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Shock dissipation in magnetically dominated impulsive flows
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ABSTRACT
The idea that cosmic relativistic jets are magnetically driven Poynting-dominated flows has
many attractive features but also some problems. One of them is the low efficiency of shock dis-
sipation in highly magnetized plasma. Indeed, the observations of gamma-ray bursts (GRBs)
and their afterglow emission indicate very high radiative efficiency of relativistic jets associ-
ated with these phenomena. We have revisited the issue of shock dissipation and emission and
its implications for the internal shock model of the prompt GRB emission and studied it in the
context of impulsive Poynting-dominated flows. Our results show that unless the magnetiza-
tion of GRB jets is extremely high, σ > 100 in the prompt emission zone, the magnetic model
may still be compatible with the observations. First, for σ � 1 the dissipation efficiency of
fast magnetosonic shock is still quite high, ∼30 per cent. Secondly, the main effect of reduced
dissipation efficiency is merely an increase in the size of the dissipation zone, and even for
highly magnetized GRB jets, this size may remain below the external shock radius, provided
the central engine can emit magnetic shells on the time-scale well below the typical observed
variability scale of 1 s. Our analytical and numerical results suggest that strong interaction
between shells begins not during the coasting phase but well before it. As the result, the impul-
sive jet in the dissipation zone is best described not as a collection of shells but as a continuous
highly magnetized flow with a high amplitude magnetosonic wave component. How exactly
the dissipated wave energy is distributed between the radiation and the bulk kinetic energy of
radial jets depends on the relative rates of radiative and adiabatic cooling. In the fast radiative
cooling regime, the corresponding radiative efficiency can be as high as the wave contribution
to their energy budget, independently of the magnetization. Moreover, after leaving the zone
of prompt emission, the jet may still remain Poynting dominated, leading to weaker emis-
sion from the reverse shock compared to non-magnetic models. Energetically subdominant
weakly magnetized ‘clouds’ in otherwise strongly magnetized jets may significantly increase
the overall efficiency of the shock dissipation.
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1 IN T RO D U C T I O N

Various astronomical observations indicate, directly or indirectly,
the existence of highly relativistic outflows in a variety of cosmic
phenomena, such as active galaxies, pulsar wind nebulae, X-ray
binary stars and gamma-ray bursts (GRBs). Although the origin
of these flows is still a subject of debate, especially in the case of
GRBs, and requires further investigation, so far we have identified
only one mechanism of jet production which may operate in all
these very diverse environments – the magnetic mechanism. This
is one of the reasons why this mechanism has attracted so much
attention in recent years.

�E-mail: serguei@maths.leeds.ac.uk

It has been shown that magnetic fields can not only tap the rota-
tional energy of a massive rotator, placed in the ‘heart’ of ‘cosmic jet
engines’ in this model, but also accelerate and collimate outflows.
In fact, it has been shown that, in the case of relativistic steady-state
jets, their magnetic acceleration and collimation go hand in hand
and for this reason this version of magnetic mechanism is called
the collimation acceleration mechanism. In order to ensure effi-
cient magnetic acceleration, the jet opening angle should be small
compared to the jet Mach angle associated with fast magnetosonic
waves (Komissarov et al. 2009). In the small angle approximation,
the Mach angle

θM � 1

M
,

where M is the fast magnetosonic Mach number. In the case of pre-
dominantly azimuthal magnetic field, this number can be estimated
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using equation (4) and the acceleration condition reads

σ � (γjθj)
2,

where σ = B2/ρc2. In order to understand where this limitation
comes from, consider a freely expanding conical jet. If its magnetic
field is predominantly azimuthal, then the magnetic freezing yields
B ∝ r−1 and the magnetic energy Em ∝ r2B2 ∝ r0 is not utilized
to accelerate the flow. The flow geometry has to deviate from the
conical one in order for the magnetic acceleration to operate and
this requires efficient causal communication across the flow (e.g.
Komissarov 2011). In fact, the above causality condition is a bit too
strict and the acceleration may proceed, though at a much lower log-
arithmic rate, even after it is no longer satisfied. However, the above
constraint on σ remains valid up to a factor of a few (Lyubarsky
2009). For active galactic nucleus (AGN) jets with their inferred
γ j ∼ 10 and observed θ j � 0.1, this yields σ � 1, whereas for the
commonly accepted parameters of GRB jets, γ j ≥ 100 and θ j �
0.1, the last equation implies σ � 1.

The observed variability of the emission produced in these jets
has been traditionally associated with strong shock waves, driven
into the jets by their unsteady central engines (see the review by
Piran 2004). Their observed bright knots and spots have also been at-
tributed to such internal shocks. Indeed, shocks are generally known
as places of effective dissipation of kinetic energy and acceleration
of relativistic electrons, responsible for the non-thermal emission
observed in many astrophysical objects. However, in the case of
relativistic magnetized flows this interpretation encounters signifi-
cant problems, particularly in the case of GRB jets (e.g. Narayan,
Kumar & Tchekhovskoy 2011).

Indeed, the dissipation efficiency of relativistic shocks in highly
magnetized plasma is rather low. This was widely accepted already
after the pioneering work by Kennel & Coroniti (1984). To be
more accurate, this statement is concerned with fast magnetosonic
shocks only. Slow magnetosonic shocks can still have very high
dissipation efficiency, because at such shocks the magnetic energy
can be dissipated as well (Lyubarsky 2005). However, fast shocks
are much more readily produced, usually via collisions, whereas
formation of slow shock requires some rather special conditions.

In contrast, observations indicate that the jet radiative efficiency,
ηr, defined as the fraction of jet energy eventually converted into
radiation (usually non-thermal), can be quite high. For example,
the observations of the GRB afterglows imply that the radiative
efficiency of their jets is often in excess of 10 per cent and some-
times may even reach 90 per cent (Panaitescu & Kumar 2002; Yost
et al. 2003; Granot, Königl & Piran 2006; Zhang et al. 2007a).
According to the more recent study of Swift GRBs, the situation is
even more dramatic, with the mean radiative efficiency around 90
per cent (Willingale et al. 2007). This difficulty of the shock model
has forced many theorists to start looking for alternative models
involving direct dissipation of magnetic energy associated with the
magnetic reconnection (e.g. Drenkhahn & Spruit 2002; Lyubarsky
2010; Zhang & Yan 2011; McKinney & Uzdensky 2012). However,
these models still remain at a rather rudimentary level of develop-
ment due to difficulties of their own.

In most of the previous theoretical studies of magnetized rela-
tivistic jets, it was assumed that they were more or less homoge-
neous, just for the sake of simplicity. The strong observed vari-
ability and the complex observed structure of some relativistic jets,
where high-resolution images are available, suggest that this may
not be a very realistic assumption. Following the early work by Con-
topoulos (1995), a number of recent papers explored the implica-
tions of highly intermittent jet production on its dynamics (Granot,

Komissarov & Spitkovsky 2011; Lyutikov 2010, 2011; Lyutikov &
Lister 2010; Granot 2011a,b). They have concluded that longitu-
dinal expansion of highly magnetized plasma shells may result in
efficient conversion of the Poynting flux into the bulk kinetic energy
of the shells and strong reduction of their magnetization. However,
in those papers only the dynamics of a single shell was studied in
details, whereas the case of an impulsive jet composed of many
such shells was subjected to a much more speculative analysis. The
main goal of our study was to reduce this imbalance.

As a first step in studying the multiple shell case, one may assume
that the gaps between them are empty. However, if the jet engine
does indeed operate in an impulsive fashion, then external plasma,
presumably of much lower magnetization, is likely to fill the gaps
during quiescent periods. Then, each time the jet is reborn, it has
to push this plasma aside. Provided the jet is sufficiently powerful,
this can be done quite efficiently by the bow shock developing at
the jet head (e.g. Komissarov & Falle 1998). Farther out, where the
distance between shells becomes comparable to the jet radius, the
relativistic effects make it impossible for the external plasma to enter
the gaps (Lyutikov & Lister 2010). At the same time, it becomes
impossible for the entrained plasma to leave the gaps as it is forced
to remain within the cone of the half-opening angle 1/γ j. Thus, it
seems quite plausible that some of the external plasma will remain
in the gaps and become part of the jet, though it is still rather
difficult to quantify the effectiveness of this mass-loading process
at present.

On the one hand, loading Poynting-dominated jets with weakly
magnetized clouds complicates the problem. On the other hand, this
may play a very important role in their physics. As far as the radiative
efficiency is concerned, these clouds could be the locations where
most of the shock dissipation and emission take place, very much
in the same way as in the model of the afterglow emission, where
a magnetic piston drives the so-called external shock wave through
weakly magnetized interstellar medium (e.g. Lyutikov & Blandford
2003; Zhang & Kobayashi 2005; Lyutikov 2006). Obviously, these
clouds may have to be ‘excited’ many times before a significant
fraction of magnetic energy is radiated.

A similar repetitive ‘pumping’ action has been investigated by
Kobayashi & Sari (2001) in the case of unmagnetized highly vari-
able jets. As individual shells (portions of the jet moving with very
different Lorentz factors) collide and heat up, only a fraction of
the dissipated energy is radiated. The rest of it remains initially in
the form of heat, but later, when the shells begin to expand, this
heat is converted back into the kinetic energy of relative motion.
When another collision occurs, a fraction of this energy is dissi-
pated and radiated again and so on. The process continues until the
shocks become very weak. Kobayashi & Sari (2001) have demon-
strated that this way the radiative efficiency can be increased up to
60 per cent, even if during each individual collision only 10 per cent
of the dissipated energy is radiated. However, in order to achieve
this, they required very strong variations of the jet Lorentz fac-
tor, with uniform distribution of log10γ between 1 and 4. Since in
our case the energy behind this dynamics is of magnetic nature,
the name magnetic pump’ springs to mind. In fact, each time the
shock-heated gap plasma expands and its components, which are
unable to cool radiatively, cool adiabatically, their thermal energy
is returned back to the ‘pump’ and recycled.

The whole problem of impulsive jet dynamics from its pro-
duction to its interaction with the interstellar matter is still pro-
hibitively complex. In order to make progress, we will consider
much simpler problems hoping to elucidate some of its important
aspects. We start with the issue of the dissipation efficiency of fast
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magnetosonic shocks in highly magnetized plasma as we feel the
need to clarify a few important points. This is done in Section 2 and
in Appendix A. Then we consider strictly periodic one-dimensional
flows in slab geometry in the framework of one-fluid magneto-
hydrodynamics (MHD) with simple polytropic equation of state
(EOS). In Section 3, we study oscillations developing in a periodic
train of initially stationary magnetic shells, as they expand, collide
and radiatively cool. Then we consider moving trains with initially
empty gaps, following Granot et al. (2011), first in the adiabatic
regime (Section 4) and then in the regime of fast radiative cooling
(Section 5). Finally, we study the dynamics of a moving train with
gaps filled with weakly magnetized plasma from the start in the fast
radiative cooling regime (Section 6). The results and their astro-
physical implications are discussed in Section 7. Our conclusions
are listed in Section 8.

Throughout most of the paper, we use the Heaviside units, where
c = 1 and B/

√
4π → B, but in Section 7 we reintroduce the speed

of light.

2 D ISSIPATION EFFICIENCY OF
PE RPENDICULAR FA ST MAGNETOSONIC
S H O C K S

Here we consider only the perpendicular relativistic shocks, where
the flow velocity is perpendicular to the shock front. In addition, we
assume that the magnetic field is parallel to the shock front. Thus,
we restrict our attention to purely one-dimensional flow directed
perpendicular to the magnetic field. This constraint prohibits slow
magnetosonic waves of any kind and the only non-trivial shock
solutions are the fast magnetosonic ones. Such shocks were first
studied by Kennel & Coroniti (1984) in application to the termina-
tion shocks of pulsar winds. In order to simplify the shock equations,
they only considered the case of cold upstream flow, ultrarelativistic
shock speed and high shock strength, in the sense that the down-
stream Lorentz factor is much lower compared to the upstream
one. All these additional constrains are justified in the case of pul-
sar wind nebulae. The general case of magnetosonic shocks was
analysed by Majorana & Anile (1987) and Apple & Camenzind
(1988). Later, Zhang & Kobayashi (2005) expanded the analysis of
Kennel & Coroniti (1984) by allowing variable shock strength,
which they described by the Lorentz factor of the relative motion
between the upstream and downstream states, γ 12. Although this pa-
rameter can indeed be used to describe the shock strength, the more
traditional parameter, unanimously accepted in the non-relativistic
hydrodynamics and MHD, is the shock Mach number. The proper
relativistic definition of Mach number with respect to the wave
mode of speed cm in the fluid frame is

M = γ v

γmcm
, (1)

where γ m is the Lorentz factor corresponding to the wave speed
cm and γ is the Lorentz factor corresponding to the flow speed v

(Königl 1980). In the limit of cold plasma, where the thermody-
namic pressure, p, and hence the sound speed are set to zero, the
fast magnetosonic speed is the same in all directions:

c2
f = B2

B2 + ρ
= σ

1 + σ
, (2)

where B and ρ are the magnetic field strength and the gas rest-mass
density as measured in the fluid frame, and

σ = B2

ρ
(3)

is one of the parameters describing the plasma magnetization. For
γ � 1 and σ � 1, the fast magnetosonic Mach number is

M � γ√
σ

. (4)

In Appendix A, we redo the analysis of perpendicular fast shocks
of Zhang & Kobayashi (2005) using the Mach number with respect
to the fast magnetosonic mode as the shock strength parameter.
While, in general, numerical techniques have to be used to solve the
shock equations, in the limit of high shock Mach number, M1 � 1,
and high upstream magnetization, σ 1 � 1, they allow simple ap-
proximate solution where

γ2 � σ
1/2
1 , (5)

ρ2 � M1ρ1, (6)

p2 � 1

8
ρ1M

2
1 , (7)

pm,2 � M2
1 pm,1, (8)

where pm is the magnetic pressure. Here index ‘1’ refers to the
upstream and index ‘2’ to the downstream state. One can see that
for M1 � 1 there are strong jumps in the rest-mass density and
magnetic pressure as measured in the fluid frame. This is what is
meant by Zhang & Kobayashi (2005), when they state that high
magnetization does not prevent development of strong shocks. On
the other hand, if we consider parameters measured in the shock
frame, which will be indicated by prime, then

ρ ′
2 � ρ ′

1 , (9)

B ′
2 � B ′

1 (10)

where ρ ′ is the rest mass, not the inertial mass, density. Equation (9)
shows that there is no much decrease in the shock frame volume
occupied by plasma as it crosses the shock – the large decrease
in the proper specific volume is almost totally compensated by the
reduced Lorentz contraction. It is this what is meant when shocks in
highly magnetized medium are often described as weak or weakly
compressive.

One can define the shock dissipation efficiency in many different
ways, some more meaningful than the others. We are interested in
the fraction of the total energy flux which can be converted into
radiation without invoking any additional dissipation mechanisms,
like the magnetic reconnection, downstream of the shock. This
suggests us to define the efficiency as

ηs = Ft,2

Ftot,2
, (11)

where Ft = etγ
2v is the thermal energy flux density and Ftot =

(w + B2)γ 2v is the total energy flux density, et is the thermal energy
density and w = ρ + et is the relativistic enthalpy, both defined in
the fluid frame. Note that this definition makes ηs independent of the
flow velocity, and hence of the shock speed relative to the observer.
For M1, σ 1 � 1, we find

ηs = 1

2(1 + σ1)
(12)

(see Appendix A).
Equation (12) shows that for σ 1 � 1 only a rather small frac-

tion of the flow energy can be dissipated and then radiated away.
In order to see if the same conclusion applies to shocks in only
moderately magnetized plasma, we solved the shock equations
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Figure 1. Left-hand panel: dissipation efficiency of perpendicular shock as a function of the magnetization parameter σ of the upstream state for three different
values of the shock fast magnetosonic Mach number. The solid lines show the solutions for the polytropic EOS with � = 4/3 (κ = 4). The dashed lines show
the solutions for the electron–positron Synge gas. Right-hand panel: dissipation efficiency of perpendicular shock as a function of the shock fast magnetosonic
Mach number M1 for three different values of the magnetization parameter σ of the upstream state. The EOS describes polytropic gas with � = 4/3 (κ = 4).

Figure 2. Fractions of the upstream kinetic energy converted at the shock into the thermal energy, f t, magnetic energy, f m, and remaining in the kinetic form,
f k. The left-hand and the middle panels show the fractions as functions of the upstream magnetization for M1 = 10 and 100, respectively. The right-hand panel
shows them as functions of the shock fast magnetosonic Mach number for the upstream magnetization σ 1 = 1.

numerically. The results are presented in Figs 1 and 2. The left-
hand panel of Fig. 1 shows the dissipation efficiency as a function
of σ 1 for three different values of the shock fast magnetosonic
Mach number, M1 = 2, 10 and 100. One can see that for σ 1 � 1
the dissipation efficiency does indeed decline as σ−1

1 . However,
for small magnetization the efficiency actually increases with σ 1.
The location of the maximum depends on the shock Mach number
and for weak shocks it is near σ 1 = 1. However, its magnitude is
rather low in this case. As one can see in the right-hand panel of
Fig. 1, the efficiency monotonically increases with the shock Mach
number.

The collimation acceleration of magnetic jets may result in the
asymptotic magnetization σ � 1. For this reason, we presented in
the right-hand panel of Fig. 1 the dissipation efficiency as a function
of the shock Mach number for σ 1 around this value. For very high

Mach number, the efficiency is ηs � 0.8, 0.3 and 0.05 for σ = 0.1,
1 and 10, respectively. This shows that for σ 1 � 1 the dissipation
efficiency can be already reasonably high. Moreover, equation (12)
gives a rather accurate estimate of the efficiency for M1 � 10 and
σ 1 � 1.

The shock solution depends on the plasma EOS but not strongly,
at least for the explored range of parameters. In the right-hand panel
of Fig. 1, the solid lines show the solution for the polytropic EOS
with � = 4/3 (κ = 4), whereas the dashed lines show the solution
for the electron–positron Synge gas, which assumes the same tem-
perature relativistic Maxwell distribution for every species (Synge
1957). One can see that the difference is relatively small, particularly
for strong shocks. We also experimented with the electron–proton
Synge gas and found that the solution was even closer to that with
the polytropic EOS.
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330 S. S. Komissarov

The result (12) has a straightforward interpretation. First, only
the kinetic energy dissipates at the shock. Secondly, the kinetic
energy flux makes only 1/(1 + σ 1) of the total upstream energy flux.
Finally, for high M1, approximately one-half of the kinetic energy
dissipates into heat and approximately one-half is converted into
Poynting flux. This is illustrated in Fig. 2 which shows fractions of
the upstream kinetic energy converted at the shock into the thermal
energy, f t, magnetic energy, f m, and remaining in the kinetic form,
f k.

3 C H A M B E R O S C I L L AT I O N S

Collisions between shells will produce reflected shock waves, sim-
ilar to those created via shock reflection off a conducting wall. So
the problem of shell interaction appears analogous to that of a shock
bouncing off the ends of a closed tube that contains plasma with
very diverse magnetization. Each time it crosses the low magne-
tization domain, a fraction of its energy is dissipated and radiated
away, so the shock weakens bit by bit.

Consider a one-dimensional flow confined within a chamber of
length l. Suppose that initially the chamber is divided into two
sections, of lengths lp and lg = l − lp. The first section, which
we will call the ‘pulse’, is filled with uniform highly magnetized
cold plasma and the second section, which will be referred to as
the ‘gap’, is uniformly filled with plasma of lower magnetization
and weaker magnetic field. When comparing this configuration with
inhomogeneous relativistic jet, one is tempted to identify the length
l with the separation between two neighbouring shells as measured
in the jet frame.

In the purely electromagnetic version of this problem, the gaps
are empty and the pulses have a uniform distribution of magnetic
field with vanishing electric field. The solution to this problem in-
volves two identical electromagnetic pulses bouncing between the
perfectly conducting walls of the chamber without decay. When the
plasma magnetization is high, σ � 1, we expect the MHD solution
to be close to the electromagnetic one. However, the shock dissipa-
tion will gradually damp these oscillations. If the radiative cooling
of the chamber plasma is indeed very efficient, it eventually relaxes
to an equilibrium with uniform magnetic field and negligibly small
temperature. This allows us to compute the total loss of energy from
the system, and hence its radiative efficiency.

3.1 Asymptotic state

Denote as ρp, Bp and Mp the rest-mass density, the magnetic field
and the total mass of the pulse, respectively, and as ρg, Bg and Mg the
corresponding parameters of the gap. It is convenient to describe the
problem by the ratios of lengths, rest masses and magnetic energies
of the gap and the pulse:

δl = lg

lp
, δm = Mg

Mp
, δe = B2

g lg

B2
p lp

. (13)

The relativistic magnetization parameter of cold plasma, σ =
B2/ρ, gives the ratio between the magnetic and rest-mass energies
in the fluid frame. Given this, it makes sense to define the mean
magnetization of plasma in the initial state as

〈σ 〉0 = 1

c2

B2
p lp + B2

g lg

ρplp + ρglg
= σp + σgδm

1 + δm
. (14)

The condition of strong mean magnetization constrains the mass
fraction of the system. In particular, if the gap magnetization is
really low, σ g  1, this requires σ p � δm.

Figure 3. Radiative efficiency in the chamber problem for δl = 0.5 (solid
line), δl = 1 (short dashed line), δl = 2 (dotted line), δl = 3 (dot–dashed line)
and δl = 9 (long dashed line) as a function of the energy ratio parameter δe.

From the rest-mass conservation and the magnetic field freezing,
we have

ρglg = ρ̃g l̃g , ρplp = ρ̃p l̃p , (15)

Bglg = B̃l̃g , Bplp = B̃l̃p , (16)

where tilde denotes parameters of the equilibrium state, which is
reached asymptotically for t → ∞. These combine to yield

B̃ = Bp
1 + δ

1/2
l δ1/2

e

1 + δl
. (17)

Using this result, one can derive the magnetic energy of the equi-
librium state and hence the radiative efficiency:

ηr,max = 1 − (1 + δ
1/2
l δ1/2

e )2

(1 + δl)(1 + δe)
, (18)

which is defined here as the fraction of the initial magnetic energy
converted into radiation. This function is shown in Fig. 3. One
can see that the radiative efficiency increases with δl and decreases
with δe, which has a very simple explanation. Smaller δe means
stronger expansion of the pulse and hence smaller magnetic energy
remaining in the system after its relaxation. For δe = 0, the efficiency
is simply the fraction of the volume available for the pulse to fill:

ηr,max = lg

l
. (19)

The gap plasma, however, resists the pulse expansion and its re-
sistance increases with the gap pressure and hence the magnetic
energy stored in the gap.

This simple analysis hints that the radiative efficiency of impul-
sive magnetically dominated flows can be very high. Moreover, the
outcome does not even depend on the magnetization. Other impor-
tant properties of the process, however, may do. For example, the
rate of dissipation and hence the luminosity. In order to investigate
this issue a bit further, we have carried out numerical simulations.
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3.2 Numerical simulations

We solve numerically the one-dimensional equations of single-fluid
relativistic MHD in plane (or slab) geometry. In order to account
for the radiative cooling, we introduce a source term in the energy–
momentum equation:

∇νT
νμ = quμ, (20)

where Tνμ is the stress–energy–momentum tensor of fluid, uμ is
its four-velocity and q is the cooling rate as measured in the fluid
frame. The cooling rate used in our simulations is not based on any
particular physical mechanism. At this stage, it makes sense only to
require for the cooling time to be short compared to the dynamical
time-scale, as this seems to be required by the observations of GRBs.
To be specific, we put

q = fc(T )
e′

t

�τcool
, (21)

where T = p/ρc2 is the ‘temperature’,

fc(T ) =

⎧⎪⎪⎨
⎪⎪⎩

0, T < T0

(T − T0)/T0, T0 < T < 2T0

1, T > 2T0

and �τ cool is the characteristic cooling time. In the simulations,
we used T0 = 10−3 and �τ cool = 0.04(l/c), a small fraction of the
chamber light-crossing time. This cooling function implies that all
particles cool rapidly and this may be rather unrealistic, as only
relativistic electrons radiate efficiently. However, we do not expect
this to change the results by more than a factor of a few because the
‘thermal pump’ mechanism (Kobayashi & Sari 2001) is likely to
be efficient in reprocessing the retained thermal energy. The EOS
describes an ideal gas with the adiabatic index � = 4/3.

The numerical scheme is based on the one described in Komis-
sarov (1999), with a few improvements added over the years. The
computational grid is uniform with 600 cells. Because of the pres-
ence of strong shocks in the solution, the scheme is only of the
first-order accuracy. Our convergence study shows that the typical
computational error for most of the parameters discussed below is
about a few per cent.

The units are selected in such a way that the dimensionless cham-
ber length is l = 1 and the speed of light is c = 1. The pulse is initially
located in the middle of the chamber. The transition from the pulse
to the gap state is smoothed out using the tanh (x) function, with the
width of the transition layer δx = 0.03.

Table 1 shows the parameters of all models we present here.
Following the reasons behind the magnetic pump mechanism, the
magnetization parameter of the pulse, σ p, is always high, varying
between 5 and 30. The gap magnetization is normally much lower,
σ g ∼ 0.1, but we also included the cases where σ g is above unity.
In all cases, the total energy of the initial state is dominated by the
magnetic field, corresponding to 〈σ 〉0 > 1.

We first discuss model X, where the gap is basically empty, as
this is the closest case to the scenario envisioned in Granot et al.
(2011). Fig. 4 illustrates the flow dynamics in this model. The first
column shows the solution at t = 0.2, when the pulse is beginning to
expand for the first time. In both halves of the chamber, the solution
exhibits a rarefaction wave, moving into the pulse and ejecting its
plasma into the gap. The ejected plasma expands into the gap space
and develops very high velocity. In fact, it can reach γ = 2σ 0 + 1
when the gap is a pure vacuum (Lyutikov 2010; Granot et al. 2011),
but in our simulation it is limited by the numerical resolution and
the non-vanishing density of the gap plasma.

Table 1. Parameters of numerical models for the chamber problem. 〈σ 〉f is
the final overall magnetization of plasma, ηr,max is the maximum radiation
efficiency given by equation (18) and t50 is the time by which the plasma
emits 50 per cent of the energy corresponding to this efficiency and given
in the units of the chamber light-crossing time. Other parameters are
explained in Section 3.

σ p σ g δl δ−1
e δm 〈σ 〉0 〈σ 〉f ηr,max t50

X 30 10−3 1 107 10−4 30 15 0.5 3.5
A 5 1.0 1 5 1 3 1.8 0.13 3.9
B 15 3.0 1 5 1 9 5.4 0.13 8.3
C 15 0.1 3 150 1 7.6 2.1 0.68 1.6
D 30 0.1 1 300 1 15 7.9 0.44 4.2
E 30 0.1 1 30 10 2.8 1.6 0.32 1.6
F 30 1.0 1 30 1 16 8.9 0.32 5.62
G 30 0.1 3 300 1 15 4.1 0.70 2.2
H 30 1.0 3 30 1 16 4.9 0.58 3.6

The second column shows the solution at t = 0.42, soon af-
ter the collision of the flow with the chamber walls, which drives
strong shock waves back into the pulse. One can see that behind
the shocks both the magnetic pressure and the plasma magnetiza-
tion are almost as high as initially in the pulse. The gas passed
through the shock is heated to a very high temperature and its cool-
ing rate reaches maximum. On the contrary, in the initial location
of the pulse a secondary gap is forming behind the two rarefaction
waves which have now been reflected off the centre. The gap and
the pulse have switched their places almost recreating the initial
conditions.

The third column shows the solution at t = 0.9, soon after the
reflected shocks have collided in the centre of the chamber for the
first time. One can see that a region of high magnetic pressure and
σ is formed in the original location of the pulse. This ‘born again’
pulse drives the next round of expansion and shock heating.

The forth column of Fig. 4 shows the solution at t = 1.2, which is
separated from the solution presented in the first column by exactly
one light-crossing time of the chamber. Qualitatively, the solutions
look very similar, but at t = 1.2 the gap is no longer empty and the
pulse expansion drives a shock through its plasma. This is why the
Lorentz factor is so much lower.

Fig. 5 shows for comparison the solution for model D, where
the gap is filled with a significant amount of plasma from the start.
One can see that there is a strong similarity between models D
and X. The first column shows the solution at t = 0.2, when the
pulse is beginning to expand and compress the gap plasma for the
first time. In both halves of the chamber, the solution exhibits a
rarefaction wave, moving into the pulse, and a shock wave, mov-
ing into the gap. At the shock, the plasma is heated and then it
rapidly cools. An insignificant heating is also seen in the middle
of the rarefaction wave, where the velocity gradient is the high-
est. This heating is entirely due to the numerical viscosity, and
represents computational errors. The second column shows the so-
lution at t = 0.42, soon after the shocks reflection off the chamber
walls. By this point, the gap plasma has been shocked twice, first
by the incident and then by the reflected shock. Its temperature
and cooling rate are reaching maximum. By t = 0.9, the reflected
shocks have collided in the centre of the chamber for the first time
and the ‘born again’ pulse drives the next round of expansion and
shock heating. When the shocks reflect off the walls again (see
the fourth column of Fig. 5), the solution is very similar to that
at the time of the first reflection. Thus, the system is undergoing
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Figure 4. Magnetically driven oscillations in model X of the chamber problem. From left to right, the plots show the solution at t = 0.2, 0.42, 0.9 and 1.5,
respectively. The first row shows the magnetization parameter σ , the second row the magnetic pressure pm, the third row the flow velocity, ux = γ vx and the
bottom row shows the gas temperature T = p/ρ.

strong oscillations and the gap plasma experiences repeated shock
heating.

Fig. 6 shows the integral rate of radiative cooling for all our
models, except G. These curves exhibit strong peaks at the time
of the shock collisions at the walls and in the middle of the cham-
ber, as this is the time when the shocks cross plasma with lower
magnetization. In model X, the amplitude of the peaks decreases
with time monotonically. This reflects the fact that in this models
the gaps developing in the centre of the chamber have very similar
parameters to those developing at the walls. The overall decrease
of the cooling rate is caused by the gradual decrease of the shock
strength and increase of the gap magnetization. In all other models,
peaks corresponding to the shock collision with the wall are signif-
icantly stronger than those corresponding to the shock collisions in

the middle of the chamber. This is because the gaps are filled with
weakly magnetized plasma from the start.

These peaks are strongest for models C, D, E and G, which have
lower gap magnetization, σ g = 0.1, and much weaker in models
A, B, F and H, which have higher gap magnetization, σ g = 1,
3. The integral radiative cooling rate of models with higher gap
magnetization is also much lower and it declines slower. This is fully
consistent with lower energy dissipation rate in the case of higher
magnetization, as explained in Section 2, and with the fact that the
overall radiative efficiency does not depend on the magnetization
(see Section 3).

Fig. 7 shows the total energy δE(t)/E0 radiated by the time t. It
confirms that even models with high gap magnetization eventually
approach the efficiency ηr,max given by equation (18); this only takes
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Figure 5. Magnetically driven oscillations in model D of the chamber problem. From left to right, the plots show the solution at t = 0.2, 0.42, 0.9 and 1.5,
respectively. The first row shows the magnetization parameter σ , the second row the magnetic pressure pm, the third row the flow velocity, ux = γ vx and the
bottom row shows the gas temperature T = p/ρ.

a bit longer. The last column of Table 1 gives the time required for the
system to radiate 50 per cent of ηr,maxE0, the total amount of energy
which will be eventually lost. It spans from one to 10 chamber light-
crossing times, increasing as expected with the gap magnetization. It
is interesting that model X is not much different from other models,
in spite of the lack of weakly magnetized plasma in the initial state.
The explanation for this seems to reside in the ability of strong
rarefaction waves to supply such plasma and provide it with much

higher fraction of the kinetic energy compared to the rest of the flow
(Granot et al. 2011). This agrees with the fact that faster dissipation
is found in models C and G, which have three times wider initial
gaps, thus allowing a larger fraction of the ejected pulse plasma to
develop low σ and high γ . Model E also shows faster dissipation.
This is due to the fact that its initial gap, which is already weakly
magnetized (σ = 0.1), is 10 times more massive compared to other
models.
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Figure 6. The rate of radiation losses normalized to E0/t0, where E0 is the total initial magnetic energy and t0 = l/c is light-crossing time of the chamber.

4 ADIABATIC FLOW

Although suggesting many interesting hints, the chamber problem
may differ from the case of impulsive flow in many respects. For
example, in this problem all of the released magnetic energy is
converted into radiation. This cannot be so in the case of a flow,
where not only energy but also momentum is associated with the
electromagnetic field of pulses. Some of this momentum can be
passed on to plasma, resulting in its bulk acceleration. Considering
the dynamics of an isolated pulse, Granot et al. (2011) have found
that the pulse develops a very fast ‘head’ and that most of the pulse
magnetic energy is converted into the bulk motion kinetic energy
of this head. In principle, interaction between pulses may change
this outcome. Analysing this issue, Granot et al. (2011) pointed out
that the head does not spread much until its acceleration is over

and argued that because of this the collisional interaction between
individual pulses is delayed until the end of their acceleration phase.
However, each pulse also develops a long slow tail, and even if
the gaps between pulses are completely evacuated initially, they
quickly become filled with the plasma of these tails. The shock
interaction between the heads and the tails may modify the flow
dynamics.

The easiest way to address this issue is to consider a periodic
train of identical travelling pulses separated by empty gaps. As
the pulses interact and the shocks dissipate the kinetic energy
of relative motion, the flow gradually approaches a state with
uniform total pressure. Provided the radiative cooling is negligi-
ble, the parameters of this state can be found analytically from
the equations of mass, magnetic flux, energy and momentum
conservation.
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Figure 7. Total energy radiated by the time t normalized to the initial
magnetic energy in the chamber problem. The dashed line shows model X,
which initially has an ‘empty’ gap.

4.1 Asymptotic state

These conservation laws are

[ργ l] = 0 , (22)

[Bl] = 0 , (23)

{[wγ 2 − p + B2(1 − 1/2γ 2)]l} = 0 , (24)

[(wγ 2 + B2)vl] = 0 , (25)

where w = ρ + κp is the relativistic enthalpy, κ = �/(� − 1),
where � is the adiabatic index, B and v are the magnetic field
and the plasma speed as measured in the observer frame. Here, the
expressions of the type [A] stand for the difference between the final
and the initial value of A, i.e. [A] = A1 − A0, where the index ‘0’
corresponds to the initial state and the index ‘1’ to the final state.
For the initial state, l0 = lp is the pulse width, whereas for the final
state l1 = lp + lg is the wavelength of this periodic configuration,
as measured in the observer frame.

Denoting the cell mass and magnetic flux as M = ργ l and � =
Bl, the equations of energy and momentum can be written as

M[γ ] + [pl(κγ 2 − 1)] + �2

[
1

l
(1 − 1/2γ 2)

]
= 0 , (26)

M[γ v] + [plκvγ 2] + �2
[ v

l

]
= 0 . (27)

These equations are to be solved for the thermodynamic pressure,
p1, and the Lorentz factor, γ 1, of the final state. Subtracting them
and using the approximation v � 1 − 1/2γ 2, one finds

M

[
1

γ

]
= (2 − κ)[pl] . (28)

Since p0 = 0, this yields

p1 = M

l1(2 − κ)

[
1

γ

]
. (29)

Next, one can simplify equation (27) by putting v = 1, which gives

M[γ ] + [plκγ 2] + �2

[
1

l

]
= 0 . (30)

Elimination of p1 from this equation leads to the quadratic equation

μx2 + (1 − μ)x − (1 + σ0δ) = 0, (31)

where x = γ 1/γ 0, μ = �/(2 − �) and δ = (l1 − l0)/l1 = δl/(1 + δl).
This equation has only one physical solution:

x = μ − 1 + D1/2

2μ
, (32)

where D = (1 − μ)2 + 4μ(1 + σ 0δ). It is easy to see that x > 1
and thus the flow is accelerated. The corresponding increase of the
bulk kinetic energy is

[Ek]

Em,0
= 1

σ0
(x − 1) , (33)

whereas the released thermal energy is

[Et]

Em,0
= μ

σ0
x(x − 1) , (34)

both quantities being normalized to the initial magnetic energy,
Em,0.

For σ 0δ � 1, which implies high initial magnetization and not
very narrow gaps, one has

x �
√

σ0δ

μ
� 1. (35)

Thus, γ1 � γ0σ
1/2
0 , which is significantly lower compared to γ 1 =

γ 0σ 0, corresponding to the total conversion of magnetic energy
into the kinetic one. Hence, most of the magnetic energy must be
converted into heat. Indeed, from equations (33) and (34), one has

[Et] � x

μ
[Ek] � [Ek] . (36)

4.2 Numerical simulations

In these simulations, we utilize the spatial grid which moves rel-
ative to the inertial frame of our fiducial observer with the initial
speed of the pulse. This is similar to the so-called ‘moving window’
approach. Namely, we use the time-like foliation of space–time de-
fined by the time of observer’s inertial frame, but introduce new
spatial coordinate via the transformation x → x − β0t. This leads
to the metric form

ds2 = (−1 + β2
0 )dt2 + 2β0dxdt + dx2 + dy2 + dz2 . (37)

The computational domain covers one wavelength of the flow
and the initial solution describes a uniform pulse located right in
the middle of this domain. The gaps are not absolutely empty but
they are so highly rarefied and weakly magnetized that they have
very little effect on the solution. The initial Lorentz factor is uniform
throughout the domain. Both at the left and the right boundaries,
we impose the periodic boundary conditions.

Fig. 8 illustrates the typical evolution of such a flow. In this
particular model, the initial magnetization of the pulse is σ 0 = 10,
its thermal pressure is negligibly small and it moves with the Lorentz
factor γ 0 = 5 to the right. The flow is super fast magnetosonic, with
the Mach number M � 1.6. The pulse (0.25 < x < 0.75) and the
gap are equal in linear size, with lp = lg = 0.5. The ratio of specific
heat is again � = 4/3(κ = 4 and μ = 2).

At t = 0.5, the solution is very much as this was anticipated
in Granot et al. (2011). Indeed, it is dominated by two strong rar-
efaction waves, both originated at the pulse boundaries and moving
inside the pulse. However, the one produced at the head propagates
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Figure 8. Various stages in the evolution of the adiabatic flow. The first-column panels illustrate the solution at t = 0.5, when the pulse tail has just reached
its head. This solution is similar to the solution for an isolated pulse (Granot et al. 2011). The second column shows the solution at t = 1.0. At this point, the
double shock structure, which has been created by the collision of the head and the tail, is already beginning to have a strong impact on the flow. The third
column shows the solution at t = 10. Now the flow is very different from the isolated pulse solution. The features of strong reverse rarefaction wave have
been totally erased. The last column shows the solution at t = 1000. By this time, the flow has developed the ‘saw-tooth’ profile characteristic of the classic
non-linear wave steepening problem. In each column, the top plot shows the Lorentz factor, the middle plot shows the total pressure, which is dominated by
the magnetic pressure, and the bottom plot shows the magnetization parameter σ .

through the pulse much faster than the one produced at the tail. As
a result, inside most of the pulse the magnetic pressure declines
towards the head and the magnetic pressure force accelerates the
flow. The other rarefaction gets stuck at the back where it ejects
pulse plasma into the tail, which grows in size almost at the speed
of light. By t = 0.5, the tip of the tail has already crossed the gap and
collided with the head (of the other pulse). Two shock waves, one
forward and one reversed, are produced as a result of this collision;
they are responsible for the spike observed at x � 0.77.

At t = 1, the solution already looks rather different from that
of an isolated pulse. The reverse shock has moved well inside the
pulse and it is now located at x � 0.63. Behind the shock, the flow
has almost recovered its initial Lorentz factor, magnetization σ and
magnetic pressure.

By t = 10, all the features of the strong rarefaction wave, charac-
teristic for the isolated shell solution, have gone. Now the solution
can be broadly described as a flat-top pulse with a tail.

Due to the periodic boundary conditions, when a wave reaches
one boundary it reappears from the other one. The forward and
reverse waves do this at a very different rate. Indeed, if the wave
Lorentz factor in the flow frame is γ w � 1 and the flow Lorentz

factor γ � 1, then the observed relative speed of the forward wave
is

δβfw = |βfw − β| � 1

2γ 2
, (38)

whereas for the reverse wave we have

δβrw = |βrw − β| � 2γ 2
w

γ 2 + γ 2
w

, (39)

which is much faster. This difference must be behind the observed
much more rapid decay of reverse waves compared to forward
waves. As one can see in Fig. 8, at t = 1000 the amplitude of forward
waves is much higher and the flow exhibits the characteristic ‘saw-
tooth’ profile similar to the one which develops in the problem of
non-linear wave steepening.

Fig. 9 illustrates the energy evolution of the flow. It shows the
variations of the magnetic, bulk motion and thermal energies per
train wavelength, all being normalized to the initial magnetic energy.
Since in this problem δ = 0.5, by the time the system relaxes to
a uniform state its magnetic energy decreases by 50 per cent. As
one can see in Fig. 9, this has almost been achieved at t = 1000.
According to the analysis of Section 4.1, the asymptotic parameters
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Figure 9. Energy balance of the adiabatic flow. The dot–dashed line shows
the fraction of initial magnetic energy turned into heat, the dashed line
shows the fraction of initial magnetic energy converted into the bulk motion
kinetic energy, and the solid line shows the total fraction of utilized magnetic
energy.

of this flow are γ � 2γ 0 = 10, σ � 2.5 and �Ek ∼ 0.1. These are
indeed very close to the values observed at t = 1000 (see Figs 8 and
9).

The characteristic time of relaxation towards the uniform state
must be given by the dissipation time-scale of the forward waves
associated with the saw-tooth structure of the flow. First, the pulse
has to pass through the forward fast shock where the dissipation
occurs. Given the result (38), the corresponding time, �tc � 2lγ 2,
is actually independent of the shock speed, and hence its strength.
Secondly, each time when a strong shock crosses the pulse, it dis-
sipates only a fraction ∼1/2σ of the available pulse energy (see
equation 12). Thus, the relaxation time can be estimated as

�tr � 4lσγ 2 . (40)

This turns out to be about the same as the time-scale of the non-
linear steepening of a fast magnetosonic wave (see equation 11 in
Lyubarsky 2003). For our numerical model, �tr � 1000, if we use
the parameters of the initial solution for the calculations, in excellent
agreement with the numerical results.

4.3 Comments on the geometrical effects

The results of our study show that the interaction between individual
pulses (magnetic shells) becomes important well before the coasting
phase of an isolated pulse, significantly reducing the efficiency of
impulsive acceleration. However, the dynamics of adiabatic flows
is strongly influenced by their geometry. For example, the sideways
expansion of conical jets is an efficient way of converting their ther-
mal energy into the kinetic energy of bulk motion. Thus, provided
the radiative cooling time is long compared to the adiabatic one, a
conical flow can still eventually become kinetic energy dominated.
In the context of the pulsar wind acceleration, this mechanism has
been discussed in Lyubarsky (2003).

In order to find the asymptotic flow parameters, in this case we
simply note that because

Em,1 = Em,0(1 − δ) (41)

the kinetic energy

Ek,1 = Ek,0 + Em,0δ � Em,0δ . (42)

Thus, the asymptotic magnetization parameter should be

σ1 � Em,1

Ek,1
= (1 − δ)/δ . (43)

We comment here that unless the gap is much wider than the pulse,
and hence δ is very close to unity, the asymptotic magnetization
is still not much lower than unity. For example, when lp = lg, and
hence δ = 1/2, this equation gives σ 1 = 1. Equations (22) and (23)
give us another expression for σ 1, namely

σ1 = σ0
γ0

γ1
(1 − δ) . (44)

Combining the last two equations, we find the asymptotic Lorentz
factor:

γ1 = γ0σ0δ . (45)

Although in this case we almost recover the asymptotic parame-
ters of isolated shells (Granot et al. 2011), the acceleration mecha-
nism is different. Indeed, the key role is played by the shock heating
and thermal acceleration, instead of the magnetic pressure acceler-
ation. Moreover, in the context of GRBs, this regime is not very
attractive because it implies low radiative efficiency. Indeed, by the
time the flow becomes kinetic energy dominated, its impulsive ori-
gin is ‘washed out’, with the remaining shock waves being weak
and allowing dissipation of only a small fraction of the flow power.

5 R A D I AT I V E LY C O O L I N G FL OW

On the opposite extreme of the adiabatic flow is the case where
the radiative cooling time-scale is much shorter compared to the
time-scale of adiabatic cooling. This is the so-called ‘fast radiative
cooling’ regime, which has been often discussed in connection to
GRB jets. In this case, the difference between the plane and spherical
geometry is unimportant as all of the released thermal energy is lost
to the radiation. Assuming that the total fraction of the utilized
magnetic energy is the same as in the adiabatic regime, one would
expect very high radiative efficiency:

ηr = [Et]

Em,0
� δ . (46)

In fact, this is the same as in the chamber problem with empty
gaps (see equation 19). However, both the radiative cooling and the
radiation reaction force may modify the flow dynamics and in this
section we investigate their roles.

5.1 Asymptotic state

In this case, one can still try to determine the asymptotic flow
parameters using the conservation laws, just like this was done in
Section 4. While the mass and the magnetic flux conservation laws
remain the same, the laws for energy and momentum have to be
modified in order to account for the radiative losses:

{[ργ 2 + B2(1 − 1/2γ 2)]l} = Qγrad , (47)

[(ργ 2 + B2)vl] = Qγradvrad . (48)
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Here we use the fact that the total energy–momentum of emitted
photons can be written as Quν

rad (see equation 20), where uν
rad is the

averaged four-velocity of the flow during its relaxation. Its value
depends on possible correlation between the rate of radiative losses
and the flow speed, e.g. the radiation may come mostly from the
fastest parts of the flow. Since this is essentially an unknown param-
eter, we end up with an underdetermined system, which has only
four equations and five unknowns, namely γ 1, B1, ρ1, γ rad and Q.

Eliminating Q, B1, ρ1, and using the usual high speed approxi-
mation v � 1 − 1/2γ 2, we find the equation determining γ 1 as a
function of γ rad:(

γ1

γ0

) (
1 − γ 2

rad

γ 2
1

)
−

(
1 − γ 2

rad

γ 2
0

)
= σ0δ . (49)

If we put γ rad = γ 1, then this equation yields

γ1 = γ0(1 + σ0δ)1/2 � γ0

√
σ0δ , (50)

where the last step assumes σ 0δ � 1. This is indeed very similar to
what we have found in the adiabatic case in the slab geometry (see
equation 35).

On the other hand, when γ rad = γ 0, we have

γ1 = γ0

2

[
σ0δ + (

σ 2
0 δ2 + 4

)1/2
]

� γ0σ0δ . (51)

This implies very efficient flow acceleration with almost total con-
version of magnetic energy into the bulk motion kinetic energy for
δ � 1, contrary to what we have anticipated. The reason for this is
the strong radiation reaction force, which accelerates the flow. In-
deed, γ rad = γ 0 implies that most of the time γ rad is lower compared
to the centre-of-momentum Lorentz factor. Because of this, in the

centre-of-momentum frame, the photons are emitted mostly in the
direction opposite to the flow direction. This seems hardly possible
as most of the radiation must come from the immediate downstream
of forward shocks, and if the flow preserves the structure of adi-
abatic solution, then these are the fastest sections of the flow (see
Fig. 8). In fact, this argument suggests that the asymptotic Lorentz
factor can be quite close to that given by equation (50). In order
to verify this deduction, we have carried the numerical simulations
described below.

5.2 Numerical simulations

In these simulations, we used the same cooling function as in the
chamber problem (see equation 21). In order for the numerical
shock structure not to have much influence on the overall effect
of radiative cooling, we had to ensure that the cooling length
scale was significantly higher compared to the shock thickness.
If the proper cooling time-scale is �τ cool, then in the observer
frame this scale is �tcool = γ�τ cool. In this time, a weak forward
magnetosonic shock wave moves relative to the flow by the ob-
served distance �l � (1/γ 2)�tcool � �τ cool/γ . Thus, in order for
the length of the cooling region behind the shock to be a fraction
α = �l/l of the flow wavelength, the proper cooling time should be
�τ cool = αγ l. In these simulations, we used α = 0.2.

First, we studied the model with the same initial parameters as the
adiabatic one described in Section 4: σ 0 = 10, lp = lg = 0.5, � = 4/3
and γ 0 = 5. Overall, the cooling flow shows a similar deviation
from the dynamics of isolated pulse, considered in Granot et al.
(2011), as the adiabatic model. Fig. 10 compares the adiabatic and

Figure 10. Differences between the adiabatic flow and the cooling flow with the same initial parameters (σ 0 = 10, lp = lg = 0.5, � = 4/3 and γ 0 = 5) at the
time t = 1000. Solid lines show the cooling flow and dashed lines the adiabatic one.
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Figure 11. Left-hand panel: energy balance of the adiabatic and the radiatively cooling flows with the same initial parameters. The solid lines show the total
fraction of utilized magnetic energy (the top line), the fraction of the magnetic energy converted into radiation (the middle line) and the fraction of the magnetic
energy converted into the bulk motion kinetic energy (the bottom line) for the model with fast radiative cooling. The dot–dashed lines show the total fraction
of utilized magnetic energy (the top line), the fraction of the magnetic energy converted into heat (the middle line) and the fraction of the magnetic energy
converted into the bulk motion kinetic energy (the bottom line) for the adiabatic model. Right-hand panel: energy balance of fast cooling flows with different
initial Lorentz factors. There are three pairs of lines, solid lines for γ 0 = 3, dashed lines for γ 0 = 5 and dot–dashed lines for γ 0 = 10. In each pair, the top
line shows the total fraction of utilized magnetic energy, and the bottom line shows the fraction converted into the bulk motion kinetic energy. The difference
between the top and the bottom lines gives the fraction of the magnetic energy converted into the radiation.

cooling flows at later times. As one can see, both flows develop the
characteristic ‘saw-tooth’ profiles, and apart from the temperature,
their parameters are rather similar. The cooling flow is only slightly
faster compared to the adiabatic one.

The left-hand panel of Fig. 11 compares the energy balance of
both flows. It confirms that the cooling flow is slightly more efficient
in converting the magnetic energy into the bulk kinetic energy. It
also shows that by t = 1000 most of the free magnetic energy has
been utilized. Comparing the numerical results with the predicted
asymptotic parameters of the cooling flow (see Section 5.1), we find
that equation (50) does better, with γ 1 � 11, whereas equation (51)
significantly overestimates the asymptotic Lorentz factor, giving
γ 1 � 50. Fig. 10 shows that most of the radiative energy losses
are associated with the fastest parts of the flow, just like we have
anticipated, and this explains why equation (50) provides a more
accurate estimate.

The right-hand panel of Fig. 11 compares the energy budgets of
three cooling models which differ only by the Lorentz factor of
the initial solution, γ 0 = 3, 5 and 10. One can see that the effi-
ciency of magnetic acceleration grows with γ 0, but only slightly.
In all these models, more than half of the free magnetic energy is
converted into radiation. Supported by the strong arguments pre-
sented in Section 5.1, we conclude that when σ 0δ � 1 most of
the released magnetic energy is converted into radiation, and the
radiative efficiency can indeed be estimated using equation (46).

6 R A D I AT I V E LY C O O L I N G FL OW W I T H
FILLED GAPS

Finally, we investigate a flow with fast radiative cooling and gaps
filled with low magnetized plasma from the start. Provided the initial
state has the same Lorentz factor for both the gap and the pulse, the

fraction of released magnetic energy is the same as in the chamber
problem (see equation 18):

− [Em]

Em,0
= 1 −

(
1 + δ

1/2
l δ1/2

e

)2

(1 + δl)(1 + δe)
. (52)

This energy is converted partly into the radiation and partly into the
bulk kinetic energy. Although this partition is difficult to estimate
analytically, there are no obvious factors that could significantly
shift the balance in favour of the kinetic energy, suggesting that most
of the magnetic energy should still be converted into the radiation.
This is confirmed by numerical simulations.

Here we present the results for the model with parameters γ 0 =
5, σ p = 10, σ g = 0.1, δl = δm = 1 and δe = 0.01. For this param-
eters, equation (52) gives [Em] = −0.4Em,0. The left-hand panel
of Fig. 12 compares the energy balance of this model with the
empty gap model which has the same pulse parameters and hence
[Em] = −0.5Em,0. As one can see, in both these models the released
magnetic energy does evolve towards the predicted asymptotic val-
ues and at approximately the same rate. The partition of this energy
between the bulk kinetic energy and the radiation is also similar.
This allows us to conclude that, in the case of energetically sub-
dominant gaps, the radiative efficiency is similar to what we have
for empty gaps, and is well described by

ηr � 1 −
(

1 + δ
1/2
l δ1/2

e

)2

(1 + δl)(1 + δe)
. (53)

Because the total accelerated mass is twice as higher in the model
with filled gaps, one would expect the asymptotic Lorentz factor in
this model to be lower compared to the corresponding model with
empty gaps. The data presented in Figs 10 and 13 show that this
is indeed the case. However, the difference is rather small, and this
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Figure 12. Left-hand panel: energy balance of the radiatively cooling flows with initially empty gaps (dashed lines) and gaps filled with low-magnetized
plasma (σ = 0.1) of the same mass (solid lines). Right-hand panel: radiative energy loss rate for the model with filled gaps.

Figure 13. Evolution of the Lorentz factor in the model with filled gaps.
The curves show the solutions at t = 1 (dotted line), t = 100 (dot–dashed
line), t = 1000 (dashed line) and t = 3000 (solid line).

suggests that the asymptotic Lorentz factor is still well described by
equation (50) when the gap mass does not exceed that of the pulse.

The energy curves shown in the left-hand panel of Fig. 12 are
more ragged for the model with filled gaps. Moreover, their struc-
ture suggests a quasi-periodic process. In fact, the curve of radiated
energy is similar in shape to those found in the chamber problem,
indicating a strong variation of the dissipation rate. This is con-
firmed by the left-hand panel of Fig. 12, which shows the energy
loss rate. Just like in the chamber problem, one would expect its
spikes to be associated with crossings of weakly magnetized gaps
by shocks. This is indeed the case, as illustrated in Fig. 14. This
plot also shows that, like in other models, the flow develops the

characteristic saw-tooth profile. The time separation between these
spikes can be explained using equation (38). According to it, the
pulse crossing time by a relativistic forward wave is �tc � 2γ 2l ∼
50, where we used γ = γ 0 = 5. This is indeed very close to the spike
separation in Fig. 12. The rapid variability inside the first spike is
connected to the reverse shock, which crosses the shell much faster
(see equation 39).

7 D I SCUSSI ON

7.1 Dynamics of impulsive magnetically dominated outflows

In recent years, a great deal of progress has been achieved in the
dynamics of magnetic steady-state flows but the observations seem
to suggest that the central engines of cosmic jets are highly variable.
Is this variability only a minor complication or can it actually lead to
a qualitatively different jet dynamics? The recent pioneering studies
of this issue have suggested the latter (Contopoulos 1995; Lyutikov
2010, 2011; Lyutikov & Lister 2010; Granot et al. 2011). However,
they were mainly concerned with the dynamics of individual shells,
presumably ejected by the central engine, and their interaction with
the external medium. These issues were studied using rigorous
mathematical modelling. On the contrary, the problem of interaction
between magnetically accelerated shells has remained until now a
subject of only rather speculative semiquantitative analysis. One of
the main objectives of our study was to explore this important issue
a bit further.

One of the most important properties of the isolated shell solution
is the concentration of energy and momentum in the compact head
of the shell formed by the reverse rarefaction wave early on (Granot
et al. 2011). This rarefaction wave can be seen in the plots of the
left-hand column of Fig. 8, where it occupies the domain 0.45 <

x < 0.75. The head formation is completed when this rarefaction
reaches the back of the shell and gets reflected as a forward rar-
efaction. The part of the shell located between the leading interface
with vacuum and the leading front of the reflected rarefaction wave
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Figure 14. Solution for the model with filled gap at t = 80, 120 and 180. The solid line shows the rest-mass density and the dashed line shows the total
pressure, dominated by the magnetic pressure. As one can see, at t = 80 and 180 the fast forward shock crosses the flow section which has significantly higher
rest-mass density, the gap section. At the same times, the radiation loss rate, which is shown in right-hand panel of Fig. 12, exhibits strong peaks.

is what constitutes the shell head. In the source frame, it shows
very little spreading in the direction of motion and its mean Lorentz
factor increases as r1/3.

Granot et al. (2011) and Granot (2011b) argued that this is some-
what unusual, but well understood in the relativistic framework; be-
haviour of the shell head allows us to ignore the interaction between
individual shells until their Poynting flux is almost fully converted
into the bulk motion kinetic energy. Only after this, during the coast-
ing phase, the shell spreading becomes important and leads to strong
collisions between shells, thus allowing internal shocks with high
dissipation efficiency. This assertion had apparently given a great
importance to the assumption, made in that study, that the gaps
between shells were empty, or at least so highly rarefied that their
plasma could not influence the shell dynamics. In fact, the authors
overlooked the ejection of shell plasma into its tail, which would
rapidly fills the gap, and did not explore the possible implications
of the head–tail collision for the shell dynamics.

An isolated shell enters the coasting phase at tc � (lp/c)γ 2
c , where

γ c is the asymptotic Lorentz factor of the shell (Granot et al. 2011).
This is the time required for a fast magnetosonic wave moving
relative to the shell head with the observed speed δvh = c/γ 2

c (see
equation 38) to traverse the head. The relative observed speed at
which the shell plasma is ejected into the tail can be estimated via
equation (39), which gives us δvt ∼ 2σ (γ c/γ )2δvh � δvh. Thus,
one can avoid the head–tail collision only if the gaps between shells
are much wider than the shells.

Our simulations have shown that, at least in the case where shells
and gaps have comparable widths, the tail–head collision strongly
modifies the flow dynamics, making the results for an isolated shell
irrelevant. The gaps soon become filled up with significant amounts
of plasma, and thereafter we have what is best described as a con-
tinuous inhomogeneous flow superimposed with a wave train. A
similar outcome is observed when the gaps are filled with plasma
already from the start. The subsequent acceleration and radiation
of this flow is determined by the dissipation rate of shocks, which
form an integral part of the train, the plasma cooling rates and
the flow geometry. In any case, the fraction of magnetic energy
that can be converted into either the energy of radiation or the
kinetic energy of the flow is set by the energy of the train. Un-
der the condition of magnetic flux freezing, it is simply given by
the degree of expansion in the longitudinal direction which the
magnetized shells can achieve during the transition to force equi-

librium and thus by the amplitude of initial fluctuations of magnetic
pressure.

When the radiative cooling can be ignored, the asymptotic flow
parameters follow from the basic conservation laws of mass, mag-
netic flux, energy and momentum. This way we find that, in the case
of slab geometry, the asymptotic Lorentz factor is γ � γ 0(σ 0δ)1/2,
rather than γ � γ 0σ 0 expected in the case of the total conversion of
the magnetic energy into the bulk motion kinetic energy. [Here δ =
lg/(lg + lp) is the relative thickness of the gap.] In contrast to the
case of an isolated pulse (Granot et al. 2011), the magnetic accelera-
tion is inefficient and most of the free magnetic energy is converted
into the thermal energy via the shock dissipation. However, in the
case of spherical geometry, the sideways expansion of the flow is
accompanied by efficient conversion of this thermal energy into the
bulk kinetic energy, via the thermal acceleration mechanism. This
leads to the asymptotic Lorentz factor γ � γ 0σ 0δ.

When the radiative cooling is much faster than the adiabatic one,
the difference between flows with slab and spherical geometry is
unlikely to be significant, although the presence of poorly radiating
components such as protons complicates this issue and requires fur-
ther investigation. Even without such components, the fast cooling
regime is more involved as the conservation laws alone do not de-
termine the asymptotic flow parameters. The outcome now depends
on details of the radiative cooling process. The radiation reaction
force may both help the flow acceleration and make it more diffi-
cult, depending on whether the photons are emitted predominantly
in the forward direction in the centre-of-momentum frame or in the
backward direction. From the numerical simulations, we find that
the emission comes from the fastest part of the flow and thus the
radiation reaction force is a decelerating one. Most of the utilized
magnetic energy is converted into the radiation and the asymptotic
Lorentz factor of the flow remains significantly below the value of
γ 0σ 0δ, characteristic of efficient magnetic acceleration.

7.2 Astrophysical implications

In terms of astrophysical implications, our results are most rele-
vant to the issue of internal shock dissipation and emission from
relativistic jets of GRBs and AGN. A detailed test of the shock dissi-
pation model in magnetically dominated flows against observations
is beyond the scope of this paper. Here we only outline a few issues
to be investigated in future studies.
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Just like in the hydrodynamic model, the energy reservoir for the
internal shock dissipation in the magnetic model is associated with
the variable component of the jet. For Poynting-dominated jets,
this is the magnetic energy of the fast magnetosonic waves driven
into the jet by the variable central engine. Their contribution to the
overall jet energy budget depends on the exact details of the central
engine operation, and at least in principal it may well be dominant.

Provided the radiative cooling time is sufficiently short, most of
the dissipated energy is converted into radiation. In our simplified
test problems, the radiative efficiency is given by equation (18),
which shows that it can be very substantial even for a rather mod-
erate central engine variability. Thus, as far as the observed radia-
tive efficiency of GRB jets is concerned, the internal shock model
of prompt GRB emission and the magnetically dominated model
of GRB jets are not mutually excluding. However, the dissipation
length scale increases with the jet magnetization and may exceed
the jet length.

In the hydrodynamical version of the internal shock model, the
prompt emission originates from the region where individual bal-
listic shells collide with each other because of the differences in
the ejection speed (Piran 2004). For strong variation of the Lorentz
factor, this occurs at

Rs � γ 2
j cδts � 3 × 1016cm

( γj

103

)2
(

δts

s

)
, (54)

where δts is the characteristic time interval between the shell ejec-
tions,1 and γ j is the Lorentz factor of the slower shell. Each collision
gives rise to a pulse of the prompt emission light curve. Its dura-
tion, δtp, is determined by the curvature of the shock front and the
Doppler beaming (the so-called ‘angular spreading effect’), and it
turns out to be the same as δts (Piran 2004).

In the magnetic model, the prompt emitting region can extend
well beyond Rs. According to equation (40), a forward shock dissi-
pates its energy when it covers the distance R � σRs. For tp ∼ 1 s,
Rs is already dangerously close to the radius of the external shock,
which seems to rule out σ � 1. However, the problem arises only if
we associate each strong individual pulse of a GRB light curve with
an individual shock wave. If instead each such pulse is associated
with a whole packet of shocks, so that δts < δtp/σ , this is no longer
an issue. Obviously, this explanation implies a secondary central
engine variability process, operating on the time δtp, which modu-
lates the output of the primary process, operating on the time-scale
δts. In fact, this way one can explain why about 20 per cent of GRBs
have rather featureless light curves (Piran 2004). This may just be
the case of weak modulation.

In this model, there are ∼σ shocks inside the dissipation zone
and one may wonder if their emission signals overlap. In the source
frame, the relative speed of a light signal and a forward fast mag-
netosonic wave propagating in the radial direction is

δvγ f � c

8σγ 2
j

. (55)

The travel time across the dissipation zone is σRs/c. During this
time, the distance between these two waves is changed by only
cδts/8. Thus, the overlapping could only be a result of the angu-
lar spreading effect, which spreads δ-shaped signals over the time
δtang = R/2cγ 2

j , where R is the emission radius. This gives us
δtang = δts/2 at the beginning of the dissipation zone (R ∼ Rs) and
δtang = σδts/2 � δts at the end of the dissipation zone (R ∼ σRs).

1 Such a characteristic time does not have to exist. Instead, the central engine
may exhibit a wide distribution for the shell ejection time.

One may draw two conclusions from these numbers. First, a mi-
cropulse from an individual shock must have a long smooth tail of
length � σδts/2. Spike-like features on the scale of ∼δts can be
found only at the head of this micropulse (they may correspond to
shock crossings of contact discontinuities in the jet; see Figs 6 and
11). Secondly, the tails of individual micropulses overlap but their
leading spikes do not and can give rise to a pulse substructure. The
fact that shocks are strongest at the beginning of the dissipation
zone increases chances of them being detected. This could be the
origin of the observed variability of GRBs on millisecond time-scale
(Walker & Schaefer 2000).

How short can δts be? In the Blandford–Znajek model of GRB
central engine, the only ‘easy’ way of changing its jet power, Lj, is
via changing the flux of open magnetic field lines, �, which threads
the black hole, as these parameters relate via Lj ∝ �2 (Blandford
& Znajek 1977). This magnetic flux may change significantly if the
disc drags in an alternating magnetic field, which may even bring
about a change of polarity of the black hole magnetosphere.2 The
relevant time-scale for this process is probably the disc inner edge
‘viscous’ time-scale. For an α-disc, this is

δtv ≈ 10

(
α δ2

10−3

)−1 (
M

M�

)
ms, (56)

where M is the black hole mass and δ = Hd/Rd is the ratio of the disc
height to its radius (Shakura & Sunyaev 1973). This is almost 100
times shorter compared to the observed typical separation between
GRB pulses (Norris et al. 1996) horizon. The shortest scale for
restructuring of the black hole magnetosphere is given by the light-
crossing time of the ergosphere:

δter = 2GM

c3
≈ 10

(
M

M�

)
μs. (57)

A rapid and frequent restructuring of magnetosphere may also be
typical for a newly born millisecond magnetar, due to its ultra-
strong magnetic field, lack of solid crust and active magnetic dy-
namo. These estimates assume fast magnetic reconnection in the
magnetospheres, which has been questioned recently on the ba-
sis of collisional nature of reconnection of super strong magnetic
field (Lyutikov & McKinney 2011; Uzdensky 2011; McKinney &
Uzdensky 2012), although even the collisional magnetic reconnec-
tion can be fast due to the secondary tearing instability (see the
discussion and references in Uzdensky 2011).

As to the modulation process, it should also involve variation of
� but on a larger time-scale. For example, more massive accretion
discs could support stronger magnetic field and result in larger
magnetic flux trapped by the black hole. Variations of the disc mass
could result from unsteady stellar collapse. The typical duration of
strong GRB pulses is around the free-fall time from the radius of
∼109cm for the GRB progenitor in the collapsar model. Given the
total radius of the progenitor, ∼R�, it does not seem implausible
for the GRB jet to perturb the stellar mass distribution on this scale.

Swift observations of early X-ray afterglows have discovered the
presence of plateaus as well as strong flares in their light curves, both
unexpected in the original external shock model (Zhang 2007). One
possible and perhaps the most likely explanation of these features
is that they represent the ‘late prompt emission’ of a long-lasting
central engine (Ghisellini et al. 2007, 2009). This interpretation

2 The effective loss of magnetosphere and its shielding action during a
change of polarity may also let weakly magnetized surrounding plasma to
enter the jet channel and to become entrained by the jet.
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is supported by a number of similarities between the X-ray flares
and the GRB subpulses (Margutti et al. 2010). Such a long-lasting
activity, at least up to 104 s, is inconsistent with the high mass accre-
tion rate, above 10−2 M� s−1, required by the neutrino annihilation
mechanism of jet production, and implies the magnetic mechanism.

In addition to the similarities between the X-ray flares and the
GRB subpulses, there are also a few differences (Margutti et al.
2010). For example, the flare duration increases linearly with the
flare time since GRB trigger. In our model, the duration of prompt
pulses is determined by the duration of strong accretion episodes in
the history of the central engine. If the X-ray flares are associated
with the fallback accretion, then the flare time is likely to be deter-
mined by the location of fallback turning point, whereas its duration
by the spatial dispersion of falling back material. They may well
correlate with each other.

The evolution of individual pulses of GRBs is often described as
‘fast rise exponential decay’ (FRED; e.g. Piran 2004). The latest
results show that on average both the prompt pulses and the X-ray
flares have approximately twice as shorter the rise time compared to
the decay time (Norris et al. 2005; Chincarini et al. 2010). Although
shorter rise times are expected in the standard internal shock model,
it does not really say by how much (Qin et al. 2004). Perhaps, this
tells us that the pulse shape is not determined by the shell collision
after all. Other processes may have similar time properties. In fact,
FRED mass accretion rate could be a general consequence of the
diffusive transport in episodic accretion discs (Wood et al. 2001).

We have shown that, provided the GRB jets are cooled mainly ra-
diatively, they are likely to remain Poynting dominated even beyond
the prompt emission zone. The exact nature of piston driving the
external shock into the surroundings of GRB has little effect on the
shock dynamics and emission. Provided the total energetics is the
same, both the kinetic energy dominated and the magnetic energy
dominated ejecta produce the same afterglow emission associated
with this shock (Lyutikov & Blandford 2003; Lyutikov 2005, 2011;
Mimica, Giannios & Aloy 2009). However, the reverse shock, which
is driven into the ejecta, will be much less dissipative if the ejecta is
highly magnetized (Zhang & Kobayashi 2005; Mimica et al. 2009).
This could be the reason behind the paucity of the lower energy,
most likely optical, flashes expected from the reverse shock in the
non-magnetic models of afterglows (Gomboc et al. 2009).

As to the issue of the jet acceleration, our results indicate that the
impulsive magnetic acceleration mechanism, proposed by Granot
et al. (2011), is unlikely to operate in its original form. Even if
we ignore the entrainment of surrounding plasma, the strong shock
interaction between heads and tails of magnetic shells, revealed in
the present study, is already sufficient to prevent the conversion of
almost all available magnetic energy into the kinetic energy shell
heads. Instead, the problem reduces to its more standard form where
non-linear waves travel along the jet, interacting with the mean flow.
The efficiency of the mean flow acceleration by these waves depends
on the efficiency of its radiative cooling, and hence on the photon
opacity of the flow. If this cooling is weak, then the jet acceleration
can be very efficient, with a large fraction of the wave Poynting
flux converted into the kinetic energy of the flow. Otherwise, it
is converted into radiation. Based only on baryonic electrons, the
optical thickness of a GRB jet to Thomson scattering is

τ � 1
L52

r13σγ 3
j,2

, (58)

where L is the isotropic jet power. Thus, it seems unlikely for the
dissipation zone to be optically thick, unless pairs dominate the

opacity. This agrees with the high observed radiative efficiency of
GRB jets.

Impulsive jet production provides favourable conditions for en-
trainment of weakly magnetized plasma that may exist in the vicinity
of the central engine. We focused on the implications of this process
for the dissipation efficiency of shock waves in magnetically dom-
inated flows. However, in addition to this, the presence of weakly
magnetized plasma may also help us to overcome another difficulty
of the shock model, related to the shock acceleration of non-thermal
particles. However, for this to work, the magnetization may have to
be very low, down to σ < 10−3 (Sironi & Spitkovsky 2011).

8 C O N C L U S I O N S

In this paper, we analysed the potential role of shock dissipation on
the dynamics and emission of impulsive Poynting-dominated rela-
tivistic jets. The main insights came from analytical and numerical
solutions of relativistic MHD equations in slab geometry. For com-
putational reasons, the numerical simulations were limited to flows
with Lorentz factors which were much lower compared to those de-
duced from the observations of GRBs. These and other limitations
of this study warn against making firm conclusions and a certain
degree of uncertainty definitely remains in many respects, and par-
ticularly when it comes to astrophysical applications. Keeping this
in mind, our main conclusions are as follows.

(i) The dissipation efficiency of strong shocks in highly mag-
netized plasma is low, � 0.5(1 + σ )−1, mainly because only the
kinetic energy dissipates and it represents only a small fraction of
the total energy flowing through the shock. For moderate magneti-
zation, σ � 1, the shock dissipation efficiency is reasonably high,
� 30 per cent of the total energy flux.

(ii) The dynamics of a magnetic shell in a train of shells, all
ejected in the same direction and initially separated by empty space,
can be rather different from that of an isolated shell in vacuum,
studied in Granot et al. (2011). Unless the separation between these
shells is very large, they strongly interact with each other. The result
of this interaction is best described as an underlying continuous
flow superimposed with strong magnetosonic waves travelling in
the same direction. The wave Poynting flux provides energy for
heating and acceleration of the flow. A similar outcome is observed
in models where gaps are filled with energetically subdominant
plasma from the very beginning.

(iii) For an infinite flow, the reservoir of magnetic energy is given
simply by the decrease of the magnetic energy, as dictated by the
magnetic flux freezing, during the transition to a wave-free final
state. The shock dissipation is an essential part of this transition.
The radiative cooling allows us to maximize the released mag-
netic energy. For radially diverging flows, the adiabatic cooling is
expected to do the same. In both cases, the fraction of released mag-
netic energy does not depend on the initial flow magnetization but
only on the initial magnetic inhomogeneity of the flow, or in other
words on the fraction of energy carried by the waves. However,
the flow magnetization determines the tempo and the characteristic
length scale of the energy release, which grows ∝ σ for σ � 1.

(iv) With application to GRB jets, this shows that the internal
shocks may still be responsible for the prompt emission even in
the case of Poynting-dominated jets. At least, the high observed
fraction of the prompt emission in the total energy budget of GRB
events is not inconsistent with this model.

(v) However, the increased size of the prompt emission (inter-
nal shock dissipation) zone, compared to that of the non-magnetic
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model, calls for a somewhat different interpretation of the prompt
emission variability. In particular, the observed individual pulses
with duration around 1 s are unlikely to be associated with the emis-
sion of individual shocks, as this would push the dissipation zone
beyond the external shock radius. Instead, each such relatively long
pulse could represent the combined emission from a whole pack of
shocks associated with minishells ejected by the central engine on
a much shorter time-scale. The long time-scale variability would
then be related to some modulation process, determining the energy
of emitted minishells. In fact, both the magnetar and black hole
magnetospheres do allow variability on millisecond, and possibly
even shorter, time-scales. As to the nature of the modulation, one
possible mechanism is the unsteady mass supply to the accretion
disc in the collapsar scenario.

(vi) The emission from individual shocks may produce fine sub-
structure, on the time-scale of shell ejection. This could be the origin
of the observed millisecond spikes in the light curves of the prompt
emission.

(vii) After leaving the zone of internal dissipation, the initially
Poynting-dominated jet is most likely to remain Poynting domi-
nated. This may not affect the dynamics of the forward shock and
its afterglow emission, but will result in reduced emission from
the reverse shock compared to the non-magnetic model. Yet, the
presence of weakly magnetized domains in the jet will increase the
radiative efficiency of this shock compared to the value expected
for a uniform jet with the same mean magnetization.

AC K N OW L E D G M E N T S

The author is grateful to J. McKinney, Y. Lyubarsky, M. Lyutikov,
the anonymous referee and particularly to J. Granot for helpful
discussions and constructive criticism of the original manuscript.

R E F E R E N C E S

Apple S., Camenzind M., 1988, A&A, 206, 258
Blandford R. D., Znajek R. L., 1977, MNRAS, 179, 433
Chincarini G. et al., 2010, MNRAS, 406, 2113
Contopoulos J., 1995, ApJ, 450, 616
Drenkhahn G., Spruit H. C., 2002, A&A, 391, 1141
Ghisellini G., Ghirlanda G., Nava L., Firmani C., 2007, ApJ, 658, L75
Ghisellini G., Nardini M., Ghirlanda G., Celotti A., 2009, MNRAS, 393,

252
Gomboc A. et al., 2009, in Meegan C., Kouveliotou C., Gehrels N., eds, AIP

Conf. Proc. Vol. 1133, Optical Flashes, Reverse Shocks and Magnetiza-
tion. Am. Inst. Phys., New York, p. 145

Granot J., 2011a, preprint (arXiv:1109.5314)
Granot J., 2011b, preprint (arXiv:1109.5315)
Granot J., Königl A., Piran T., 2006, MNRAS, 370, 1946
Granot J., Komissarov S. S., Spitkovsky A., 2011, MNRAS, 411, 1323
Kennel C. F, Coroniti F. V., 1984, ApJ, 283, 694
Kobayashi S., Sari R., 2001, 1985, ApJ, 551, 934
Komissarov S. S., 1999, MNRAS, 303, 343
Komissarov S. S., 2011, Memorie Soc. Astron. Ital., 82, 95
Komissarov S. S., Falle S. A. E. G., 1998, MNRAS, 297, 1087
Komissarov S. S., Lyutikov M., 2011, MNRAS, 414, 2017
Komissarov S. S., Vlahakis N., Königl A., Barkov M. V., 2009, MNRAS,

394, 1182
Königl A., 1980, Phys. Fluids, 26, 1083
Lyubarsky Y. E., 2003, MNRAS, 339, 765
Lyubarsky Y. E., 2005, MNRAS, 358, 113
Lyubarsky Y. E., 2009, ApJ, 698, 1570
Lyubarsky Y. E., 2010, ApJ, 725, L234
Lyutikov M., 2005, preprint (astro-ph/0503505)

Lyutikov M., 2006, New J. Phys., 8, 119
Lyutikov M., 2010, Phys. Rev. E, 82, 056305
Lyutikov M., 2011, MNRAS, 411, 422
Lyutikov M., Blandford R. D., 2003, preprint (astro-ph/0312347)
Lyutikov M., Lister M., 2010, ApJ, 722, 197
Lyutikov M., McKinney J. C., 2011, Phys. Rev. D, 84, 084019
McKinney J. C., Uzdensky D. A., 2012, MNRAS, 419, 573
Majorana A., Anile A. M., 1987, Phys. Fluids, 30, 3045
Margutti R., Guidorzi C., Chincarini G., Bernardini M.-G., Genet F., Mao

J., Pasotti F., 2010, MNRAS, 406, 2149
Mimica P., Giannios D., Aloy M. A., 2009, A&A, 494, 879
Narayan R., Kumar P., Tchekhovskoy A., 2011, MNRAS, 416, 2193
Norris J. P., Nemiroff R. J., Bonnell J. T., Scargle J. D., Kouveliotou C.,

Paciesas W. S., Meegan C. A., Fishman G. J., 1996, ApJ, 459, 393
Norris J. P., Bonnell J. T., Kazanas D., Scargle J. D., Hakkila J., Giblin

T. W., 2005, ApJ, 627, 324
Panaitescu A., Kumar P., 2002, ApJ, 571, 779
Piran T., 2004, Rev. Modern Phys., 76, 1143
Qin Y.-P., Zhang Z.-B., Zhang F.-W., Cui X.-H., 2004, ApJ, 617, 439
Shakura N. I., Sunyaev R. A., 1973, A&A, 24, 337
Sironi L., Spitkovsky A., 2011, ApJ, 726, 75
Synge J. L., 1957, The Relativistic Gas. North-Holland, Amsterdam
Uzdensky D. A., 2011, Space Sci. Rev., 160, 45
Walker K. C., Schaefer B. E., 2000, ApJ, 537, 264
Willingale R. et al., 2007, ApJ, 662, 1093
Wood K. S., Titarchuk L., Ray P. S., Wolff M. T., Lovellette M. N., Bandy-

opadhyay R. M., 2001, ApJ, 563, 246
Yost S. A., Harrison F. A., Sari R., Frail D. A., 2003, ApJ, 597, 459
Zhang B., 2007, Advances Space Res., 40, 1186
Zhang B., Kobayashi S., 2005, ApJ, 628, 315
Zhang B., Yan H., 2011, ApJ, 726, 90
Zhang B. et al., 2007, ApJ, 655, 989

APPENDI X A : R ELATI VI STI C
P E R P E N D I C U L A R M H D SH O C K S

Here we analyse MHD shock waves in the special case where the
magnetic field is parallel to the shock front and the flow velocity
is perpendicular to it. In the shock frame, the fluxes of energy,
momentum, rest mass and magnetic field are continuous across the
shock:

(w + B2)γ 2v = constant, (A1)

(w + B2)γ 2v2 + p + B2

2
= constant, (A2)

ργ v = constant, (A3)

Bγv = constant, (A4)

where ρ is the rest-mass density, p is the gas pressure, w = ρ + κp
is the relativistic enthalpy, κ = �/(� − 1), where � is the adiabatic
index, B is the magnetic field as measured in the fluid frame and γ is
the Lorentz factor. We select the frame where the velocity vector
is normal to the shock plane and the magnetic field is parallel to
it. We use subscripts ‘1’ and ‘2’ to denote the upstream and the
downstream states, respectively.

Equations (A1), (A3) and (A4) yield

ρ2

ρ1
= B2

B1
= σ2

σ1
= δ

χ
, (A5)

a2
2 = 1

κ

[
δ(1 + κa2

1 + σ1) − σ1

(
δ

χ

)
− 1

]
, (A6)
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where

σ = B2/ρ (A7)

is the magnetization parameter,

a2 = p/ρ (A8)

is the temperature parameter,

χ = v2/v1, (A9)

δ = γ1

γ2
= [1 + u2

1(1 − χ2)]1/2, (A10)

and u = vγ . Using the definitions of a and σ , Equation (A2) can be
written(
1 + κa2

1 + σ1

) j 2

ρ1
+ ρ1

(
a2

1 + 1

2
σ1

)

= (1 + κa2
2 + σ2)

j 2

ρ2
+ ρ2

(
a2

2 + 1

2
σ2

)
,

(A11)

where j = ργβ. Via substituting the expressions for ρ2, σ 2 and a2

from equations (A5) and (A6), this equation becomes an equation
for χ , which defines it as a function of the upstream state parameters.
In general, this is a rather cumbersome algebraic equation which
has to be solved numerically. However, in many astrophysical ap-
plications, one may assume that the upstream state is cold (a1 →
0), which allows significant simplifications. Then equation (A11)
reduces to

a3χ
3 + a2χ

2 + a1χ + a0 + g(χ ) = 0 , (A12)

where

a3 = (1 + σ1)u2
1

(
κ − 1

κ

)
,

a2 = −σ1u
2
1

(
κ − 2

2κ

)
, −(1 + σ1)u2

1 − σ1

2
,

a1 = (1 + σ1)(1 + u2
1)

κ
,

a0 = σ1

(
κ − 2

2κ

)
(1 + u2

1) ,

and g(χ ) =−δ(χ )χ /κ . One can see that the solutions of this equation
are parametrized only by the upstream magnetization and the shock
speed. Instead of the shock speed, one can introduce the more
traditional shock Mach number, which will be done later.

For any values of upstream parameters, equation (A12) must
allow the trivial continuous solution, χ = 1, which describes a flow
without a shock. Thus, we have

a3(χ3 − 1) + a2(χ2 − 1) + a1(χ − 1) = g(1) − g(χ ), (A13)

which can also be written as

a3χ
2 + (a3 + a2)χ + (a3 + a2 + a1) = f (χ )

κ
, (A14)

where

f (χ ) = g(1) − g(χ )

χ − 1
= 1 − χδ(χ )

(1 − χ )
.

For this trivial solution, both the numerator and the denominator
in the above expression for f (χ ) vanish. An additional continuous
solution, χ = 1, may exist when the shock speed relative to the
upstream state equals the fast magnetosonic speed of this state. In
order to verify this, one can replace f (χ ) in equation (A14) with its
limiting value,

lim
χ→0

f (χ ) = 1 − u2
1,

and then substitute χ = 1 into the left-hand side of this equation.
The result is

u2
1 = σ1, (A15)

which is the fast magnetosonic condition. Indeed, in the limit of
cold flow, the fast magnetosonic speed is isotropic and equals the
Alfvén speed:

c2
f = B2

B2 + ρ
= σ

1 + σ
. (A16)

The corresponding Lorentz factor γf = √
1 + σ . Thus, the condition

(A15) becomes the condition

M1 = 1 (A17)

on the shock fast magnetosonic Mach number, which is defined as

M1 = u1

uf,1
= u1√

σ1
, (A18)

where uf = cfγ f . With M1 and σ 1 as parameters, equation (A14)
reads

aχ2 + bχ + c = 2f (χ ), (A19)

where

a = 2(1 + σ1)σ1(κ − 1)M2
1 ,

b = −σ1(2 + κσ1)M2
1 − κσ1,

c = −σ 2
1 (κ − 2)M2

1 − κσ1 − 2(σ1 + 1).

For M1 � max(1, 1/σ1, 1/
√

σ1), one can only retain the terms
that are proportional to M2

1 in the coefficients of χ i. This yields

2(1 + σ1)(κ − 1)χ2 − (2 + κσ1)χ + (2 − κ)σ1 = 2

M2
1

f (χ ). (A20)

The factor M−2
1 on the right-hand side term is small, suggesting

that this term can be also ignored. This gives us simple quadratic
equation which does not involve M1:

2(1 + σ1)(κ − 1)χ2 − (2 + κσ1)χ + (2 − κ)σ1 = 0. (A21)

Since, the physical meaning of χ dictates 0 < χ ≤ 1, the only
suitable solution of this equation is

χ = 2 + κσ1 + √
D

4(κ − 1)(1 + σ1)
, (A22)

where

D = (2 + κσ1)2 − 8(1 + σ1)σ1(κ − 1)(2 − κ).

This is the same solution as in the analysis of oblique shocks in
Komissarov & Lyutikov (2011) and, for κ = 4 (� = 4/3), in the
perpendicular shock solution of Kennel & Coroniti (1984).

Further simplification is possible when σ 1 � 1. In this case,

χ � 1 + 4 − 2κ

3κ − 4
σ−1

1 , (A23)

which for κ = 4 gives us

χ � 1 − 1

2
σ−1

1 . (A24)

Using this result, one can find

γ2 � σ
1/2
1 , (A25)

ρ2 � M1ρ1, (A26)

p2 � 1

8
ρ1M

2
1 , (A27)
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B2 � M1B1, (A28)

pm,2 � M2
1 pm,1, (A29)

β2 � 1

4
σ−1

1 , (A30)

σ2 � M1σ1. (A31)

These allow us to find how energy is distributed between its different
forms in the downstream flow. Denoting as Fk = ργ 2v, Fm = B2γ 2v

and Ft = κpγ 2v the fluxes of kinetic, magnetic and thermal energy,
respectively, we have

Fk,2 � 1

M1
Fk,1, (A32)

Ft,2 � 1

2
Fk,1 (A33)

and

Fm,2 − Fm,1 � 1

2
Fk,1. (A34)

Thus, approximately one-half of the upstream kinetic energy is
dissipated into heat, whereas the other half is converted into the
magnetic energy. The shock dissipation efficiency can be defined as

ηs = Ft,2

Ftot
, (A35)

where Ftot = Fm + Fk + Ft is the total energy flux. From the above
results, it follows that

ηs � 1

2(1 + σ1)
. (A36)

Thus, the shock dissipation efficiency is greatly reduced in highly
magnetized plasma.

When σ 1 � 1, we have f (χ ) � −2σ 1M1. Substituting this result
into equation (A20), one can verify that the right-hand side term of
this equation is indeed much smaller compared to any term on the
left-hand side.

We should point out that the condition u1 � 1, stated in Kennel
& Coroniti (1984) for their approximate shock solution, is not quite
correct. The proper condition which leads to the solution (A22) is
M1 � 1 and it requires u1 � √

σ1. The shock solution does not
even exist when M1 ≤ 1, whereas the condition u1 � 1 may still be
satisfied.

Zhang & Kobayashi (2005) use the Lorentz factor of the relative
motion between the states on both sides of the shock,

γ12 = γ1γ2(1 − v1v2),

as a shock strength parameter. Using the above results, it is easy to
show that for M1 � 1 and σ 1 � 1,

γ12 � M1

2
,

and hence this parameter is equivalent to the shock Mach number.
However, for lower M1 and σ 1 the connection between these pa-
rameters is more involved. The shock Mach number is a traditional
parameter which is rightly recognized as most useful in charac-
terizing the shock strength. It describes the state upstream of the
shock, leaving all the downstream state parameters to be found from
the shock equations, in contrast to γ 12, which involves both these
states.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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