/s represents the mean velocity at the inlet. The characteristic length L is the

width of the duct (L = H = 0.0381 m).

Table 4: Set up of the U-duct boundary conditions.

Boundary u (m/s) p (m2/s2) k (m2/s2) omega (1/s) νt (m
2/s)

Inlet (ux, 0, 0) zero gradient
2

3
(I*U)2

5U

L

k

omega

Outlet zero gradient 0 zero gradient zero gradient zero gradient

Wall (0, 0, 0) zero gradient 0 10
6ν

β1(∆y)2
0

*The turbulent intensity (I = 0.16Re−0.125).

4.3. Grid generation and numerical setting for the 3D cyclone

The computational cost as well as the accuracy of the solution depend on the quality of

the computational grid. The meshing technique can employ a fully structured, unstructured

or hybrid grid. The discretisation error arises due to the size and shape of the grid cells, while

the numerical complexity depends on the grid resolution (the number of cells) and the quality

of the mesh. The meshing of the complex geometries, such as those representing cyclones, is

challenging and the fully structured grids which are generally preferred require some extra

treatment. The body of a cyclone consists of three dissimilar geometrical shapes, which are a

conical frustum, a circular cylinder and a rectangular prism. The way in which these shapes

are attached to form the cyclone body makes the meshing process using fully structural

hexahedrals extremely difficult. For example, even for a coarse mesh, this would yield a

very dense grid area around the symmetry-axis, on the one hand, and high non-orthogonal

faces on the other hand (see Fig. 7). For medium and fine grids, both the dense grid area

and the level of the non-orthogonality increase dramatically. To handle this problem in the

simulations presented in Section 5.2, the non-orthogonal corrector which forms a part of the

PIMPLE algorithm is applied to rectify the calculations and consequently to improve the
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accuracy. This procedure is realised on the mesh produced using an open source Gmsh-2.8.6

code [23].

Figure 7: Structured grid generated by Gmsh. From left to right, the block-mesh

based on the geometrical shape, cross-section along the z-axis and the location

of the non-orthogonal faces.

Three numerical simulations were carried out based on different grid sizes. Table 5

summarizes the selection of meshes used for the gird independence study. The listed error

constitutes the difference between two refinements. It is calculated as a measure of the

accuracy of the coarser of two successive grids. It is found that the finest grid makes an

insignificant improvement in predicting the dimensionless pressure drop (Euler number),

but produces a large number of non-orthogonal faces. These faces unnecessarily increase the

computational effort as they require additional non-orthogonal correctors in the internal loop

within each time step. All of the numerical results presented in section (5.2) are performed

through the application of the medium grid size.

In this work, the flow inside a Stairmand high efficiency cyclone was simulated. The cy-

clone geometry major design parameters are presented in Fig. 8 and Table 6. The Reynolds

number for this case based on the characteristic length L representing the cyclone body di-
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Table 5: Dimensionless pressure drop of different grid sizes.

Euler Error Number of Non-orthogonal Number of

number elements faces orthogonal correctors

Experiment 5.1 - - - -

Coarse 3.48 31.76% 131,308 578 1

Medium 4.88 4.313% 203,414 599 2

Fine 4.968 2.588% 328,868 1218 4

ameter, L = D = 0.29, and inlet mean flow velocity, U = 10 m/s, is equal to Re = 1.85×105.

This represents the operating conditions of such a device. The flow was assumed to be fully

developed. Therefore, the corresponding inlet profiles of the velocity and the turbulent flow

quantities were obtained from preliminary computations for the fully developed turbulent

flow in a plane 3D channel. The dynamic viscosity, ν, is equal to 1.568× 10−5 m2/s.

Dx

D

a
h

H b

Bc

S

Ex1

Ex2

Le

Li

x

z

z = 1.5D

z = 3.25D

z = 3.375D

z = 2.0D

Figure 8: Basic configuration and geometry of the cyclone separator with the

extensions Ex1 and Ex2.

Dirichlet boundary conditions for the velocity are applied at the inlet and at the fixed

wall as follows:
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Table 6: Geometry of the high efficiency Stairmand cyclone design.

Dimension Stairmand

Cyclone diameter, D 0.29 m

Gas outlet diameter, Dx/D 0.5

Dust outlet diameter, Bc/D 0.375

Inlet height, a/D 0.5

Inlet width, b/D 0.2

Outlet duct length, S/D 0.5

Cylinder height, h/D 1.5

Cyclone height, H/D 4.0

u = (ux, 0, 0) (inlet) u = (0, 0, 0) (fixed wall) (38)

Neumann boundary conditions [24] are applied at both outlets. All boundary conditions,

which include the pressure and the turbulent quantities, are summarized in Table 7.

Table 7: Set up of the cyclone boundary conditions.

Boundary u (m/s) p (m2/s2) k (m2/s2) omega (1/s) νt (m
2/s)

Inlet (ux, 0, 0) zero gradient
2

3
(IU)2

5U

L

k

omega

Top outlet zero gradient 0 zero gradient zero gradient zero gradient

Bottom outlet zero gradient 0 zero gradient zero gradient zero gradient

Wall (0, 0, 0) zero gradient 0 10
6ν

β1(∆y)2
0
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5. Results and discussion

The obtained predictions are compared with the Laser Doppler Anemometry (LDA)

experimental measurements and with the corresponding results of the RSM. Both the ex-

periment and the RSM data were reported in [25]. In order to validate the new SSTCCM

model, a simple benchmark problem of a U-duct case was implemented and simulated first.

The motivation behind this verification test was to demonstrate the ability of the proposed

model to tackle a strong streamline curvature, which proved to be a challenge for EVM

models. This test has a relatively, compared to the cyclone, quicker turnaround time which

allowed a wider selection of turbulence models to be tested first. As a result, the candidates

models were identified for the following cyclone simulations.

5.1. Flow in a U-duct channel

Along with the proposed model, the flow is also simulated by the use of the original and

the modified one-equation SA models, as well as the two-equations SST, k − ω and k − ε

models. The experimental measurements for the same geometry were reported in [26]. The

numerical results are summarized in Fig. 10. They demonstrate the velocity profile within

the U-duct at three cross-sectional positions; at the entrance of the bend θ = 0o, at the

midway of the bend θ = π/2 and at the end of the bend θ = π.

As the flow passes the bend, the adverse pressure gradient is developed due to the

curvature. At the upstream end of the bend, the lateral pressure gradient decreases, which

in turn creates a massive separation zone near the inner wall. The prediction of this zone

is challenging for the conventional EVMs turbulence models. The formation of the flow

separation is visualized in Fig. 9 for different EVM models, with and without the rotation

correction function. Table 8 summarizes the length of the separation zone which starts

at position π as indicated in Fig. 6. Only the models sensitized to rotation-curvature

corrections successfully capture the length of this separation zone.

The flow behavior encounters a dramatic changes as it passes through the bend. For

example, in the first half of the bend, from θ = 0 deg to θ = π/2, the flow accelerates near

the inner-wall and decelerates as it moves toward the outer-wall. As a result, the velocity
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Figure 9: Contour plots of the mean velocity of the flow within the U-duct for

different EVM models.

22



profile at the entrance of the bend is more likely to form an asymmetric pattern. Figure 10a

demonstrates that all of the EVM models accurately predict the velocity profile and also

shows a lack of any significant advantages of the sensitized models over the conventional

ones. This is expected, as the velocity measurements are collected before the bend entry.

Figure 10b (halfway through the bend) demonstrates the extreme situation of the asymmet-

ric pattern of the velocity profile, where the velocity reaches its minimum value near the

outer wall and maximum value near the inner wall. In the second half of the bend, from

θ = π/2 to θ = π, the curvature has a tremendous impact on the turbulence. Moreover,

the flow pattern starts to reverse, and thus the velocity decreases near the inner wall and

increases near the outer wall. The effects of the curvature on the flow field cannot be pre-

dicted by the conventional EVMs. This can obviously be observed in Fig. 10c, where the

conventional EVMs underestimated the velocity profile near the outer and inner wall. On

the other hand, the SSTCCM model accounts for the effects of the curvature of the inner and

outer walls better than the conventional models. There is also a small difference observed

between SSTCCM and SSTCC in Fig. 10c suggesting that the SSTCCM model is slightly

advantageous in terms of accuracy. Although the models gave almost the same results for

the velocity profiles and other variables analysed in various positions of the bend.

Figures. 11 and 12 show the Reynolds shear stress, u′v′, and the corresponding turbulent

kinetic energy, k, at the selected positions, as in the velocity profile figures. It should be

noted that k data are not provided for the SARCM models, because the value is not explicitly

computed in the SA turbulence model. The inner (convex) and outer (concave) curvatures

have had significant impacts on the turbulence quantities. While the convex curvature causes

a reduction in the turbulence quantities, the concave surface causes the opposite effects,

increasing both the u′v′ and k near the outer wall. This can be seen clearly at position

π/2, which is the midpoint of the bend. Although the velocity profiles at this position for

all of the conventional EVMs are in a good agreement with the experimental data, none

of the models predict the turbulence quantities near the inner and outer walls. However,

the SSTCC and SSTCCM model make significant improvements and shows the ability to

account for the strong curvature of both the inner and outer walls. In addition, the sensitized
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Figure 10: Velocity profile at θ = 0, θ = π/2 and θ = π; comparison between the

EVMs simulation and the LDA measurements.
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models predict the length of the separation zone better than some of the conventional EVMs.

Figure 13 and Table 8 show that the most commonly used k − ε model fails to capture the

formation of the flow separation zone and the other EVM models underestimate the length

of this zone. The numerical simulations of the flow inside the duct with a u-bend show that

the sensitized models (SARCM, SSTCC and SSTCCM) are the closest to the experimental

data in terms of the velocity profile as well as the prediction and location of the separation

zone.

Table 8: Location and length of the flow separation in the duct with a u-bend.

k − ε k − ω SA SST SARCM SSTCCM SSTCC Exp

location - π π π π π π π

length(x/H) - 0.4 0.54 0.8 1.15 1.78 1.78 1.5
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between the EVMs simulation and the LDA measurements.
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comparison between the EVMs simulation and the LDA measurements.
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Figure 13: Streamlines of the mean velocity of the flow within the U-duct for

different EVM models.
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5.2. Flow in a cyclone separator

It was found that the ability to correctly reproduce the flow at a horizontal cross section

is the most sever test for turbulence models and consequently important criterion for their

selection. The models that passed the U-duct channel flow test were subsequently examined

at this critical horizontal section. This assisted in identification the best candidates in terms

of turbulence models in further detail studies. In this section the values of the calculated

velocities in the 3D Cartesian coordinate system frame are transformed into the tangential

and the axial velocity components and are presented.

5.2.1. Sensitivity of the outlet boundary conditions on the flow

In this section, the proposed SSTCCM model is used to test the sensitivity of numerical

solution in the flow domain to the imposed outlet boundary conditions. It is found that

the boundary conditions at the apex outlet affect the accuracy of the obtained solution

significantly. This is a consequence of two key factors; 1) the high possibility of a large

gradients zone in the direction normal to the apex outlet, and 2) an outlet back-flow which

could interfere with the flow inside the domain. Figure 14 shows the contour plots of the

primitive variables (the velocity components and the static pressure) in the standard and

extended geometry. This alternative geometry is extended by attaching a cylindrical element

that is of a length equal to the body diameter of the cyclone at the end of the apex. This

extension is necessary so that the numerical results could be compared with the available

experimental results in [25]. The effects of the outlet boundary conditions in these two

geometries are manifested in a different character of the flow variables. For instance, the

tangential velocity contour shows that the standard and extended geometry preserve the

Rankine pattern of the swirl velocity throughout the cyclone body. On the other hand,

there is a dramatic change in the contour of the axial velocity between these two geometries.

Figure 15 shows the tangential velocity profile at different longitudinal levels. The Z-

locations of these levels are presented previously in Fig. 8 and are consistent with the mea-

surements reported in [25]. The readings are taken at two cross-sectional levels inside the

barrel portion and at two levels inside the conical portion. Although the application of the
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Figure 14: Contour plots of the flow variables at sections Y = 0. The standard

Stairmand cyclone is shown at the top and the cyclone with extended outlet at

the bottom. From left to right; the axial velocity, tangential velocity and the
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proposed model with the Neumann boundary conditions to the standard geometry preserves

the Rankine pattern of the tangential velocity, the profile of the solid-body rotation is less

accurate when compared to the extended one with the same boundary conditions.
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Figure 15: Comparison of the tangential velocity profiles between the extended

and standard geometry at different levels.

In Fig. 16, the axial velocity profile of these two geometries is presented. It is found

that the effect of the outlet boundary conditions on the axial profile is more significant
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in the conical portion. The obtained results presented in Fig. 16c and d show that both

geometries inside the separation section are in a good agreement with the experimental data.

However, the normal geometry provides an inverted V pattern profile in the conical section,

as shown in Fig. 17a and b. On the other hand, extending the outlet apex further reduces

the effects of the applied boundary conditions at the apex surface. This is a necessary step

in reducing the influence of the boundary conditions on the flow character and ensuring that

the same physical behaviour takes place in both the experimental and numerical tests. This

guarantees that the profile of the axial velocity component with the inverted W pattern is

observed at both cross sections inside the conical part of the device. Therefore, the results

presented in section 5.2.2 are based on the extended geometry.
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Figure 16: Comparison of the axial velocity profiles between the extended and

standard geometry at different levels.
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5.2.2. Swirling flow and turbulence model

The tangential velocity profile in a cyclone separator is generally described by the Rank-

ine vortex structure, which is a combination of a solid-body and a free-vortex rotation (see

discussion and Fig. 2 in Section 2). For instance, in the core region, the flow is dominated by

the solid-body rotation, while the free-vortex type of rotation appears in the outer region.

From previous studies on wall bounded swirling flows, the conventional EVMs are known for

their inability to predict the Rankine vortex profile (see e.g. [27], [28] and [29]). Figure 17a

demonstrates the radial distribution of the tangential velocity in a standard Stairmand cy-

clone at Z = 3.25D. It presents the results of the simulations which are performed using

different turbulence models, i.e. the standard SST model, the SARCM model, the SSTCC

model and the proposed SSTCCM model. The obtained results are compared with the

RSM and experimental measurements of Heokestra [25]. It is seen that only the SSTCC

and SSTCCM models are able to predict the Rankine vortex pattern in accordance with the

experimental measurements.

The standard SST model underestimates the radial distribution of the tangential velocity

over the entire diameter of the cyclone. As the SST model is based on the Boussinesq

hypothesis, where the turbulent viscosity is of a scalar nature, it fails to predict the full

structure of the Rankine vortex patterns.

The one-equation SARCM model shows some improvements over the standard SST

model. This can be seen in the core region, where the solid-body type of rotation is ac-

curately predicted. However, this model is still unable to represent the free-vortex type of

rotation.

Figure 17b demonstrates the radial distribution of the axial velocity profile. According to

several publications ([18], [30] and [25]), the inverted W pattern of the axial velocity in the

cyclone cannot be predicted when the modelling assumptions are based on the EVMs. The

SST model is consistent with these studies and fails to capture the axial velocity profile.

On the other hand, all models sensitized to rotation and curvature effects are capable of

predicting the inverted W shape pattern. However, the shape of the axial velocity profile

obtained with the SARCM model has a downward peak value located halfway between the
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vortex finder and the cyclone wall. This prediction is not confirmed by experimental results,

which were reproduced using the proposed SSTCCM and the SSTCC models. Also, it

underestimated the peak values of the upward axial velocity. On the contrary, the proposed

model shows a significant improvement in predicting all three regions composing the axial

velocity profile in the cyclone. The downward direction which starts and ends at the edge

of the vortex finder. The two upward direction regions occur between the body wall and

the vortex finder wall. Both the locations and the magnitudes of these three profiles are

accurately presented by the SSTCC and SSTCCM models. It can be seen that similar

velocity profiles were obtained from these two models. All the simulations were performed

on an 8 nodes CPU 64 Linux machine using OpenFoam-2.4.0. The total CPU time necessary

for the realisation of the computations with SSTCC was 13 hours and 18 minutes while it

needed less time, 12 hours and 14 minutes, for the SSTCCM case.
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Figure 17: Comparison of the tangential velocity profiles (a) and axial velocity

profiles (b) between the LDA measurements, RSM and the EVMs simulations

with and without the curvature correction.
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5.2.3. Cyclone performance and efficiency

The efficiency of the cyclone separator is obtained by measuring two parameters, i.e.,

the collection efficiency and the pressure drop. The centrifugal force is the main factor that

drives the particles toward the wall and then they spiral down to the apex. According to

Newton’s second law of motion, the magnitude of the tangential inlet velocity is proportional

to the centrifugal force acting on the solid particles. On the contrary, the pressure drop and

consequently the operational cost of the cyclone rises proportionally to the inlet velocity.

Therefore, the present study, focusing on accurately computing the swirling flow in the

cyclone, is concluded by providing the performance information, which is further verified by

the experiment.

The collection efficiency in this study is calculated by implementing the discrete phase

modelling approach (DPM) to track the injected particles. The considered particles are of

various sizes and the Rosin-Rammler technique was applied for their initial distribution. The

maximum diameter was 1× 10−5 m, and the minimum diameter was 1× 10−7 m. The mean

diameter was calculated from Fig. 18 and is approximately 3.4× 10−6 m, while the average

spread parameter is 1.675. The DPM was performed with a total flow rate of 0.001 kg/s

and the maximum number of steps was 200, 000.
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Figure 18: Cumulative size distribution of particles.

The particles were injected from the inlet surface with a velocity equal to the gas phase.
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The collection efficiency curve presented in Fig. 19 is drawn from the statistical data of the

monitored particles. All of the particles that flow through the apex outlet are considered as

collected particles, while the escaped particles are those that flow through the top outlet.

Some of the particles were suspended inside the cyclone and recirculated near the top wall

of the barrel part. Therefore, the efficiency, η, is calculated using the following formula:

η =
trapped

injected − suspended
(39)

The cut-off size diameter of the numerical results is approximately 1.4 µm, which is

reasonable compared to the 1.0 µm of the experimental calculation.
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Figure 19: Grade efficiency curve of the proposed SSTCCM model compared to

the experimental measurement.

The total pressure drop in the cyclone device is a combination of three major losses;

losses in the inlet section, losses in the vortex finder and apex exit duct and losses resulting

from the wall friction and irreversible losses within the vortex separation core. The latter

has the major influence on the total pressure drop. The proposed model underestimated

the pressure drop by approximately 8%. The Euler number and cut-off diameter X50 of the

experimental and numerical results are depicted in Table 9.
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Table 9: Pressure drop and the cut-off diameter of the proposed turbulence mod-

els and the experimental measurements of Hoekstra [25].

Euler number X50 µm

Experiment 5.1 1.85

SSTCCM 4.8 2.39

6. Conclusion

A modification of the shear stress transport model with curvature correction, known as

SSTCC model [3], was proposed. The primary aim of this work was to create a new model

which does not contain the complex Lagrangian derivative term, which appears in equation

(35). This term is replaced by the term representing the Richardson number, which leads

to a simpler rotation/curvature correction method.

The modified eddy viscosity turbulence models (SARCM, SSTCC and the proposed

SSTCCM) were employed to test the ability to simulate a highly swirling turbulent flow

within a Stairmand high efficiency cyclone. This is the first time that these models were

implemented to simulate the cyclone flow. A very good agreement was obtained between the

numerical predictions and the experimental data of Hoekstra [25]. However, it is found that

the SARCM model fails to predict the tangential velocity in the loss-free vortex regime, while

the proposed SSTCCM shows superior performance in terms of the accuracy of the estima-

tion of this critical regime. This is confirmed not only when compared with experimental

measurements but also with other high level modelling approaches such as RSM.

The major features of the proposed approach may be summarized by the following state-

ments:

• For both investigated cases the SSTCCM model reproduces the flow profiles with

higher accuracy than the SARC model.

• The ability to represent the Rankine vortex pattern in a swirling flow, which is reflected

in a characteristic form of the tangential velocity profile. This ability proved to be the

most challenging for all conventional EVMs.
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• The ability to represent the inverted W pattern of the axial velocity in a Stairmand

cyclone flow. This feature also proved to be challenging for all conventional EVMs.

• The SSTCCM model not only preserves the accuracy of its predecessor but also it

increases the computational efficiency. It is found that the proposed model reduces

the CPU time by approximately 8.15% when compared to the SSTCC model for the

presented cyclone simulations. Such computational gains are especially important in

a context of complex design studies that need finer meshes.

These features favourably classify the proposed technique as the robust numerical tool

for simulating the complex swirling flow in cyclones. It seems that these conclusions could

be further extended by saying that the SSTCCM model could be successfully applied to

other case studies such as industrial axi-centrifugal compressors or other gas turbines of

comparable characteristics.
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