This is a repository copy of *Targeting P2 receptors - current progress in treating musculoskeletal diseases*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/97677/

Article:

https://doi.org/10.1016/j.coph.2014.05.004

Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Title: Targeting P2 receptors - current progress in treating musculoskeletal diseases

Ning Wang, Alison Gartland*

The Mellanby Centre for Bone Research, Department of Human Metabolism, The University of Sheffield, Sheffield, UK

* Corresponding author and person to whom reprint requests should be addressed:

Dr Alison Gartland,
The Mellanby Centre for Bone Research
Department of Human Metabolism
The University of Sheffield
Beech Hill Road
Sheffield, S10 2RX
UK
Phone: (+44) 0114 226 1435
Fax: (+44) 0114 271 1711
Email: a.gartland@sheffield.ac.uk
Abstract

It is widely recognized that purinergic signalling, extracellular nucleotides acting at purinergic receptors, is the most primitive and ubiquitous signalling system participating in numerous biological processes in almost all tissue types. The P2 receptors, including P2X and P2Y purinoceptor subtypes, have been proposed to play important roles in the musculoskeletal systems since the early 1990s. During the past five years, significant progress in this field has been made; this review will summarize these most recent developments and highlight the pharmaceutical potential from these findings.

Introduction

Musculoskeletal diseases cause patients considerable morbidity and even mortality, resulting in a huge financial burden to the health service systems around the globe. For example, around 20% of all postmenopausal women in western countries would meet the WHO criteria for osteoporosis, one of the most common forms of musculoskeletal diseases. Treating osteoporosis and the associated 1.5 million fragility fracture in the US alone costs approximately $18 billion/year, while in the UK this number is £1.7 billion/year. Arthritis, another common musculoskeletal disease, affects about 50 million people in the US and 8 million in the UK. Due to the ageing of the world’s population, the prevalence of musculoskeletal diseases is expected to rise further. For example in US alone, one in two adults over age 50 is expected to be at risk of osteoporosis by 2020. Therefore, finding efficient and economical treatments for musculoskeletal diseases is still a pressing and rewarding task.

It has long been recognized that extracellular nucleotides such as adenosine triphosphate (ATP) and adenosine diphosphate (ADP), acting via purinoceptors including the P1 nucleoside and P2 nucleotide receptors, play important roles in many pivotal events of biological processes, such as neurotransmission and controlling cellular functions. After it was first recognised in the early 1990s, the field of purinergic signalling in the musculoskeletal system has been rapidly expanding. Evidence has shown that all of the seven P2X ion channel receptor subtypes (P2X1-7) and eight P2Y G protein-coupled receptor subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14) are expressed in bone and cartilage cells. Extracellular nucleotides bind to these cell surface P2 receptors, trigger the
intracellular calcium signalling cascades, direct the fate of bone or cartilage cells, and ultimately control the homeostasis of the skeleton [5]. For more extensive historical reviews, please refer to Burnstock et al., 2013, Rumney et al., 2012 and Jorgensen et al., 2013 [4-6].

This review will discuss the most recent progress in the field of P2 receptors in musculoskeletal system. We will highlight the potential pharmacological benefits of targeting P2 receptors signalling in treating various musculoskeletal diseases including metabolic bone diseases such as osteoporosis, joint diseases such as rheumatoid arthritis (RA), and cancer induced bone disease.

P2 receptors in bone and cartilage

Bone is the primary specialized connective tissue that not only provides support and protection for the human body but also performs a metabolic function via working as a major source of inorganic ions such as calcium and phosphate, and actively participating in calcium homeostasis in the body [7]. To fulfil these functions, bone continues to turn over throughout life even after growth ceases. This predominantly involves osteoblast controlled bone formation activities and osteoclast controlled bone resorption activities, with the coordinating activities of osteocytes, bone lining cells, and stem cells in a process known as bone remodelling [8]. A fine balance between bone formation and resorption is critical for a functional skeleton, while disruption of this balance is one of the most common pathological reasons of many musculoskeletal diseases such as osteoporosis and Paget’s disease.

In the bone microenvironment, nucleotides (mainly ATP) are locally released and regulate bone remodelling as extracellular signalling molecules via P2 receptors [9]. Osteoblasts have been shown to be the main source of ATP release [10,11]. Recent evidence shows that osteocytes, osteoclasts and even mesenchymal stem cells (MSC) can also release ATP upon mechanical stimulation [12-15]. Extracellular nucleotides are then able to act as mitogens for osteoblasts and osteoclasts through P2 receptors which couple to signal transduction cascades and in turn activate various osteogenic or osteoclastogenic signalling such as c-fos, osteopontin (OPG), runt-related transcription factor 2 (RUNX2), and receptor activator of nuclear factor kappa-B ligand (RANKL). Recent studies analysing the bone phenotype of P2X7,
P2Y₁, P2Y₂, P2Y₆, P2Y₁₂, and P2Y₁₃ receptor knock-out rodent models have added more details to the expression and function profile of P2 receptor in osteoblasts and osteoclasts [16-23] and will be detailed below; for a historical review of studies before 2010 please refer to Orriss et al., 2010 [24]. Further progress has also been achieved in elucidating the role of P2 receptor activation and ATP release in osteocyte mechanotransduction. For example, P2X2, P2X7, P2Y₂ and/or P2Y₄ and P2Y₁₂ and/or P2Y₁₃ receptors were found to be expressed in MLO-Y4 osteocyte models and ATP release induced upon mechanical stimulation, cell rupture and nucleotide (UTP) stimulation [25,26].

Cartilage is a type of dense connective tissue composed of chondrocytes and cartilage extracellular matrix. The chondrocyte is a unique cell type that mediates synthesis, assembly, and degradation of the cartilage matrix. Although many P2 receptor subtypes have been shown to be expressed by chondrocytes, their exact roles in cartilage physiology still require further investigation. This is mainly due to the conflicting role of extracellular nucleotides in cartilage metabolism. For example, ATP was reported to stimulate the production of cartilage inflammatory mediators such as nitric oxide (NO) and prostaglandins (PGE) [27]. More recently chondrocyte differentiation, pre-chondrogenic condensation, and accumulation of cartilage proteoglycan and collagen have been shown to be facilitated by activation of P2 receptors, including P2X4, by extracellular ATP directly released from chondrocytes under physiological joint loading and articular cartilage compression [28-30].

P2 receptor and musculoskeletal diseases

Osteoporosis

Osteoporosis is the most common bone disease with unbalanced bone remodelling characterised as higher resorption and lower formation inducing bone loss, bone fragility and high fracture risk. In terms of P2 receptors in relation to the treatment of osteoporosis, most of the recent developments were achieved from a European Framework 7 funded collaboration called “ATPBone: Fighting osteoporosis by blocking nucleotides: purinergic signalling in bone formation and homeostasis”. Among these studies, the P2X7 receptor has received the most attention and brought exciting progress involving human patient data. The P2X7 receptor gene (P2RX7) is highly polymorphic with 26 non-synonymous single nucleotide polymorphisms (SNPs) listed on the NCBI database (Build 131). A series of studies
have shown that loss of function P2RX7 SNPs are associated with an increased risk of osteoporosis fracture. For example, Gartland et al. revealed that the c.946A(p.Arg307Gln) SNP was significantly associated with low bone mineral density (BMD) in patients from the Aberdeen Prospective Osteoporosis Screening Study (APOSS). These results were confirmed in a study using the Danish Osteoporosis Prevention Study (DOPS) cohort. These studies provided strong evidence that P2X7 receptor agonists could be valuable for osteoporosis treatment and screening for P2RX7 SNPs may represent a future early diagnostic tool to manage treating or preventing osteoporosis.

Studies of other P2 receptor subtypes have also made considerable progress and provide further potential alternatives to treat osteoporosis. For example, studies using a cohort of Dutch fracture patients showed SNPs of P2X4 and P2Y2 receptor gene are associated with low BMD and osteoporosis risk. The role of the P2Y6 receptor in facilitating osteoclast survival, formation and activity has recently been confirmed as characterisation of the P2Y6 receptor knock-out mouse revealed a bone phenotype of increased cortical bone thickness. In another study, again using the knock-out mouse model, depletion of P2Y13 receptor was shown to reduce bone remodelling rate, protect mice from ovariectomy induced bone loss, and enhance the osteogenic response to mechanical loading. In addition, the P2Y13 receptor was shown to play an important role in MSC differentiation as genetic inhibition of P2Y13 receptor led MSC to differentiate towards adipocytes instead of osteoblasts. These findings confirm the previous reports that ADP, the preferred agonist of P2Y13 receptor, is a powerful osteolytic agent. These data thus present potential treatments for osteoporosis with antagonists for P2Y6 receptor or antagonists for P2Y13 receptor combined with exercise.

Recent studies investigating the role of the P2Y12 receptor in bone have presented an interesting debate. Su et al. elegantly and comprehensively demonstrated that P2Y12 receptor knock-out mice showed partial protection from both age-related or pathological bone loss. In addition, they treated mice with Clopidogrel (marketed as Plavix®, a selective antagonist for P2Y12 receptor used for the treatment and prevention of coronary artery disease) and demonstrated increased bone mass due to the inhibition of osteoclast...
formation. In contrast, Clopidogrel was found to be associated with osteoporotic fracture in a cohort of Danish patients prescribed it [36]. This association was biphasic, with the clinically recommended high doses being associated with higher fracture risk and low doses being associated with lower fracture risk [36]. The same group also found that Clopidogrel could inhibit osteoblast proliferation and differentiation in vitro and treating ovariectomized mice with 1mg/kg/d (corresponding to standard daily dosage for human patients) Clopidogrel significantly enhanced bone loss [37]. Clearly, further investigation is necessary to elucidate the mechanism of action of Clopidogrel/Plavix®, the second most sold pharmaceutical drug with worldwide sales of 6.8 billion $US in 2012, on bone cells and prevent potential risk of drug induced osteoporosis [38].

Rheumatoid arthritis

RA is a chronic systemic inflammatory disorder affecting the synovial lining of joints characterised by swollen joints, ligament damage, bone erosion, joint deformation and pain. Extracellular ATP has been long recognized as an immunomodulatory factor whilst the P2X7 receptor has been shown to be expressed in human rheumatoid synoviocytes and to induce the release of proinflammatory cytokines (e.g., interleukin-1β, interleukin-6, and prostaglandins) responsible for the pathophysiology of RA [39,40]. Recent studies from different cohorts of patients suggested that SNPs in P2RX7 (e.g. c.489C>T (His155Tyr)) may contribute to the pathogenesis of RA [40,41]. In addition blocking P2X7 receptor signalling was shown to prevent peripheral inflammatory tissue damaging in animal models of RA [42]. Therefore, pharmaceutical companies are interested to develop new anti-inflammatory drugs based on P2X7 receptor antagonists for treatment of RA. Although previous selective drug-like P2X7 receptor antagonists have failed to pass phase IIb/III trials due to poor pharmacokinetics and pharmacodynamics, a new generation of P2X7 receptor antagonists with better drug-like properties are in early stage of clinic study [39,43]. Interestingly, a recent review suggested that bisphosphonates could work as novel anti-inflammatory drugs, producing a switch in P2X7 receptor signalling [39]. Combining P2X7 receptor antagonists with bisphosphonates could represents a more efficacious treatment regime for RA [39].

Osteoarthritis (OA)

OA is directly linked to the degeneration of articular cartilage and characterised as radiographic joint changes including marginal osteophytes, narrowing of the joint space,
subchondral degenerative cysts, and subchondral sclerosis, which leads to severe joint pain and disability [44]. The pain from OA is mainly due to inflammation; levels of ATP in the synovial fluid have been shown to be correlated to the pain intensity in OA patients [445]. Although understanding the role of P2 receptors in OA pathogenesis is currently still limited, the roles of P2 receptors (especially the P2X7 receptor) in inflammation generally are well established [46]. Therefore, we believe that the pharmaceutical potential to target P2 receptors when treating OA is still valuable. For example, the P2Y$_{13}$ receptor has been suggested to provide a negative feedback pathway for ATP release in osteoblast and other cells types [21]. Should this mechanism exist in cartilage, targeting the P2Y$_{13}$ receptor may provide a novel therapy to treat OA.

Cancer Induced bone diseases

P2 receptors are known to be expressed by most cancer types; with either activation or inhibition of selected P2 receptor subtypes inhibiting cancer cell survival or growth. These observations have led to increasing interest in the therapeutic potential of P2 receptor signalling for the treatment of cancer (see review [47]). However, knowledge of P2 receptor in cancer induced bone disease (CIBD), mainly cancer bone metastasis, is still limited. CIBD is a devastating clinical consequence affecting 1.5 million cancer patients worldwide each year, with the most common type of metastases from prostate and breast cancer. CIBD is the main reason, rather than the effects of the primary tumour, for the cause of morbidity and mortality in these patients. However, both preventing and treating bone metastasis are currently limited due to poor understanding of the mechanism leading to bone metastasis. Acquiring epithelial-mesenchymal transition (EMT)-like phenotype has been suggested as essential for these tumour cells going through the multi-step process to form metastases in bone [48]. Interestingly, a recent study in a breast cancer model has suggested that alteration in the expression of P2 receptors (e.g. P2X5 and P2Y$_{13}$) were involved in Epidermal Growth Factor (EGF)-induced EMT in MDA-MB-468 breast cancer cells [49]. This represents a novel mechanism in the initiation of cancer bone metastasis and highlights P2 receptors as possible treatment targets. In addition, pharmacologic or genetic inhibition of the P2Y$_{12}$ receptor were both shown to protect mice from tumour-associated bone loss and co-administration of a P2Y$_{12}$ inhibitor with cisplatin led to enhanced cytotoxic response in breast cancer cells [19, 50]. These findings also present the P2Y$_{12}$ receptor as a potential target to treat CIBD in combination with chemotherapeutic agents. Furthermore, ADPase, which hydrolyses ADP, has been reported to significantly inhibit bone tumours in
combination with aspirin, while bisphosphonates can promote cancer cell apoptosis due to
the formation of an ATP analogue (Apppl) interacting with P2X7 receptors [47]. These
findings provide the foundation for further understanding of P2 receptor signalling in CIBD
[47]. Finally, blockade of P2X3 and P2X2/X3 receptors in murine models has been shown to
attenuate cancer-induced bone pain [51,52], whilst P2X7 receptor-deficient mice were still
susceptible to bone cancer pain and showed earlier onset of pain related behaviours [53].
Although this latter observation may suggest that P2X7 receptors are not involved in cancer
induced bone pain, many researchers believe them to still be viable targets with significant
medicinal chemistry advances being made recently in using selective P2X7 receptor
antagonists for chronic pain [53-55]. These findings represent new targets for
pharmacotherapy in cancer-induced bone pain.

Summary

Significant progress has been made in the field of purinergic signalling recently, furthering
our understanding of the role of P2 receptors in the musculoskeletal system. In particular
studies of P2X7, P2Y₆, P2Y₁₂, and P2Y₁₃ receptors present potential novel pharmacological
targets to treat series musculoskeletal diseases such as osteoporosis, arthritis, and CIBD.
Drug design based on agonists or antagonists of these P2 receptors should be the next focus
point, in addition to the further elucidation of other P2 receptor subtypes’ role in
musculoskeletal system including P2X4, P2Y₄ and P2Y₂ receptors.
References:

In a series of well-designed and performed experiments, Sun and colleagues demonstrated for the first time the important involvement of P2X7 receptors and the release of its agonist ATP in mediating differentiation direction of MSCs. They suggest that shockwave therapy promotes osteogenic differentiation through P2X7 receptor signalling.

Using the global P2Y\textsubscript{13} receptor knock-out mouse model, the authors demonstrated that depletion of P2Y\textsubscript{13} receptor led to reduced bone remodelling activity and protection from OVX-induced bone loss via down-regulation of RhoA/ROCK I signalling. This is the first study to systematically reveal the importance of P2Y\textsubscript{13} receptor in skeletal system.

The authors investigated the bone phenotype of P2Y\textsubscript{12} receptor knockout mice under normal and challenged conditions through a series of comprehensive and well-designed experiments. They suggested that P2RY12 inhibition could be a potential therapeutic target for pathologic bone loss.

Using P2Y\textsubscript{13} receptor knockout mice as a model, the authors demonstrated that the P2Y\textsubscript{13} receptor plays an important role in the balance of osteoblast and adipocyte terminal differentiation of MSC and present the P2Y\textsubscript{13} receptor as a potential new pharmacological target for treating osteoporosis.

The authors focally applied forces to osteocytes using a newly developed Stokesian fluid stimulus probe initiating rapid and transient intercellular electrical signals \textit{in vitro}. This extends the understanding of the mechanism that osteocytes modulate their microenvironment in response to mechanical stimuli.

The authors investigated the association between clopidogrel treatment and fracture incidence in a cohort of Danish patient and demonstrated that clopidogrel treatment was biphasically associated with osteoporotic fracture with high doses being associated with higher fracture risk and low doses being associated with lower fracture risk.

Al-Shukaili A, Al-Kaabi J, Hassan B, Al-Araimi T, Al-Tobi M, Al-Kindi M, Al-Maniri A, Al-
Gheilani A, Al-Ansari A: P2X7 receptor gene polymorphism analysis in rheumatoid
Ardissone V, Radaelli E, Zaratin P, Ardizzone M, Ladel C, Battorno M, Martini A,
Grassi F, Traggiai E: Pharmacologic P2X purinergic receptor antagonism in the
Keystone EC, Wang MM, Layton M, Hollis S, McInnes IB: Clinical evaluation of the
efficacy of the P2X7 purinergic receptor antagonist AZD9056 on the signs and
symptoms of rheumatoid arthritis in patients with active disease despite
treatment with methotrexate or sulphasalazine. Ann rheum dis (2012) 71(10):1630-
1635.
Van Manen MD, Nace J, Mont MA: Management of primary knee osteoarthritis and
indications for total knee arthroplasty for general practitioners. J Am Osteopath
Kumahashi N, Naitou K, Nishi H, Oae K, Watanabe Y, Kuwata S, Ochi M, Ikeda M,
Uchio Y: Correlation of changes in pain intensity with synovial fluid adenosine
triphosphate levels after treatment of patients with osteoarthritis of the knee with
Jacob F, Perez Novo C, Bachert C, Van Crombruggen K: Purinergic signaling in
inflammatory cells: P2 receptor expression, functional effects, and modulation of
Patel P, Chen EI: Cancer stem cells, tumor dormancy, and metastasis. Front
Davis FM, Kenny PA, Soo ET, van Denderen BJ, Thompson EW, Cabot PJ, Parat MO,
Roberts-Thomson SJ, Monteith GR: Remodeling of purinergic receptor-mediated
Ca2+ signaling as a consequence of EGF-induced epithelial-mesenchymal transition
Sarangi S, Pandey A, Papa AL, Sengupta P, Kopparam J, Dadwal U, Basu S, Sengupta S:
P2Y12 receptor inhibition augments cytotoxic effects of cisplatin in breast cancer.
Kaan TK, Yip PK, Patel S, Davies M, Marchand F, Cockayne DA, Nunn PA, Dickenson
AH, Ford AP, Zhong Y, Malcangio M et al: Systemic blockade of P2X3 and P2X2/3
receptors attenuates bone cancer pain behaviour in rats. Brain (2010) 133(9):2549-
2564.
Hansen RR, Nasser A, Falk S, Baldvinsson SB, Ohlsson PH, Bahl JM, Jarvis MF, Ding M,
Heegaard AM: Chronic administration of the selective P2X3, P2X2/3 receptor
antagonist, A-317491, transiently attenuates cancer-induced bone pain in mice.
Hansen RR, Nielsen CK, Nasser A, Thomsen SI, Eghorn LF, Pham Y, Schulenburg C,
Syberg S, Ding M, Stojilkovic SS, Jorgensen NR et al: P2X7 receptor-deficient mice
Carroll WA, Donnelly-Roberts D, Jarvis MF: Selective P2X(7) receptor antagonists for
Beswick PJ, Billinton A, Chambers LJ, Dean DK, Fonfria E, Gleave RJ, Medhurst SJ,
Michel AD, Moses AP, Patel S, Roman SA et al: Structure-activity relationships and
in vivo activity of (1H-pyrazol-4-yl)acetamide antagonists of the P2X(7) receptor.