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ABSTRACT

Rationale: The acute respiratory distress syndrome is refractory to pharmacological
intervention. Inappropriate activation of alveolar neutrophils is believed to underpin this
disease’s complex pathophysiology, yet these cells have been little studied.

Objectives: To examine the functional and transcriptional profiles of patient blood and
alveolar neutrophils compared to healthy volunteer cells, and define their sensitivity to
phosphoinositide 3-kinase inhibition.

Methods: Twenty three ventilated patients underwent bronchoalveolar lavage. Alveolar and
blood neutrophil apoptosis, phagocytosis and adhesion molecules were quantified by flow
cytometry, and oxidase responses by chemiluminescence. Cytokine and transcriptional
profiling utilized multiplex and GeneChip arrays.

Measurements and Main Results: Patient blood and alveolar neutrophils were distinct from
healthy circulating cells, with increased CD11b and reduced CD62L expression, delayed
constitutive apoptosis and primed oxidase responses. Incubating control cells with disease
bronchoalveolar lavage recapitulated the aberrant functional phenotype and this could be
reversed by phosphoinositide 3-kinase inhibitors. In contrast, the pro-survival phenotype of
patient cells was resistant to phosphoinositide 3-kinase inhibition. RNA transcriptomic
analysis revealed modified immune, cytoskeletal and cell death pathways in patient cells,
aligning closely to sepsis and burns data sets but not phosphoinositide 3-kinase signatures.
Conclusions: Acute respiratory distress syndrome blood and alveolar neutrophils display a
distinct primed, pro-survival profile and transcriptional signature. The enhanced respiratory
burst was phosphoinositide 3-kinase-dependent, but delayed apoptosis and the altered
transcriptional profile were not. These unexpected findings cast doubt over the utility of
phosphoinositide 3-kinase inhibition in acute respiratory distress syndrome and highlight the

importance of evaluating novel therapeutic strategies in patient-derived cells.
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INTRODUCTION

The acute respiratory distress syndrome (ARDS) is characterised by diffuse alveolar injury
and immune cell infiltration, resulting in intractable hypoxemia [1]. Despite the adoption of
lung-protective ventilation, mortality remains high [2], and many survivors suffer long-term
physical or neurocognitive sequelae, with fewer than 50% returning to work [2].
Management remains largely supportive with optimisation of ventilator parameters [3],
judicious fluid balance, and treatment of underlying causes; no pharmacological interventions

have proven beneficial.

Accumulation of neutrophils (PMNs) in the lung microvasculature, interstitial and alveolar
compartments is a key feature of ARDS [4], and association has been reported between
intensity of alveolar neutrophil infiltration and disease severity [5]. Inappropriate
accumulation/activation of PMNs within the alveoli is proposed to cause unrestrained release
of oxygen radicals, proteases and neutrophil extracellular traps (NETs). Due to challenges
inherent in isolating alveolar PMNs (*PMNs), their functional activity in ARDS is largely
unknown. Historically, mouse models have been used as surrogates for “MPMNss [6];

however, rodent neutrophils differ markedly from their human counterparts.

Traditionally PMNs have been viewed as a homogenous population of short-lived cells with
limited transcriptional capacity and a fixed functional repertoire. More recently, concepts of
long-lived PMNss, retrograde trans-endothelial migration and PMN plasticity have emerged
[7-12]. Given recent demonstrations that PMNs can modify their transcriptional profile
following an inflammatory insult [13], genome-wide transcriptional analysis provides a

powerful tool to identify novel targets relevant to altered PMN functions, and has been
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successfully applied in asthma, pulmonary arterial hypertension and ARDS [14]; however,
studies in ARDS are based on the analysis of total peripheral white blood cells rather than

purified neutrophils.

Lung epithelial cells [15] synthesize granulocyte macrophage-colony stimulating factor (GM-
CSF), a cytokine essential for alveolar macrophage function [16-17] and surfactant
homeostasis [18-19]. Conversely, during inflammation GM-CSF potentiates superoxide-
anion production [20], promotes PMN survival [21], and is detrimental in models of acute
lung injury [22]. PMN longevity increases dramatically in ARDS, and some studies have
identified GM-CSF as a major pro-survival mediator [23]. Whilst the molecular mechanisms
governing PMN lifespan in ARDS are incompletely understood, the cytoprotective effect of
GM-CSF in PMNSs in vitro is Class 1 phosphoinositide 3-kinase (PI3K)-dependent [21].
PI3K inhibition prevents lung tissue edema and leukocyte recruitment in models of ARDS
[24], and inhibition of PI3Ky in a sepsis model reduces end-organ damage [25]. Following
the early exuberant pro-inflammatory response in ARDS, patients develop immune-paresis,
increasing susceptibility to nosocomial infections [26]; recent studies demonstrate that
inhibition of PI3Kd may improve PMN responses during this phase [27]. These observations

have triggered considerable interest in the therapeutic use of PI3K inhibitors in ARDS.

Herein we present the first comprehensive characterization of purified ARDS blood
(**°“PMN) and *"PMNs and the first genome-wide transcriptome analysis of purified ARDS
bloodp\INs. We show that ARDS “PMNss are hyper-segmented, with enhanced CD11b and
reduced CD62L expression, and display delayed apoptosis but preserved oxidative burst,
phagocytosis and neutrophil extracellular trap (NET) responses. ARDS "*°“PMNs display an

intermediate phenotype, with a transcriptome showing significant alterations in cell-survival
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and inflammatory pathways, but little overlap with the PI3K-dependent gene signature. This
work improves our understanding of PMN function in ARDS and reveals that apoptosis of
ARDS neutrophils is resistant to PI3K inhibition. Together, these observations strengthen the
case to modulate PMN function in ARDS, but cast doubt over the utility of PI3K inhibitors in
this condition. Some results from these studies have been reported in the form of an abstract

[28].

MATERIALS and METHODS

Ethics

All studies complied with the Declaration of Helsinki. Written informed consent was
obtained from the legal surrogate of ARDS patients (UK08/H0306/17). Paired blood samples
were obtained simultaneously from age and gender matched healthy volunteers (HV)

(UK06/Q0108/281).

Bronchoalveolar lavage

Patients fulfilling the Berlin criteria for ARDS [29] were recruited from mixed
medical/surgical and neurosciences/trauma intensive care units in a UK teaching hospital;
exclusion criteria were age <18 years, HIV positive, or if informed assent could not be
obtained. The median tidal volume in the ARDS patients was 7.64 ml per kilogram Predicted
Body Weight (IQR=6.94-8.64 ml/kg). Patients underwent venepuncture, bronchoscopy
(FOB) and bronchoalveolar lavage (BAL) within 48 hours of diagnosis. Sterile isotonic
saline (3x50 ml) was instilled into a sub-segmental bronchus; recovery averaged 90 ml (range
20-120 ml) and did not differ between patients and controls. BALF was immediately filtered
and placed on ice. Control BALF was collected from patients (n=10) undergoing elective

FOB for indications unrelated to infection or ARDS.
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PMN purification

“VPMN and autologous "***PMN were isolated from patients alongside "***PMN from age
and gender-matched HVs. Alveolar PMNs were purified by immune-magnetic negative
selection (RoboSep®, StemCell Technologies) [30] to >90% purity and >98% viability.

bloodp\INs were purified over discontinuous plasma-Percoll gradients [28].

PMN morphology

PMN were classified by nuclear morphology, with the assessor blinded to sample origin.
Mature PMN displayed 3-4 nuclear lobes connected by heterochromatin filaments. Band
PMNs had less condensed chromatin and incompletely segmented nuclei [31], whilst hyper-

segmented PMNs possessed >5 lobes.

PMN activation and apoptosis

HV and ARDS "°**PMNs and unprocessed BALF were re-suspended in PBS containing 5%
BSA and protease inhibitor cocktail (Complete Mini EDTA-free, Roche). Samples were
stained with CD62L-APC (BD Pharmingen-clone 559772), CD11b-FITC (Beckman Coulter
clone IM0530) or isotype-matched controls. PMN apoptosis was assessed after 20 hours by
flow cytometry using FITC-labelled Annexin-V/propidium iodide (AnV/PI, BD-

Pharmingen).

PMN oxidative burst
Neutrophils (5x106/mL) were primed with tumor necrosis factor (TNF)-a (R&D Systems),

GM-CSF, control BALF or ARDS BALF at 37°C for 30 minutes. The oxidative burst in
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response to fMLP (100 nM), zymosan or heat-killed Streptococcus pneumoniae (serum-

opsonized, 5-7 particles/PMN) was assessed by luminol-dependent chemiluminescence [30].

Quantification of inflammatory mediators

BALF and serum mediators were measured by ELISA (LPS (Kamiya), survivin and LTB4
(R&D Systems)), or using the Human Biomarker 40-Plex V-PLEX Kit and Human MMP 3-
Plex Ultra-Sensitive Kit (MesoScale Discovery). Where stated BALF samples were

corrected to the total protein concentration (Pierce™ BCA-Protein Assay).

PMN phagocytosis
PMN phagocytic capacity was assessed using 1 mg/ml pHrodo™ RED Staphylococcus
aureus Bioparticles®” (Life Technologies). Internalization was verified by live confocal

imaging.

NET formation
bloodpp INs and “"PMNs (1x10%ml) incubated with Sytox Green (5 pM, Life Technologies)
were seeded onto 96 well optical microplates (BD Biosciences). NET formation was

quantitated by hourly fluorescence measurements and verified by fluorescence microscopy

using rabbit anti-histone H3 (Ab5103, Abcam).

Neutrophil cytoskeletal remodelling
Freshly isolated PMNs (1 x10%ml) were fixed (4% PFA), permeabilized (0.5% Triton) and
stained with anti-neutrophil elastase (Santa Cruz, 1:1,000) and rhodamine phalloidin 1:200

(Invitrogen).
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Genome-wide transcriptomic changes

Genome-wide transcriptomic changes were assessed in paired blood PMNs from n=12
consecutively recruited ARDS patients, who were representative of the full patient cohort in
terms of age, gender, ARDS severity and causation, and n=12 HVs. Further studies were
undertaken in the following groups of HV "***PMNs (n=10/group): (a) T=0 hours vehicle
control, (b) T=6 hours vehicle control, (¢c) T=6 hours thGM-CSF (1 ng/ml), (d) T=6 hours

panPI3K inhibitor ZSTK474 (10 uM), and (e) T=6 hours thGM-CSF plus ZSTK474.

cDNA prepared from 2.5 ng RNA using WT-Ovation Pico RNA Amplification System
(NuGen) was fragmented and labelled using FL-Ovation cDNA Biotin Module V2 (NuGen).
Labelled cDNA was hybridized onto Hg-U133 Plus 2.0 GeneChip oligonucleotide arrays
(Affymetrix). Raw data (see ‘Additional Materials’ supplement’) were normalised using the
Robust Multi-array Average (RMA) method [32] and Quality Checked in R/Bioconductor. A
linear model was fitted to normalised data for each probe set and a post-hoc test (Fisher LSD)
generated fold changes and p-values. Probes were identified as significant if their fold
change was >1.5 and p<0.05, and mapped to pathways using Ingenuity Pathway Analysis
software. The NextBio analysis platform was used to compare our ARDS data with (pre-

analysed) publicly available transcriptomics data.

Statistical analysis

For each dataset analysed an appropriate linear mixed model was fitted. When required the
data were logarithmically transformed to meet the assumptions of the analysis i.e. normally
distributed errors and homogeneity of variance. Correction for false discovery rates in the
transcriptional and cytokine analysis was according to the method of Benjamini and

Hochberg [33]. The analyses were conducted in SAS version 9.3. Results are presented as
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means = SEM of (n) independent experiments, with p<0.05 considered statistically
significant. Full details of the number of patients and HVs included in each assay are

provided in Suppl Figure S1.

RESULTS

ARDS patient characteristics

Twenty-three mechanically ventilated patients fulfilling the 2011 Berlin definition for ARDS
were recruited; their clinical, demographic and physiological characteristics are outlined in
Table 1. Standardized ventilator strategies, in accordance with the ARDS Network low tidal
volume protocol, were employed. At sample collection, 4/23 had severe ARDS (PaO,/FiO,
ratio <100 mmHg), 11/23 moderate ARDS (PaO»/FiO2 ratio 101-200 mmHg) and 8/23 mild
ARDS (PaO,/FiO; ratio 201-300 mmHg). Sepsis and pneumonia were the commonest
precipitating insults; 13 of 23 patients survived to discharge. All patients underwent FOB
within 48 hours of diagnosis. PMNs constituted 69.7+4.2% of the differential leukocyte
count in ARDS BALF (6.54+3.2% in control BALF) (Table 1). PMN abundance in BALF did
not correlate with initial ARDS severity, abnormalities in gas exchange or BALF protein

concentration (data not shown).

ARDS PMN:s are phenotypically distinct

Comparing purified HV "°*PMNs, ARDS "*°/PMNs and **PMNs revealed striking
differences in cell morphology. While HV bleodpVIN's had few hyper-segmented PMNs,
“WARDS PMNss displayed abundant hyper-segmented nuclei and cytoplasmic vacuolation
(Figure 1A); hyper-segmented PMNs were not identified in control BALF. Immature ‘band’

PMNs were also more common in ARDS "***PMNs and *"PMNs (Figure 1A).
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PMN activation status was assessed by confocal imaging of F-actin and cell surface staining
of CD62L (L-selectin) and CD11b (Macl). Prominent circumferential F-actin fluorescence
was observed in a substantial proportion of the ARDS "°°“PMNs compared with HV

bloodp 1N (Figure 1B). The profile of surface receptor expression (up-regulation of CD11b
and down-regulation of CD62L [36-37]) on both ARDS "*“PMNs and “"PMNss is consistent

with a primed and/or activated phenotype (Figure 1C).

ARDS blood and alveolar PMNs show delayed apoptosis and primed NADPH oxidase
responses

Consistent with a previous report [23], we demonstrate that after 20 hours ex-vivo incubation,
ARDS “PMNs and "***PMNs demonstrated a significantly reduced number of apoptotic
cells (28.5£19.2% (% apoptosis £ SEM) and 42.7+23% respectively) compared to PMNs
isolated from HV blood (69.2+12%) (Figure 2A). The magnitude of the survival response
exhibited by ARDS PMNs was equivalent (28.6+£10%) to the cytoprotective effect conferred
by incubating HV ***/PMNis with a maximally-effective concentration of thGM-CSF (1

ng/ml) (data not shown).

We next compared the ability of ARDS **PMNs and **°“PMNis to mount an oxidative burst
in response to fMLP, opsonized zymosan and Streptococcus pneumoniae (Figure 2B-D). In
contrast to un-primed HV bloodp) 1N, which display minimal ROS generation to fMLP
(Figure 2B-C), “"PMNs and "***PMNs from ARDS patients displayed robust ROS
generation to all three stimuli, which in certain individuals exceeded those of TNFa-primed
HV "°*PMNs (Figure 2D). These data indicate basal priming and preserved NADPH
oxidase responses of ARDS ““PMNs and "***PMNs, challenging the notion that

inflammatory PMNs become ‘exhausted’ at peripheral sites.
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ARDS blood and alveolar PMNs have preserved capacity for phagocytosis and NET
formation

Previous investigators have identified a defect in the phagocytic and microbicidal activity of
neutrophils from ARDS patients [38]. However, in our cohort, flow cytometry and confocal
microscopy demonstrated that the capacity of ARDS *"PMNs and "*°*“PMNis to phagocytose
pHrodo™ RED-labelled Staphylococcus aureus was fully preserved (Figure 3A-B). This
assay, supported by live cell imaging, is based on differential fluorescence of this bioparticle
in an acidic environment, ensuring that only organisms within functional phagosomes are

detected.

In addition to phagocytosis and the oxidative burst, PMNs deploy NETs to facilitate pathogen
clearance. NETSs are composed principally of a DNA scaffold decorated with anti-microbial
granule proteins, which acts as a mesh to immobilize pathogens (Figure 3C). In response to
PMA (Figure 3 C-D) or pyocyanin (data not shown) ARDS *PMNs and "**/PMNis
displayed a similar capacity for NET production compared to HV bloodpp TN, Collectively,
our results, demonstrate preservation of the anti-microbial functions of ARDS VPMNs and

blood
*°“PMNes.

Defining the impact of ARDS on serum/BALF cytokine profiles and the transcriptional
signatures of blood PMNs

To address whether factors present in the serum or BALF in ARDS patients could account for
the primed/pro-survival PMN phenotype, a series of multiplex ELISA and bioassays were
used to characterize the cytokine and growth factor profiles (n=18). As shown in Figure 4

and Suppl Figure S2, a consistent profile of raised acute phase markers (e.g. CRP, SAA) and
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inflammatory cytokines (e.g. TNFa, TARC, MCP-1, IL-8 and IL-6) was observed in ARDS
serum and BALF compared to HV samples. By contrast, when BALF samples were
corrected for total protein concentration, only CRP, IL-6 and MCP-1 levels were significantly
higher in ARDS compared to control (Suppl Figure S2). Of note, at the single time point

sampled, GM-CSF was only quantifiable in 5/23 ARDS BALF samples (LLoQ 7.6 pg/ml).

RNA transcriptomic analysis comparing freshly isolated ARDS bloodp)INs with HV
bloodp)\INs revealed a total of 1319 altered genes (using cut-offs of fold-change >1.5 and
p<0.05; top ranked up- and down-regulated transcripts shown in Figure SA; full list of all
1319 genes and their relative fold changes in Suppl Table S3). Using NextBio (which
recognised 1282 of the 1319 differentially expressed genes) we compared these changes to
publically available datasets, revealing a striking similarity to data in leukocytes from
patients with severe burns or sepsis [39-40]; not only was there a strong overlap in gene
changes, but also the direction of change correlated almost completely (Figure 5B).
Ingenuity analysis revealed a significant increase in pathways associated with the immune
response, cytoskeletal remodelling and mucin production, as well as significant decreases in
cell death/apoptosis pathways, consistent with the neutrophil phenotype observed (Suppl
Figure S3). Of note, of the 1319 observed transcript changes, only 216 were differentially
expressed in the same direction compared to HV bloodp\IN's treated ex-vivo with GM-CSF
(Suppl Figure S4). The data discussed in this publication have been deposited in NCBI's
Gene Expression Omnibus and are accessible through GEO Series accession number

GSE76293 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76293).

Influence of the local airway environment on the ARDS PMN phenotype
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To establish the significance of the alveolar inflammatory environment, we sought to induce
a phenotypic switch using ARDS BALF. Incubating HV "***PMNs with IMDM+10%
autologous serum containing ARDS BALF (50:50, v/v) reduced the extent of apoptosis
observed ex-vivo at 20 hours (37.4+21.7% compared to 50:50, v/v control BALF
70.5+12.4%) (Figure 6A). Furthermore, treatment with ARDS BALF (50:50, v/v) for 30
minutes enhanced fMLP-induced ROS production in HV bloodp) INg (Figure 6B), to a level
comparable to optimally TNFa- or GM-CSF-primed HV bloodp)\ INs (not shown), whilst
control BALF had little effect. Thus ARDS BALF supernatant recapitulated the pro-survival,

primed-NADPH oxidase signature seen in ARDS **°Y*"PMNss.

Potential role of PI3K inhibition as a strategy to modulate ARDS "*°¥*"¥ PMN behaviour
A key objective of this study was to define the sensitivity of inflammatory PMNs to PI3K
inhibition, since this pathway is pivotal in neutrophil survival, priming/activation and reactive
oxygen species (ROS) production [30]. Firstly, we confirmed that a pan-PI3K inhibitor
ZSTK474 (10 uM) [41], and to a lesser extent the p38MAPK inhibitor SB741445 (10 uM)
blocked GM-CSF-induced PMN survival in HV "PMNs in vitro (Figure 7A). ZSTK474
also blocked the survival effect of ARDS BALF supernatant on HV bloodpIN's (Figure 7B).
However, neither compound restored normal neutrophil apoptosis in ARDS blocdpp [N
(Figure 7C) implying that the aberrant disease-associated neutrophil survival is either
irreversible or operates through a PI3K-independent pathway. Given that even the delayed
addition of ZSTK474 to GM-CSF-treated HV "*!PMNSs retains effectiveness in overcoming
the pro-survival effect of this cytokine (data not shown), the involvement of a PI3K-
independent pathway seems most likely. This conclusion is supported by the minimal
overlap we observed between the transcriptomal signatures seen in the ARDS **“*PMNs and

those seen in HV "***PMNs treated with ZSTK474 (Suppl Figure S5). In contrast, ROS
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production by PMNs from HV and ARDS patients was completely abrogated by ZSTK474

(Figure 7D).

DISCUSSION

Isoform-selective PI3K inhibitors have been proposed as anti-inflammatory agents in diseases
such as ARDS [42], hence it is of importance to study their efficacy in patient-derived cells.
ARDS *PMNs have been little studied due to the difficulty of obtaining these cells from
acutely unwell patients. Using purified blood and alveolar neutrophils from 23 ARDS
patients, we demonstrate a stepwise change from HV "***PMNs through ARDS "*PMNs to
ARDS "PMNs. ARDS “YPMNSs, and to a lesser extent ARDS *°®PMNs, were distinct from
HV "**PMNs, with hyper-segmented nuclei, increased CD11b expression, prolonged
survival, and primed NADPH oxidase responses. Surprisingly, whilst the respiratory burst
remained fully sensitive to PI3K inhibition, the pro-survival phenotype was not reversed by

this strategy.

Few previous studies have assessed the characteristics of paired circulating and post-migrated
inflammatory tissue neutrophils. The hyper-segmented CD1 16™€"/CD62L"Y cells with
enhanced oxidative capacity we identify in ARDS"® and ARDS *"PMNss are reminiscent of
circulating neutrophils isolated following endotoxin challenge [43-44]; these latter cells were
immunosuppressive, inhibiting T cell proliferation by release of hydrogen peroxide at the
neutrophil/T cell interface. Increased nuclear segmentation and oxidative potential has also
been observed in tumor-associated neutrophils (45), associated with increased anti-tumor
activity. Prolonged survival of ARDS “PMNs has been reported previously and attributed to
GM-CSF/G-CSF in BALF [23], but in contrast to Matute-Bello et a/ we did not observe

significantly elevated levels of these cytokines, perhaps related to disease heterogeneity and
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differences in sampling time. Delayed apoptosis has been measured in neutrophils recruited
to skin chambers versus paired circulating neutrophils, but synovial fluid-derived PMNs from
patients with rheumatoid arthritis exhibited normal apoptosis [46]. These differences
correlated with local IL1-f levels, but IL1-f3 in our ARDS BALF fluid was not significantly
elevated. The variable functional capacity of neutrophils from different locations underscores
the need to explore the efficacy of potential therapeutic agents in disease-relevant cell

populations.

We observed a pro-inflammatory cytokine profile in the blood of ARDS patients, including
several established priming agents. In our study, ARDS ***® and ARDS “"PMNs were
functionally primed, and such cells have been implicated in lung injury [47-48]. We
previously demonstrated that the pulmonary capillary bed can trap and 'de-prime' neutrophils,
and that this mechanism may fail in ARDS, augmenting the circulating pool of these
potentially injurious cells [49]. Additional priming signals may be imparted during vascular
transmigration [50], and ARDS BALF also primed the oxidative burst of HV "**/PMNs.
Thus a number of different factors may contribute to the pooling of primed neutrophils within

the alveolar environment in ARDS.

ARDS !PMNs and in particular ARDS **PMN's survived longer during ex-vivo culture
than HV " PMNs. This pro-survival phenotype was recapitulated by incubating HV
bleodpVINs with ARDS BALF, implying that the enhanced longevity of these cells results at
least in part from local exposure to mediators. However, whilst the pan-PI3K inhibitor
ZSTK474 did not reduce the lifespan of ARDS ***“PMNss it did reverse the pro-survival
effects of both GM-CSF and BALF on HV "°*PMNs in culture, suggesting that the complex

cytokine environment in BALF is not the only factor conferring PI3K-resistance. It is



Page 18 of 73

Juss et al. 2015

possible that the duration of exposure to pro-survival mediators in vivo prior to inhibitor
exposure is relevant, and survival signals imparted during transmigration will likewise have
been entrained prior to PI3K inhibition. Finally, hypoxia may impart additional signals that
are also relatively PI3K-resistant, and HIF-dependent signalling was up-regulated (see Suppl
Table 3 - ranked 14th in the pathways changed in this setting). Together with the limited
overlap between the ZSTK474 "**PMN or GM-CSF-"""PMN transcriptomes and the ARDS
bloodpp\IN signature, our results suggest that targeting of PI3K during ARDS, while
suppressing the damaging ROS formation, would not enhance cell clearance via apoptotic
pathways.

We further interrogated the activation state of ARDS "¢

PMNs by undertaking the first
reported transcriptomic analysis of purified peripheral blood PMNs from ARDS patients.

Our data revealed remarkable overlap between the transcriptomic profile of ARDS "***PMNs
and those published for mixed leukocytes in burns (see Figure 4B) and sepsis cohorts [34-
35]. The top five canonical pathways identified in the ARDS blood neutrophil gene signature
were the glucocorticoid, IL-4, p38 MAPK, antigen presentation and CDC52 pathways. These
were also within the top five pathways identified in the previous burns and sepsis cohorts
using mixed leukocytes [39-40]. This suggests that despite their heterogeneity, there is a
strong commonalty in a range of acute severe inflammatory disorders. This also provides

possible directions for novel therapeutic interventions aimed for example at the IL-4 receptor

or p38 pathways.

In this study we sought to characterise the functional and transcriptional profile of PMNs
isolated from ARDS patients’ blood and airways. Although our study captured only 23

patients at a single time point, our data add considerably to knowledge of “"PMN and
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bleodpVIN function and signaling profiles in ARDS; they challenge data from both animal

models and from healthy cells, with a marked primed and pro-survival phenotype, the latter
recalcitrant to PI3K inhibition. We conclude that intervention with a PI3K inhibitor in these
patients is unlikely to be an effective therapeutic strategy, since it will impair PMN
bactericidal function without facilitating inflammation resolution. Our findings highlight the
importance of working with patient-derived cells, particularly for biomedical research into

novel treatments for ARDS.
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FIGURE LEGENDS
Table 1

Clinical characteristics of patients with ARDS

Figure 1

Circulating and alveolar neutrophils from patients with ARDS are phenotypically
distinct compared to healthy volunteer neutrophils

A. Morphology of freshly purified PMNs from HVs in comparison with ARDS blood and
alveolar PMNs was assessed. Representative photomicrographs of cytospins (x100, stained
with modified Wright stain) of HV "°*PMNs, and autologous *YPMNs and "**?ARDS PMNs
isolated in parallel (n=19). Classical PMNs have 3-4 nuclear lobes connected by filaments of
dense heterochromatin, band PMNs (red arrow) contain a curved nucleus that is not
completely segmented into lobes, and hyper-segmented PMNs (black arrow) have nuclei
comprised of five or more lobes. ARDS BALF contains abundant hyper-segmented PMNss
with up to 12 nuclear lobes (inset). PMN subsets present in the blood (HV n=19; ARDS
n=19) and ARDS BALF (n=11) were quantitated morphologically by light microscopy (right-
hand panel). The %PMN subsets were analyzed on the log) scale using a linear fixed effects
model (*** P<0.0001 for hyper-segmented cells). B. HV bloodp\INs and autologous ARDS
"PMNs and "**!PMNs stained for F actin polarization (rhodamine-phalloidin — green) and
elastase (red) with nuclei (DAPI) depicted in blue. Representative (of n=3)
immunofluorescence confocal photomicrographs (x40) illustrate ARDS “MPMNs and
bloodp\ N display a prominent circumferential F actin ring (white arrows). C. PMN cell
surface CD62L-FITC and CD11b-APC expression of freshly isolated HV "**“PMNs,
autologous ARDS *PMNs and "***PMNs assessed by flow cytometry. Results are

representative of three independent experiments. The CD11b expression (MFI corrected for
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isotype control readings) for HV blood neutrophils was 11.7+0.9, ARDS blood neutrophils
74+6, and ARDS BALF neutrophils 427+50; the CD62L expression (MFI corrected for
isotype control readings) for HV blood neutrophils 114+12, ARDS blood neutrophils

8.44+0.6, and ARDS BALF neutrophils 8.7+1.9.

Figure 2

Circulating and alveolar neutrophils from patients with ARDS exhibit delayed
apoptosis and heterogeneous NADPH oxidase responses

A. HV "PMNs (5x10%ml) were cultured in IMDM with 10% autologous

serum. Apoptosis was quantitated by flow cytometry following AnV staining after 20 hours
in culture. The data were analyzed using a linear fixed effects model (**P<0.001,
***¥P<0.0001). B. Representative kinetic profile of the neutrophil oxidative burst. Freshly
purified HV "*PMNs (unprimed-black squares and rhTNFa (10 ng/ml), primed-white
squares), autologous ARDS “"PMNs (black circles) and "***PMNs (white circles) were
incubated with luminol and HRP in a 96-well luminometer plate and fMLP (100 nM) added
via the injection port of a Centro LB 960 luminometer (Berthold Technologies); light
emission (RLU) was recorded at 6 second intervals over 10 minutes. C. The oxidative
response in freshly isolated un-primed and thTNFa-primed HV blood following stimulation
with fMLP is expressed as the relative peak height to the thTNFa-primed response in HV
blodp\INs. D. Peak height of the neutrophil oxidative response in freshly isolated autologous
ARDS “"PMNs and "*°“PMNs normalised to the HV blood PMN response in Di to fMLP
(100 nM), Dii to serum-opsonized zymosan (5-7 particles/PMN), and Diii to serum-

opsonized heat-killed Streptococcus pneumoniae (5-7 particles/PMN).

Figure 3
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Circulating and alveolar neutrophils from patients with ARDS exhibit preserved
phagocytic capacity and heterogeneous NET responses

A. Analysis of phagocytosis by freshly isolated PMNs. Representative (of n =5
experiments) immunofluorescence confocal photomicrographs taken after 1 hour incubation
demonstrating internalized pHRodo conjugated S. aureus (red) and PMN nuclei
counterstained with DAPI (blue). B. PMN phagocytosis was quantitated by flow cytometry
with fluorescence excitation 530 nm/emission 590 nm. These data were analyzed using a
linear fixed effect model (ns p>0.05). C. NET formation by freshly isolated autologous
blood and alveolar ARDS PMNs and HV PMNs was assessed following treatment with PMA
(20 nM) or vehicle control. Representative (n=4) fluorescence photomicrographs of NETs,
x63 magnification. Unmerged images (lower panels) stained for extracellular DNA scaffold
(SYTOX: green) and citrullinated histones (CitHis: red). The precise overlap of these two
colors in merged images generates the ochre color representing NETS in the PMA-treated
cells; no NETS are visible in the control samples. D. Kinetics of NETs formation was
assessed over 4 hours by measuring total fluorescence using a VICTOR?® Multilabel Reader

using Wallac 1420 Workstation v3.00 software and subtracting baseline fluorescence.

Figure 4

Heat map of the inflammatory markers in the serum of healthy volunteers and patients
with ARDS

Inflammatory mediators in serum were measured using either an ELISA kit or an
electrochemical luminescence immunoassay MesoScale Discovery (MSD) multiplex. In the
heatmap each row is a different cytokine and each column is a different patient. The coloring
represents the abundance of the inflammatory marker measured. The lowest abundance

measured are presented by bright green while the highest by bright red. To assess the mean
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difference in abundance between the disease groups a linear mixed model was fitted to the
data with disease as a fixed effect and the donor pairing as a random effect. The heat maps
and dendrogram (variable tree) were obtained from a hierarchical clustering of the cytokines
using complete linkage. The variable tree to the left of the heat map shows how the cytokines
cluster together based on their Pearson’s correlation i.e., the more correlated two cytokines
are the closer they are in the branches of the dendrogram. The stars on the plot represent the
FDR adjusted p-value of the disease effect in this model where NS=FDR p>0.05, *=FDR p

<0.05, **=FDR p< 0.001 and ***=<FDR p< 0.0001.

Figure 5

Genes altered greater than 5-fold in ARDS blood neutrophils compared to healthy
volunteer blood neutrophils

A. Negative values indicate a decrease in relative gene expression, while positive values
indicate an increase in relative gene expression. All p<0.05 with (n) = 12 for ARDS and HV
blood PMNs. B. Diagrammatic representation of gene transcript changes between ARDS and
HYV blood PMNs and the overlap in the ARDS transcript signature with pediatric early stage

burn data [39].

Figure 6

Treatment of healthy volunteer blood neutrophils with BALF from patients with ARDS
replicates the pro-survival and primed neutrophil phenotype

A. HV PMNs were incubated in IMDM+10% autologous serum containing either 50:50 v/v
control BALF or ARDS BALF and apoptosis was assessed at 20 hours by flow cytometry
following AnV staining. These data were analyzed using a linear mixed effects model with

the HV donor fitted as a random effect (ns P>0.05, ***P<(0.0001). B. Freshly isolated HV
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PMNs were treated with 50:50 v/v control BALF or ARDS BALF for 30 minutes at 37°C
prior to stimulation with fMLP (100 nM). Chemiluminescence was recorded using a Centro
LB 960 luminometer and expressed graphically as the absolute peak height in relative light
units (RLU). These data were analysed on the log;( scale using a linear mixed effects model

with the HV donor fitted as a random effect (ns P>0.05, ***P<0.0001).

Figure 7

Effects of PI3K and p38 MAPK inhibition on healthy blood and ARDS neutrophils

A. HV blood PMNs were pre-incubated with either 0.1% DMSO vehicle control, p38 MAPK
inhibitor (SB741445 (10 uM)) or pan-Class I PI3K inhibitor (ZSTK474 (10 uM)) for 20 mins
and then treated with rhGM-CSF (1 ng/ml). Apoptosis was quantitated after 20 hours in
culture by flow cytometry following AnV and PI staining. These data were analyzed using a
linear mixed effects model with the HV donor fitted as a random effect (***P<0.0001). B.
HYV blood PMNs were pre-incubated with the indicated inhibitors for 20 mins prior to culture
in 50:50 v/v ARDS BALF. Apoptosis was quantitated after 20 hours in culture by flow
cytometry following AnV and PI staining. These data were analyzed using a linear mixed
effects model with the HV donor fitted as a random effect (ns P>0.05, **P<0.001). C.
ARDS blood PMNs were incubated with SB741445 or ZSTK474 and apoptosis was
quantitated by flow cytometry following AnV and PI staining. These data were analyzed
using a linear mixed effects model with the HV donor fitted as a random effect (ns P>0.05,
*P<0.05). D. ARDS blood and alveolar PMNs were pre-incubated with ZSTK474 (10 uM)
for 30 minutes at 37°C prior to stimulation with fMLP (100 nM). Chemiluminescence was
recorded using a Centro LB 960 luminometer and expressed graphically as the absolute peak
height in relative light units (RLU). Data were analysed on the log;, scale using a linear

mixed effects model with the HV donor fitted as a random effect (* P<0.05, ***P<0.0001).
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Table 1. Demographics and clinical characteristics of patients with ARDS

ARDS

Mild Moderate Severe
Number of patients 8 11 4
Mean age (years) 49+16.3 62.7+11.1 48.3+£21.0
Gender 7:1 5:6 3:1
(Male:Female)
Patient mortality (n) 2 7 2
PaO, (mmHg) 92.2+17.6 82.4+16.8 68.4+2.3
Mean PaO,/FiO, 246.1+18.9 139.5+18.8 90.0+£5.7
(mmHg)
PEEP (cmH,0) 8.9+2.1 8.94+2.6 8.5+1.9
Blood WBC 11.1+10.1 10.8+8.0 12.9+8.4
Blood PMN count 8.4+7.2 9.7+£7.9 11.4£7.5
% PMNs in BALF 69.7+2 (n=6) 73.7£11.1 (n=10) 59.8+2 (n=3)

Etiology of ARDS

Community acquired
pneumonia,
neutropenic sepsis,
fresh water drowning,
liver failure post
transplant donation,
ethylene glycol
poisoning

Community acquired
pneumonia, aspiration
pneumonia,
neutropenic sepsis

Community acquired
pneumonia, aspiration
pneumonia,
neutropenic sepsis
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ARDS neutrophils have a distinct phenotype and are resistant to phosphoinositide 3-

kinase inhibition

Juss JK, House D, Amour A, Begg M, Herre J, Storisteanu DML, Hoenderdos K, Bradley G,

Lennon M, Summers C, Hessel EM, Condliffe AM, Chilvers ER.

Online Data Supplement

Supplementary Figure 1

Flowchart showing the precise details of the number of subjects included in each assay.

Supplementary Figure 2

Inflammatory markers in the BALF of patients with ARDS

The concentration of key inflammatory mediators, were measured in control (n = 10) and
ARDS (n = 18) BALF supernatants either by ELISA kit or an electrochemical luminescence
immunoassay MesoScale Discovery (MSD) multiplex. S1(i) shows a heatmap representation
of BALF markers in control subjects (CO1-C10) vs ARDS patients (A01-18) without
correction for BALF total protein, and S1(ii) shows a heatmap representation of the identical

samples after correction for BALF total protein content (* P<0.05, ** P<0.01, ***P<0.001).

Supplementary Figure 3

Heat map of the transcriptomic changes in HV and ARDS blood PMNs
A. Immune response. B. Apoptosis. C. Cytoskeletal remodelling. D. Mucin production. (n)

= 12 for both groups.
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Supplementary Figure 4

The genes altered greater than 5-fold in ARDS neutrophils compared to HV neutrophils
Negative values indicate a decrease in relative gene expression, while positive values indicate
an increase in relative gene expression. Bars highlighted in red where also altered in HV

PMNs incubated with GM-CSF (fold change>1.5, p<0.05, (n) = 12 for all groups).

Supplementary Figure 5

The genes altered greater than 5-fold in ARDS neutrophils compared to HV neutrophils
Negative values indicate a decrease in relative gene expression, while positive values indicate
an increase in relative gene expression. Bars highlighted in green were also altered in HV

PMN s incubated with a pan-PI3K inhibitor (fold change>1.5, p<0.05, (n) = 12 for all groups).

Supplementary Table 2

Tables (i)-(vi) provide the full data set for blood and BALF cytokine values for HVs and
ARDS patients. For the BALF samples these are given both corrected and uncorrected for

total protein content.

Supplementary Table 3

A comprehensive list of all 1319 significantly altered genes (fold change > 1.5; unadjusted p-
value < 0.05; false discovery rate g-value < 0.05) identified by the comparison of freshly

isolated ARDS "*°“PMNs with HV "*°*?PMNs using Affymetrix mRNA transcriptomic

analysis.
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ABSTRACT

Rationale: The acute respiratory distress syndrome is refractory to pharmacological
intervention. Inappropriate activation of alveolar neutrophils is believed to underpin this
disease’s complex pathophysiology, yet these cells have been little studied.

Objectives: To examine the functional and transcriptional profiles of patient blood and
alveolar neutrophils compared to healthy volunteer cells, and define their sensitivity to
phosphoinositide 3-kinase inhibition.

Methods: Twenty three ventilated patients underwent bronchoalveolar lavage. Alveolar and
blood neutrophil apoptosis, phagocytosis and adhesion molecules were quantified by flow
cytometry, and oxidase responses by chemiluminescence. Cytokine and transcriptional
profiling utilized multiplex and GeneChip arrays.

Measurements and Main Results: Patient blood and alveolar neutrophils were distinct from
healthy circulating cells, with increased CD11b and reduced CD62L expression, delayed
constitutive apoptosis and primed oxidase responses. Incubating control cells with disease
bronchoalveolar lavage recapitulated the aberrant functional phenotype and this could be
reversed by phosphoinositide 3-kinase inhibitors. In contrast, the pro-survival phenotype of
patient cells was resistant to phosphoinositide 3-kinase inhibition. RNA transcriptomic
analysis revealed modified immune, cytoskeletal and cell death pathways in patient cells,
aligning closely to sepsis and burns data sets but not phosphoinositide 3-kinase signatures.
Conclusions: Acute respiratory distress syndrome blood and alveolar neutrophils display a
distinct primed, pro-survival profile and transcriptional signature. The enhanced respiratory
burst was phosphoinositide 3-kinase-dependent, but delayed apoptosis and the altered
transcriptional profile were not. These unexpected findings cast doubt over the utility of
phosphoinositide 3-kinase inhibition in acute respiratory distress syndrome and highlight the

importance of evaluating novel therapeutic strategies in patient-derived cells.
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INTRODUCTION

The acute respiratory distress syndrome (ARDS) is characterised by diffuse alveolar injury
and immune cell infiltration, resulting in intractable hypoxemia [1]. Despite the adoption of
lung-protective ventilation, mortality remains high [2], and many survivors suffer long-term
physical or neurocognitive sequelae, with fewer than 50% returning to work [2].
Management remains largely supportive with optimisation of ventilator parameters [3],
judicious fluid balance, and treatment of underlying causes; no pharmacological interventions

have proven beneficial.

Accumulation of neutrophils (PMNs) in the lung microvasculature, interstitial and alveolar
compartments is a key feature of ARDS [4], and association has been reported between
intensity of alveolar neutrophil infiltration and disease severity [5]. Inappropriate
accumulation/activation of PMNs within the alveoli is proposed to cause unrestrained release
of oxygen radicals, proteases and neutrophil extracellular traps (NETs). Due to challenges
inherent in isolating alveolar PMNs (*PMNs), their functional activity in ARDS is largely
unknown. Historically, mouse models have been used as surrogates for “MPMNss [6];

however, rodent neutrophils differ markedly from their human counterparts.

Traditionally PMNs have been viewed as a homogenous population of short-lived cells with
limited transcriptional capacity and a fixed functional repertoire. More recently, concepts of
long-lived PMNss, retrograde trans-endothelial migration and PMN plasticity have emerged
[7-12]. Given recent demonstrations that PMNs can modify their transcriptional profile
following an inflammatory insult [13], genome-wide transcriptional analysis provides a

powerful tool to identify novel targets relevant to altered PMN functions, and has been
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successfully applied in asthma, pulmonary arterial hypertension and ARDS [14]; however,
studies in ARDS are based on the analysis of total peripheral white blood cells rather than

purified neutrophils.

Lung epithelial cells [15] synthesize granulocyte macrophage-colony stimulating factor (GM-
CSF), a cytokine essential for alveolar macrophage function [16-17] and surfactant
homeostasis [18-19]. Conversely, during inflammation GM-CSF potentiates superoxide-
anion production [20], promotes PMN survival [21], and is detrimental in models of acute
lung injury [22]. PMN longevity increases dramatically in ARDS, and some studies have
identified GM-CSF as a major pro-survival mediator [23]. Whilst the molecular mechanisms
governing PMN lifespan in ARDS are incompletely understood, the cytoprotective effect of
GM-CSF in PMNSs in vitro is Class 1 phosphoinositide 3-kinase (PI3K)-dependent [21].
PI3K inhibition prevents lung tissue edema and leukocyte recruitment in models of ARDS
[24], and inhibition of PI3Ky in a sepsis model reduces end-organ damage [25]. Following
the early exuberant pro-inflammatory response in ARDS, patients develop immune-paresis,
increasing susceptibility to nosocomial infections [26]; recent studies demonstrate that
inhibition of PI3Kd may improve PMN responses during this phase [27]. These observations

have triggered considerable interest in the therapeutic use of PI3K inhibitors in ARDS.

Herein we present the first comprehensive characterization of purified ARDS blood
(**°“PMN) and *"PMNs and the first genome-wide transcriptome analysis of purified ARDS
bloodp\INs. We show that ARDS “PMNss are hyper-segmented, with enhanced CD11b and
reduced CD62L expression, and display delayed apoptosis but preserved oxidative burst,
phagocytosis and neutrophil extracellular trap (NET) responses. ARDS "*°“PMNs display an

intermediate phenotype, with a transcriptome showing significant alterations in cell-survival



Page 37 of 73

— Juss et al. 2015

and inflammatory pathways, but little overlap with the PI3K-dependent gene signature. This
work improves our understanding of PMN function in ARDS and reveals that apoptosis of
ARDS neutrophils is resistant to PI3K inhibition. Together, these observations strengthen the
case to modulate PMN function in ARDS, but cast doubt over the utility of PI3K inhibitors in
this condition. Some results from these studies have been reported in the form of an abstract

[28].

MATERIALS and METHODS

Ethics

All studies complied with the Declaration of Helsinki. Written informed consent was
obtained from the legal surrogate of ARDS patients (UK08/H0306/17). Paired blood samples
were obtained simultaneously from age and gender matched healthy volunteers (HV)

(UK06/Q0108/281).

Bronchoalveolar lavage

Patients fulfilling the Berlin criteria for ARDS [29] were recruited from mixed
medical/surgical and neurosciences/trauma intensive care units in a UK teaching hospital;
exclusion criteria were age <18 years, HIV positive, or if informed assent could not be
obtained. The median tidal volume in the ARDS patients was 7.64 ml per kilogram Predicted
Body Weight (IQR=6.94-8.64 ml/kg). Patients underwent venepuncture, bronchoscopy
(FOB) and bronchoalveolar lavage (BAL) within 48 hours of diagnosis. Sterile isotonic
saline (3x50 ml) was instilled into a sub-segmental bronchus; recovery averaged 90 ml (range
20-120 ml) and did not differ between patients and controls. BALF was immediately filtered
and placed on ice. Control BALF was collected from patients (n=10) undergoing elective

FOB for indications unrelated to infection or ARDS.
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PMN purification

“VPMN and autologous "***PMN were isolated from patients alongside "***PMN from age
and gender-matched HVs. Alveolar PMNs were purified by immune-magnetic negative
selection (RoboSep®, StemCell Technologies) [30] to >90% purity and >98% viability.

bloodp\INs were purified over discontinuous plasma-Percoll gradients [28].

PMN morphology

PMN were classified by nuclear morphology, with the assessor blinded to sample origin.
Mature PMN displayed 3-4 nuclear lobes connected by heterochromatin filaments. Band
PMNs had less condensed chromatin and incompletely segmented nuclei [31], whilst hyper-

segmented PMNs possessed >5 lobes.

PMN activation and apoptosis

HV and ARDS "°**PMNs and unprocessed BALF were re-suspended in PBS containing 5%
BSA and protease inhibitor cocktail (Complete Mini EDTA-free, Roche). Samples were
stained with CD62L-APC (BD Pharmingen-clone 559772), CD11b-FITC (Beckman Coulter
clone IM0530) or isotype-matched controls. PMN apoptosis was assessed after 20 hours by
flow cytometry using FITC-labelled Annexin-V/propidium iodide (AnV/PI, BD-

Pharmingen).

PMN oxidative burst
Neutrophils (5x106/mL) were primed with tumor necrosis factor (TNF)-a (R&D Systems),

GM-CSF, control BALF or ARDS BALF at 37°C for 30 minutes. The oxidative burst in
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response to fMLP (100 nM), zymosan or heat-killed Streptococcus pneumoniae (serum-

opsonized, 5-7 particles/PMN) was assessed by luminol-dependent chemiluminescence [30].

Quantification of inflammatory mediators

BALF and serum mediators were measured by ELISA (LPS (Kamiya), survivin and LTB4
(R&D Systems)), or using the Human Biomarker 40-Plex V-PLEX Kit and Human MMP 3-
Plex Ultra-Sensitive Kit (MesoScale Discovery). Where stated BALF samples were

corrected to the total protein concentration (Pierce™ BCA-Protein Assay).

PMN phagocytosis
PMN phagocytic capacity was assessed using 1 mg/ml pHrodo™ RED Staphylococcus
aureus Bioparticles®” (Life Technologies). Internalization was verified by live confocal

imaging.

NET formation
bloodpp INs and “"PMNs (1x10%ml) incubated with Sytox Green (5 pM, Life Technologies)
were seeded onto 96 well optical microplates (BD Biosciences). NET formation was

quantitated by hourly fluorescence measurements and verified by fluorescence microscopy

using rabbit anti-histone H3 (Ab5103, Abcam).

Neutrophil cytoskeletal remodelling
Freshly isolated PMNs (1 x10%ml) were fixed (4% PFA), permeabilized (0.5% Triton) and
stained with anti-neutrophil elastase (Santa Cruz, 1:1,000) and rhodamine phalloidin 1:200

(Invitrogen).
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Genome-wide transcriptomic changes

Genome-wide transcriptomic changes were assessed in paired blood PMNs from n=12
consecutively recruited ARDS patients, who were representative of the full patient cohort in
terms of age, gender, ARDS severity and causation, and n=12 HVs. Further studies were
undertaken in the following groups of HV "***PMNs (n=10/group): (a) T=0 hours vehicle
control, (b) T=6 hours vehicle control, (¢c) T=6 hours thGM-CSF (1 ng/ml), (d) T=6 hours

panPI3K inhibitor ZSTK474 (10 uM), and (e) T=6 hours thGM-CSF plus ZSTK474.

cDNA prepared from 2.5 ng RNA using WT-Ovation Pico RNA Amplification System
(NuGen) was fragmented and labelled using FL-Ovation cDNA Biotin Module V2 (NuGen).
Labelled cDNA was hybridized onto Hg-U133 Plus 2.0 GeneChip oligonucleotide arrays
(Affymetrix). Raw data (see ‘Additional Materials’ supplement’) were normalised using the
Robust Multi-array Average (RMA) method [32] and Quality Checked in R/Bioconductor. A
linear model was fitted to normalised data for each probe set and a post-hoc test (Fisher LSD)
generated fold changes and p-values. Probes were identified as significant if their fold
change was >1.5 and p<0.05, and mapped to pathways using Ingenuity Pathway Analysis
software. The NextBio analysis platform was used to compare our ARDS data with (pre-

analysed) publicly available transcriptomics data.

Statistical analysis

For each dataset analysed an appropriate linear mixed model was fitted. When required the
data were logarithmically transformed to meet the assumptions of the analysis i.e. normally
distributed errors and homogeneity of variance. Correction for false discovery rates in the
transcriptional and cytokine analysis was according to the method of Benjamini and

Hochberg [33]. The analyses were conducted in SAS version 9.3. Results are presented as
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means = SEM of (n) independent experiments, with p<0.05 considered statistically
significant. Full details of the number of patients and HVs included in each assay are

provided in Suppl Figure S1.

RESULTS

ARDS patient characteristics

Twenty-three mechanically ventilated patients fulfilling the 2011 Berlin definition for ARDS
were recruited; their clinical, demographic and physiological characteristics are outlined in
Table 1. Standardized ventilator strategies, in accordance with the ARDS Network low tidal
volume protocol, were employed. At sample collection, 4/23 had severe ARDS (PaO,/FiO,
ratio <100 mmHg), 11/23 moderate ARDS (PaO»/FiO2 ratio 101-200 mmHg) and 8/23 mild
ARDS (PaO,/FiO; ratio 201-300 mmHg). Sepsis and pneumonia were the commonest
precipitating insults; 13 of 23 patients survived to discharge. All patients underwent FOB
within 48 hours of diagnosis. PMNs constituted 69.7+4.2% of the differential leukocyte
count in ARDS BALF (6.54+3.2% in control BALF) (Table 1). PMN abundance in BALF did
not correlate with initial ARDS severity, abnormalities in gas exchange or BALF protein

concentration (data not shown).

ARDS PMN:s are phenotypically distinct

Comparing purified HV "°*PMNs, ARDS "*°/PMNs and **PMNs revealed striking
differences in cell morphology. While HV bleodpVIN's had few hyper-segmented PMNs,
“WARDS PMNss displayed abundant hyper-segmented nuclei and cytoplasmic vacuolation
(Figure 1A); hyper-segmented PMNs were not identified in control BALF. Immature ‘band’

PMNs were also more common in ARDS "***PMNs and *"PMNs (Figure 1A).
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PMN activation status was assessed by confocal imaging of F-actin and cell surface staining
of CD62L (L-selectin) and CD11b (Macl). Prominent circumferential F-actin fluorescence
was observed in a substantial proportion of the ARDS "°°“PMNs compared with HV

bloodp 1N (Figure 1B). The profile of surface receptor expression (up-regulation of CD11b
and down-regulation of CD62L [36-37]) on both ARDS "*“PMNs and “"PMNss is consistent

with a primed and/or activated phenotype (Figure 1C).

ARDS blood and alveolar PMNs show delayed apoptosis and primed NADPH oxidase
responses

Consistent with a previous report [23], we demonstrate that after 20 hours ex-vivo incubation,
ARDS “PMNs and "***PMNs demonstrated a significantly reduced number of apoptotic
cells (28.5£19.2% (% apoptosis £ SEM) and 42.7+23% respectively) compared to PMNs
isolated from HV blood (69.2+12%) (Figure 2A). The magnitude of the survival response
exhibited by ARDS PMNs was equivalent (28.6+£10%) to the cytoprotective effect conferred
by incubating HV ***/PMNis with a maximally-effective concentration of thGM-CSF (1

ng/ml) (data not shown).

We next compared the ability of ARDS **PMNs and **°“PMNis to mount an oxidative burst
in response to fMLP, opsonized zymosan and Streptococcus pneumoniae (Figure 2B-D). In
contrast to un-primed HV bloodp) 1N, which display minimal ROS generation to fMLP
(Figure 2B-C), “"PMNs and "***PMNs from ARDS patients displayed robust ROS
generation to all three stimuli, which in certain individuals exceeded those of TNFa-primed
HV "°*PMNs (Figure 2D). These data indicate basal priming and preserved NADPH
oxidase responses of ARDS ““PMNs and "***PMNs, challenging the notion that

inflammatory PMNs become ‘exhausted’ at peripheral sites.
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ARDS blood and alveolar PMNs have preserved capacity for phagocytosis and NET
formation

Previous investigators have identified a defect in the phagocytic and microbicidal activity of
neutrophils from ARDS patients [38]. However, in our cohort, flow cytometry and confocal
microscopy demonstrated that the capacity of ARDS *"PMNs and "*°*“PMNis to phagocytose
pHrodo™ RED-labelled Staphylococcus aureus was fully preserved (Figure 3A-B). This
assay, supported by live cell imaging, is based on differential fluorescence of this bioparticle
in an acidic environment, ensuring that only organisms within functional phagosomes are

detected.

In addition to phagocytosis and the oxidative burst, PMNs deploy NETs to facilitate pathogen
clearance. NETSs are composed principally of a DNA scaffold decorated with anti-microbial
granule proteins, which acts as a mesh to immobilize pathogens (Figure 3C). In response to
PMA (Figure 3 C-D) or pyocyanin (data not shown) ARDS *PMNs and "**/PMNis
displayed a similar capacity for NET production compared to HV bloodpp TN, Collectively,
our results, demonstrate preservation of the anti-microbial functions of ARDS VPMNs and

blood
*°“PMNes.

Defining the impact of ARDS on serum/BALF cytokine profiles and the transcriptional
signatures of blood PMNs

To address whether factors present in the serum or BALF in ARDS patients could account for
the primed/pro-survival PMN phenotype, a series of multiplex ELISA and bioassays were
used to characterize the cytokine and growth factor profiles (n=18). As shown in Figure 4

and Suppl Figure S2, a consistent profile of raised acute phase markers (e.g. CRP, SAA) and
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inflammatory cytokines (e.g. TNFa, TARC, MCP-1, IL-8 and IL-6) was observed in ARDS
serum and BALF compared to HV samples. By contrast, when BALF samples were
corrected for total protein concentration, only CRP, IL-6 and MCP-1 levels were significantly
higher in ARDS compared to control (Suppl Figure S2). Of note, at the single time point

sampled, GM-CSF was only quantifiable in 5/23 ARDS BALF samples (LLoQ 7.6 pg/ml).

RNA transcriptomic analysis comparing freshly isolated ARDS bloodp)INs with HV
bloodp)\INs revealed a total of 1319 altered genes (using cut-offs of fold-change >1.5 and
p<0.05; top ranked up- and down-regulated transcripts shown in Figure SA; full list of all
1319 genes and their relative fold changes in Suppl Table S3). Using NextBio (which
recognised 1282 of the 1319 differentially expressed genes) we compared these changes to
publically available datasets, revealing a striking similarity to data in leukocytes from
patients with severe burns or sepsis [39-40]; not only was there a strong overlap in gene
changes, but also the direction of change correlated almost completely (Figure 5B).
Ingenuity analysis revealed a significant increase in pathways associated with the immune
response, cytoskeletal remodelling and mucin production, as well as significant decreases in
cell death/apoptosis pathways, consistent with the neutrophil phenotype observed (Suppl
Figure S3). Of note, of the 1319 observed transcript changes, only 216 were differentially
expressed in the same direction compared to HV bloodp\IN's treated ex-vivo with GM-CSF
(Suppl Figure S4). The data discussed in this publication have been deposited in NCBI's
Gene Expression Omnibus and are accessible through GEO Series accession number

GSE76293 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76293).

Influence of the local airway environment on the ARDS PMN phenotype
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To establish the significance of the alveolar inflammatory environment, we sought to induce
a phenotypic switch using ARDS BALF. Incubating HV "***PMNs with IMDM+10%
autologous serum containing ARDS BALF (50:50, v/v) reduced the extent of apoptosis
observed ex-vivo at 20 hours (37.4+21.7% compared to 50:50, v/v control BALF
70.5+12.4%) (Figure 6A). Furthermore, treatment with ARDS BALF (50:50, v/v) for 30
minutes enhanced fMLP-induced ROS production in HV bloodp) INg (Figure 6B), to a level
comparable to optimally TNFa- or GM-CSF-primed HV bloodp)\ INs (not shown), whilst
control BALF had little effect. Thus ARDS BALF supernatant recapitulated the pro-survival,

primed-NADPH oxidase signature seen in ARDS **°Y*"PMNss.

Potential role of PI3K inhibition as a strategy to modulate ARDS "*°¥*"¥ PMN behaviour
A key objective of this study was to define the sensitivity of inflammatory PMNs to PI3K
inhibition, since this pathway is pivotal in neutrophil survival, priming/activation and reactive
oxygen species (ROS) production [30]. Firstly, we confirmed that a pan-PI3K inhibitor
ZSTK474 (10 uM) [41], and to a lesser extent the p38MAPK inhibitor SB741445 (10 uM)
blocked GM-CSF-induced PMN survival in HV "PMNs in vitro (Figure 7A). ZSTK474
also blocked the survival effect of ARDS BALF supernatant on HV bloodpIN's (Figure 7B).
However, neither compound restored normal neutrophil apoptosis in ARDS blocdpp [N
(Figure 7C) implying that the aberrant disease-associated neutrophil survival is either
irreversible or operates through a PI3K-independent pathway. Given that even the delayed
addition of ZSTK474 to GM-CSF-treated HV "*!PMNSs retains effectiveness in overcoming
the pro-survival effect of this cytokine (data not shown), the involvement of a PI3K-
independent pathway seems most likely. This conclusion is supported by the minimal
overlap we observed between the transcriptomal signatures seen in the ARDS **“*PMNs and

those seen in HV "***PMNs treated with ZSTK474 (Suppl Figure S5). In contrast, ROS



Page 46 of 73

Juss et al. 2015

production by PMNs from HV and ARDS patients was completely abrogated by ZSTK474

(Figure 7D).

DISCUSSION

Isoform-selective PI3K inhibitors have been proposed as anti-inflammatory agents in diseases
such as ARDS [42], hence it is of importance to study their efficacy in patient-derived cells.
ARDS *PMNs have been little studied due to the difficulty of obtaining these cells from
acutely unwell patients. Using purified blood and alveolar neutrophils from 23 ARDS
patients, we demonstrate a stepwise change from HV "***PMNs through ARDS "*PMNs to
ARDS "PMNs. ARDS “YPMNSs, and to a lesser extent ARDS *°®PMNs, were distinct from
HV "**PMNs, with hyper-segmented nuclei, increased CD11b expression, prolonged
survival, and primed NADPH oxidase responses. Surprisingly, whilst the respiratory burst
remained fully sensitive to PI3K inhibition, the pro-survival phenotype was not reversed by

this strategy.

Few previous studies have assessed the characteristics of paired circulating and post-migrated
inflammatory tissue neutrophils. The hyper-segmented CD1 16™€"/CD62L"Y cells with
enhanced oxidative capacity we identify in ARDS"® and ARDS *"PMNss are reminiscent of
circulating neutrophils isolated following endotoxin challenge [43-44]; these latter cells were
immunosuppressive, inhibiting T cell proliferation by release of hydrogen peroxide at the
neutrophil/T cell interface. Increased nuclear segmentation and oxidative potential has also
been observed in tumor-associated neutrophils (45), associated with increased anti-tumor
activity. Prolonged survival of ARDS “PMNs has been reported previously and attributed to
GM-CSF/G-CSF in BALF [23], but in contrast to Matute-Bello et a/ we did not observe

significantly elevated levels of these cytokines, perhaps related to disease heterogeneity and
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differences in sampling time. Delayed apoptosis has been measured in neutrophils recruited
to skin chambers versus paired circulating neutrophils, but synovial fluid-derived PMNs from
patients with rheumatoid arthritis exhibited normal apoptosis [46]. These differences
correlated with local IL1-f levels, but IL1-f3 in our ARDS BALF fluid was not significantly
elevated. The variable functional capacity of neutrophils from different locations underscores
the need to explore the efficacy of potential therapeutic agents in disease-relevant cell

populations.

We observed a pro-inflammatory cytokine profile in the blood of ARDS patients, including
several established priming agents. In our study, ARDS ***® and ARDS “"PMNs were
functionally primed, and such cells have been implicated in lung injury [47-48]. We
previously demonstrated that the pulmonary capillary bed can trap and 'de-prime' neutrophils,
and that this mechanism may fail in ARDS, augmenting the circulating pool of these
potentially injurious cells [49]. Additional priming signals may be imparted during vascular
transmigration [50], and ARDS BALF also primed the oxidative burst of HV "**/PMNs.
Thus a number of different factors may contribute to the pooling of primed neutrophils within

the alveolar environment in ARDS.

ARDS !PMNs and in particular ARDS **PMN's survived longer during ex-vivo culture
than HV " PMNs. This pro-survival phenotype was recapitulated by incubating HV
bleodpVINs with ARDS BALF, implying that the enhanced longevity of these cells results at
least in part from local exposure to mediators. However, whilst the pan-PI3K inhibitor
ZSTK474 did not reduce the lifespan of ARDS ***“PMNss it did reverse the pro-survival
effects of both GM-CSF and BALF on HV "°*PMNs in culture, suggesting that the complex

cytokine environment in BALF is not the only factor conferring PI3K-resistance. It is
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possible that the duration of exposure to pro-survival mediators in vivo prior to inhibitor
exposure is relevant, and survival signals imparted during transmigration will likewise have
been entrained prior to PI3K inhibition. Finally, hypoxia may impart additional signals that
are also relatively PI3K-resistant, and HIF-dependent signalling was up-regulated (see Suppl
Table 3 - ranked 14th in the pathways changed in this setting). Together with the limited
overlap between the ZSTK474 "**PMN or GM-CSF-"""PMN transcriptomes and the ARDS
bloodpp\IN signature, our results suggest that targeting of PI3K during ARDS, while
suppressing the damaging ROS formation, would not enhance cell clearance via apoptotic
pathways.

We further interrogated the activation state of ARDS "¢

PMNs by undertaking the first
reported transcriptomic analysis of purified peripheral blood PMNs from ARDS patients.

Our data revealed remarkable overlap between the transcriptomic profile of ARDS "***PMNs
and those published for mixed leukocytes in burns (see Figure 4B) and sepsis cohorts [34-
35]. The top five canonical pathways identified in the ARDS blood neutrophil gene signature
were the glucocorticoid, IL-4, p38 MAPK, antigen presentation and CDC52 pathways. These
were also within the top five pathways identified in the previous burns and sepsis cohorts
using mixed leukocytes [39-40]. This suggests that despite their heterogeneity, there is a
strong commonalty in a range of acute severe inflammatory disorders. This also provides

possible directions for novel therapeutic interventions aimed for example at the IL-4 receptor

or p38 pathways.

In this study we sought to characterise the functional and transcriptional profile of PMNs
isolated from ARDS patients’ blood and airways. Although our study captured only 23

patients at a single time point, our data add considerably to knowledge of “"PMN and
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bleodpVIN function and signaling profiles in ARDS; they challenge data from both animal

models and from healthy cells, with a marked primed and pro-survival phenotype, the latter
recalcitrant to PI3K inhibition. We conclude that intervention with a PI3K inhibitor in these
patients is unlikely to be an effective therapeutic strategy, since it will impair PMN
bactericidal function without facilitating inflammation resolution. Our findings highlight the
importance of working with patient-derived cells, particularly for biomedical research into

novel treatments for ARDS.
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FIGURE LEGENDS
Table 1

Clinical characteristics of patients with ARDS

Figure 1

Circulating and alveolar neutrophils from patients with ARDS are phenotypically
distinct compared to healthy volunteer neutrophils

A. Morphology of freshly purified PMNs from HVs in comparison with ARDS blood and
alveolar PMNs was assessed. Representative photomicrographs of cytospins (x100, stained
with modified Wright stain) of HV "°*PMNs, and autologous *YPMNs and "**?ARDS PMNs
isolated in parallel (n=19). Classical PMNs have 3-4 nuclear lobes connected by filaments of
dense heterochromatin, band PMNs (red arrow) contain a curved nucleus that is not
completely segmented into lobes, and hyper-segmented PMNs (black arrow) have nuclei
comprised of five or more lobes. ARDS BALF contains abundant hyper-segmented PMNss
with up to 12 nuclear lobes (inset). PMN subsets present in the blood (HV n=19; ARDS
n=19) and ARDS BALF (n=11) were quantitated morphologically by light microscopy (right-
hand panel). The %PMN subsets were analyzed on the log) scale using a linear fixed effects
model (*** P<0.0001 for hyper-segmented cells). B. HV bloodp\INs and autologous ARDS
"PMNs and "**!PMNs stained for F actin polarization (rhodamine-phalloidin — green) and
elastase (red) with nuclei (DAPI) depicted in blue. Representative (of n=3)
immunofluorescence confocal photomicrographs (x40) illustrate ARDS “MPMNs and
bloodp\ N display a prominent circumferential F actin ring (white arrows). C. PMN cell
surface CD62L-FITC and CD11b-APC expression of freshly isolated HV "**“PMNs,
autologous ARDS *PMNs and "***PMNs assessed by flow cytometry. Results are

representative of three independent experiments. The CD11b expression (MFI corrected for
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isotype control readings) for HV blood neutrophils was 11.7+0.9, ARDS blood neutrophils
74+6, and ARDS BALF neutrophils 427+50; the CD62L expression (MFI corrected for
isotype control readings) for HV blood neutrophils 114+12, ARDS blood neutrophils

8.44+0.6, and ARDS BALF neutrophils 8.7+1.9.

Figure 2

Circulating and alveolar neutrophils from patients with ARDS exhibit delayed
apoptosis and heterogeneous NADPH oxidase responses

A. HV "PMNs (5x10%ml) were cultured in IMDM with 10% autologous

serum. Apoptosis was quantitated by flow cytometry following AnV staining after 20 hours
in culture. The data were analyzed using a linear fixed effects model (**P<0.001,
***¥P<0.0001). B. Representative kinetic profile of the neutrophil oxidative burst. Freshly
purified HV "*PMNs (unprimed-black squares and rhTNFa (10 ng/ml), primed-white
squares), autologous ARDS “"PMNs (black circles) and "***PMNs (white circles) were
incubated with luminol and HRP in a 96-well luminometer plate and fMLP (100 nM) added
via the injection port of a Centro LB 960 luminometer (Berthold Technologies); light
emission (RLU) was recorded at 6 second intervals over 10 minutes. C. The oxidative
response in freshly isolated un-primed and thTNFa-primed HV blood following stimulation
with fMLP is expressed as the relative peak height to the thTNFa-primed response in HV
blodp\INs. D. Peak height of the neutrophil oxidative response in freshly isolated autologous
ARDS “"PMNs and "*°“PMNs normalised to the HV blood PMN response in Di to fMLP
(100 nM), Dii to serum-opsonized zymosan (5-7 particles/PMN), and Diii to serum-

opsonized heat-killed Streptococcus pneumoniae (5-7 particles/PMN).

Figure 3
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Circulating and alveolar neutrophils from patients with ARDS exhibit preserved
phagocytic capacity and heterogeneous NET responses

A. Analysis of phagocytosis by freshly isolated PMNs. Representative (of n =5
experiments) immunofluorescence confocal photomicrographs taken after 1 hour incubation
demonstrating internalized pHRodo conjugated S. aureus (red) and PMN nuclei
counterstained with DAPI (blue). B. PMN phagocytosis was quantitated by flow cytometry
with fluorescence excitation 530 nm/emission 590 nm. These data were analyzed using a
linear fixed effect model (ns p>0.05). C. NET formation by freshly isolated autologous
blood and alveolar ARDS PMNs and HV PMNs was assessed following treatment with PMA
(20 nM) or vehicle control. Representative (n=4) fluorescence photomicrographs of NETs,
x63 magnification. Unmerged images (lower panels) stained for extracellular DNA scaffold
(SYTOX: green) and citrullinated histones (CitHis: red). The precise overlap of these two
colors in merged images generates the ochre color representing NETS in the PMA-treated
cells; no NETS are visible in the control samples. D. Kinetics of NETs formation was
assessed over 4 hours by measuring total fluorescence using a VICTOR?® Multilabel Reader

using Wallac 1420 Workstation v3.00 software and subtracting baseline fluorescence.

Figure 4

Heat map of the inflammatory markers in the serum of healthy volunteers and patients
with ARDS

Inflammatory mediators in serum were measured using either an ELISA kit or an
electrochemical luminescence immunoassay MesoScale Discovery (MSD) multiplex. In the
heatmap each row is a different cytokine and each column is a different patient. The coloring
represents the abundance of the inflammatory marker measured. The lowest abundance

measured are presented by bright green while the highest by bright red. To assess the mean
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difference in abundance between the disease groups a linear mixed model was fitted to the
data with disease as a fixed effect and the donor pairing as a random effect. The heat maps
and dendrogram (variable tree) were obtained from a hierarchical clustering of the cytokines
using complete linkage. The variable tree to the left of the heat map shows how the cytokines
cluster together based on their Pearson’s correlation i.e., the more correlated two cytokines
are the closer they are in the branches of the dendrogram. The stars on the plot represent the
FDR adjusted p-value of the disease effect in this model where NS=FDR p>0.05, *=FDR p

<0.05, **=FDR p< 0.001 and ***=FDR p< 0.0001.

Figure 5

Genes altered greater than 5-fold in ARDS blood neutrophils compared to healthy
volunteer blood neutrophils

A. Negative values indicate a decrease in relative gene expression, while positive values
indicate an increase in relative gene expression. All p<0.05 with (n) = 12 for ARDS and HV
blood PMNs. B. Diagrammatic representation of gene transcript changes between ARDS and
HYV blood PMNs and the overlap in the ARDS transcript signature with pediatric early stage

burn data [39].

Figure 6

Treatment of healthy volunteer blood neutrophils with BALF from patients with ARDS
replicates the pro-survival and primed neutrophil phenotype

A. HV PMNs were incubated in IMDM+10% autologous serum containing either 50:50 v/v
control BALF or ARDS BALF and apoptosis was assessed at 20 hours by flow cytometry
following AnV staining. These data were analyzed using a linear mixed effects model with

the HV donor fitted as a random effect (ns P>0.05, ***P<(0.0001). B. Freshly isolated HV



Page 58 of 73

Juss et al. 2015

PMNs were treated with 50:50 v/v control BALF or ARDS BALF for 30 minutes at 37°C
prior to stimulation with fMLP (100 nM). Chemiluminescence was recorded using a Centro
LB 960 luminometer and expressed graphically as the absolute peak height in relative light
units (RLU). These data were analysed on the log;( scale using a linear mixed effects model

with the HV donor fitted as a random effect (ns P>0.05, ***P<0.0001).

Figure 7

Effects of PI3K and p38 MAPK inhibition on healthy blood and ARDS neutrophils

A. HV blood PMNs were pre-incubated with either 0.1% DMSO vehicle control, p38 MAPK
inhibitor (SB741445 (10 uM)) or pan-Class I PI3K inhibitor (ZSTK474 (10 uM)) for 20 mins
and then treated with rhGM-CSF (1 ng/ml). Apoptosis was quantitated after 20 hours in
culture by flow cytometry following AnV and PI staining. These data were analyzed using a
linear mixed effects model with the HV donor fitted as a random effect (***P<0.0001). B.
HYV blood PMNs were pre-incubated with the indicated inhibitors for 20 mins prior to culture
in 50:50 v/v ARDS BALF. Apoptosis was quantitated after 20 hours in culture by flow
cytometry following AnV and PI staining. These data were analyzed using a linear mixed
effects model with the HV donor fitted as a random effect (ns P>0.05, **P<0.001). C.
ARDS blood PMNs were incubated with SB741445 or ZSTK474 and apoptosis was
quantitated by flow cytometry following AnV and PI staining. These data were analyzed
using a linear mixed effects model with the HV donor fitted as a random effect (ns P>0.05,
*P<0.05). D. ARDS blood and alveolar PMNs were pre-incubated with ZSTK474 (10 uM)
for 30 minutes at 37°C prior to stimulation with fMLP (100 nM). Chemiluminescence was
recorded using a Centro LB 960 luminometer and expressed graphically as the absolute peak
height in relative light units (RLU). Data were analysed on the log;, scale using a linear

mixed effects model with the HV donor fitted as a random effect (* P<0.05, ***P<0.0001).
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Table 1. Demographics and clinical characteristics of patients with ARDS

ARDS

Mild Moderate Severe
Number of patients 8 11 4
Mean age (years) 49+16.3 62.7+11.1 48.3+£21.0
Gender 7:1 5:6 3:1
(Male:Female)
Patient mortality (n) 2 7 2
PaO, (mmHg) 92.2+17.6 82.4+16.8 68.4+2.3
Mean PaO,/FiO, 246.1+18.9 139.5+18.8 90.0+£5.7
(mmHg)
PEEP (cmH,0) 8.9+2.1 8.94+2.6 8.5+1.9
Blood WBC 11.1+10.1 10.8+8.0 12.9+8.4
Blood PMN count 8.4+7.2 9.7+£7.9 11.4£7.5
% PMNs in BALF 69.7+2 (n=6) 73.7£11.1 (n=10) 59.8+2 (n=3)

Etiology of ARDS

Community acquired
pneumonia,
neutropenic sepsis,
fresh water drowning,
liver failure post
transplant donation,
ethylene glycol
poisoning

Community acquired
pneumonia, aspiration
pneumonia,
neutropenic sepsis

Community acquired
pneumonia, aspiration
pneumonia,
neutropenic sepsis
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ARDS neutrophils have a distinct phenotype and are resistant to phosphoinositide 3-

kinase inhibition

Juss JK, House D, Amour A, Begg M, Herre J, Storisteanu DML, Hoenderdos K, Bradley G,

Lennon M, Summers C, Hessel EM, Condliffe AM, Chilvers ER.

Online Data Supplement

Supplementary Figure 1

Flowchart showing the precise details of the number of subjects included in each assay.

Supplementary Figure 2

Inflammatory markers in the BALF of patients with ARDS

The concentration of key inflammatory mediators, were measured in control (n = 10) and
ARDS (n = 18) BALF supernatants either by ELISA kit or an electrochemical luminescence
immunoassay MesoScale Discovery (MSD) multiplex. S1(i) shows a heatmap representation
of BALF markers in control subjects (CO1-C10) vs ARDS patients (A01-18) without
correction for BALF total protein, and S1(ii) shows a heatmap representation of the identical

samples after correction for BALF total protein content (* P<0.05, ** P<0.01, ***P<0.001).

Supplementary Figure 3

Heat map of the transcriptomic changes in HV and ARDS blood PMNs
A. Immune response. B. Apoptosis. C. Cytoskeletal remodelling. D. Mucin production. (n)

= 12 for both groups.
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Supplementary Figure 4

The genes altered greater than 5-fold in ARDS neutrophils compared to HV neutrophils
Negative values indicate a decrease in relative gene expression, while positive values indicate
an increase in relative gene expression. Bars highlighted in red where also altered in HV

PMNs incubated with GM-CSF (fold change>1.5, p<0.05, (n) = 12 for all groups).

Supplementary Figure 5

The genes altered greater than 5-fold in ARDS neutrophils compared to HV neutrophils
Negative values indicate a decrease in relative gene expression, while positive values indicate
an increase in relative gene expression. Bars highlighted in green were also altered in HV

PMN s incubated with a pan-PI3K inhibitor (fold change>1.5, p<0.05, (n) = 12 for all groups).

Supplementary Table 2

Tables (i)-(vi) provide the full data set for blood and BALF cytokine values for HVs and
ARDS patients. For the BALF samples these are given both corrected and uncorrected for

total protein content.

Supplementary Table 3

A comprehensive list of all 1319 significantly altered genes (fold change > 1.5; unadjusted p-
value < 0.05; false discovery rate g-value < 0.05) identified by the comparison of freshly

isolated ARDS "*°“PMNs with HV "*°*?PMNs using Affymetrix mRNA transcriptomic

analysis.
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Juss et al 2015
Supplementary Figure 3

A. Immune response
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Supplementary Figure 3

C. Cytoskeletal remodelling
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Supplementary Figure S4
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Supplementary Figure S5
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