This is a repository copy of Gene expression profile comparison between bone metastatic and non-metastatic prostate cancer cell lines.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/97675/

Version: Submitted Version

Article:

https://doi.org/10.1007/s11302-014-9430-7

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Gene expression profile comparison between bone metastatic and non-metastatic prostate cancer cell lines

Freyja E Docherty, Colby L Eaton, Ning Wang

Prostate cancer is currently the most commonly diagnosed cancer and the second leading cancer death in man in western countries. About 90% of patients with advanced prostate cancer have metastases in bone which is currently untreatable and is the main cause of morbidity in these patients. It has been suggested only the so called metastasis initiating cells are responsible for the formation of bone metastases, via acquisition of a mesenchymal phenotype through epithelial to mesenchymal transfer (EMT). Studies have shown that P2 receptors were involved in prostate cancer cell growth. A recent study has suggested that alterations in the expression P2 of receptors were involved in EMT in MDA-MB-468 breast cancer cells. Similar gene expression alterations of P2 receptors may also present in bone metastasis initiating prostate cancer cells. In this study, we performed Taqman quantitative RT-PCR to reveal the gene expression profile of three human prostate cancer cell lines with different ability to form bone metastases, including LNCaP (non-bone metastatic to bone), C4 2B4 (derivative of LNCaP but forming osteoblastic metastasis), and PC3 (forming osteolytic metastasis). Total RNA was isolated from cultured cells using the Promega ReliaPrep RNA Cell Miniprep system. First strand cDNA was synthesized from 200ng RNA in a 20μl reaction system containing 250ng Promega random primer, 100mM dNTP, and 200U Invitrogen SuperScript III. Individual qRT-PCR was performed using equal amount of synthesized first strand cDNA. Results showed that RNA (CT value < 35) of P2X4, X5, X7, Y1, Y4, Y13, and Y14 receptors were expressed in all the three cell lines. Among these P2 receptors, P2RX4 is the most highly expressed (CT value ~24), while P2RY14 receptor is the least expressed (CT value ~32). The relative gene expressions (ΔCT) were also compared between non-bone metastatic cell line LNCaP and bone
metastatic cell lines C4 2B4 and PC3, using GAPDH as the endogenous control. Results showed that both C4 2B4 and PC3 expressed significantly higher level of P2XR3 but lower level or no expression of P2XR2, P2YR6, and P2YR11 compared to LNCaP, while the more mesenchymal-like PC3 cells express significantly higher levels of P2YR1 (~8 fold) than both LNCaP and C4 2B4. In conclusion, this study has provided consistent and further detailed gene expression profile of prostate cancer cell line compared to previous studies. It also highlighted that alterations in gene expression of certain P2 receptor subtypes (P2X2, P2X3, P2Y6, and P2Y11) may be correlated with the ability of prostate cancer cells to metastasize to bone and a mesenchymal phenotype.