This is a repository copy of Prospective Validation of a Low Rectal Cancer Magnetic Resonance Imaging Staging System and Development of a Local Recurrence Risk Stratification Model: The MERCURY II Study.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/97498/

Version: Accepted Version

Article:

https://doi.org/10.1097/SLA.0000000000001193

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Abstract 250word

Objective: This study aimed to validate an MRI staging classification that preoperatively assessed the relationship between tumour and the low rectal cancer surgical resection plane (mrLRP).

Background: Low rectal cancer oncological outcomes remain a global challenge, evidenced by high pathological circumferential resection margin (pCRM) rates and unacceptable variations in permanent colostomies.

Methods: Between 2008-2012, a prospective, observational, multicentre study (MERCURY II) recruited 279 patients with adenocarcinoma ≤6cm from anal verge. MRI assessed: mrLRP “safe or unsafe”, venous invasion (mrEMVI), depth of spread, node status, tumour height and tumor quadrant. MRI based treatment recommendations were compared against final management and pCRM outcomes.

Results: Overall pCRM involvement was 9.0% (95% CI 5.9-12.3%); significantly lower than previously reported rates of 30%. Patients with no adverse MRI features and a ‘safe’ mrLRP underwent sphincter-preserving surgery without preoperative radiotherapy, resulting in a 1.6% pCRM rate. The pCRM rate increased five-fold for an ‘unsafe’ compared with ‘safe’ preoperative mrLRP (OR5.5 [95%CI 2.3-13.3]). Post-treatment MRI reassessment indicated a ‘safe’ ymrLRP in 33 of 113 (29.2%), none of whom had ypCRM involvement. In contrast, persistent “unsafe” ymrLRP post therapy resulted in 17.5% ypCRM involvement. Further independent MRI assessed risk factors were: EMVI (OR3.8 [95%CI 1.5-9.6]), tumours <4.0cm from anal verge (OR3.4 [95%CI 1.3-8.8]) and anterior tumors (OR2.8 [95%CI 1.1-6.8]).

Conclusions: The study validated MRI low rectal plane assessment; reducing pCRM involvement and avoiding overtreatment through selective pre-operative therapy and rationalised use of permanent colostomy. It also highlights the importance of post-treatment re-staging.
Prospective Validation Of A Low Rectal Cancer MRI Staging System
And Development Of A Local Recurrence Risk Stratification Model:
The MERCURY II Study

Nicholas J Battersby, MRCS¹, Peter How MRCS¹, Brendan Moran, FRCSI², Sigmar Stelzner MD³, Nicholas P West PhD⁴, Graham Branagan FRCS⁵, Joachim Strassburg FRCS⁶, Philip Quirke PhD, FRCPATH⁴, Paris Tekkis MD⁷, Bodil Ginnerup Pedersen FRCR⁸, Mark Gudgeon FRCS⁹, Bill Heald FRCS¹, and Gina Brown MD, FRCR¹⁰ on behalf of the MERCURY II study group

From the 1.Pelican Cancer Foundation, Basingstoke, UK; 2.North Hampshire Hospital, Basingstoke, UK; 3. Dresden-Friedrichstadt General Hospital, Dresden, Germany; 4. Pathology & Tumor Biology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK; 5. Salisbury District Hospital, Salisbury, UK; 6. Vivantes im Friedrichshain, Berlin, Germany; 7. The Royal Marsden NHS Foundation Trust, London, 8. Aarhus University Hospital, Aarhus, Denmark; 9. Frimley Park Hospital, Frimley, UK; 10. The Academic Department for Radiology, The Royal Marsden Hospital, Sutton, UK.

Corresponding author: Gina Brown, MBBS, MD, FRCR, Department of Radiology, The Royal Marsden Hospital NHS Trust, Downs Rd, Sutton SM2 5PT, UK. E-mail: Gina.Brown@rmh.nhs.uk. Tel: 020 8661 3964

Trial Management Committee Gina Brown, Brendan Moran, Phil Quirke, Nick Battersby, Peter How, Nick West, Omar Omar, Karen Thomas, Oliver Shihab, Paris Tekkis, Sigmar Stelzner, Lisa Scurri. Contributors MERCURY II was designed by GB¹⁰, BM, PQ, NW, GB³, KT, PH, OS. Analyses were undertaken by NJB, GB¹⁰, OO, and PT. NW and PQ undertook central pathological review. NB, BM and GB drafted the report and revised it with input from all writing committee members.

The following centres and investigators (listed in alphabetical order) participated in the trial (the principal investigator at each centre is indicated by *): Denmark: Aarhus Amtssygehus B Ginnerup-Pedersen*, T Goebel, S Laurberg Germany: Vivantes-Klinikum im Friedrichshain, affiliated with Charité University (Berlin): J Strassburg*, O Puettcher, U Reichelt, J Wagner; Hospital Dresden-Friedrichstadt General Hospital (Dresden) L Domicichowski, S Gotthardt, T Lienau C Schubert, E Puffer, S Stelzner* H Witzigmann. Serbia: First Surgical Clinic (Belgrade) S Antic, M Pepovic, G Barisic, Z Krivokapic, M Velimir, J Petrovic*. UK: Ashford St Peters P Bearn, M Creagh, L De Snoo F Newman, B Sclanders, H Scott, J Trickett*, S Tyte; East Surrey Hospital J Grabham*, N Sellars, S Weller; Epsom General Hospital J Harris, M Raja, P Toomey*; Frimley Park Hospital P Denham, D Edwards, S Essapen H Evans, M Gudgeon*, N Hughes; Hampshire Hospitals Foundation Trust T D Cecil, J Finch, I Ilseley, A Leppington-Clarke, A Mustajab, H O'Neil, B J Moran*, F Power, C Rees, G Sharpe, O Shihab, N Summers, A Thrower; Kingston Hospital S Evans, A Fawcett*, N VanAs; Mayday University Hospital M Abulafi*, A Amaout, N Bees, H Blake, K Bundy, N Jeyadeven, I Swift; Royal Marsden Hospital G Brown*, I Chau, D Cunningham, G Stamp D Tait, P Tekkis, A Wotherspoon; Salisbury District Hospital G Branagan*, H Chave, C Fuller, S McGee, L Richardson, S Woodward; St Helier Hospital C D George, L Temple*.

Funding: Pelican Cancer Foundation and NIHR Biomedical Research Centres.

Running title: MRI assessment of the low rectal plane

Pages 15, Figures 3, Tables 6.
Introduction

In rectal cancer management an incomplete cancer resection, identified by histopathological circumferential resection margin (pCRM) involvement results in increased local recurrence and poor oncological outcomes. Low rectal cancer, defined as adenocarcinoma less than six centimeters from the anal verge, accounts for one-third of all rectal cancers. pCRM involvement occurs in 20-36% of low rectal cancer surgical specimens, which is significantly worse than resection outcomes for mid and upper rectal cancer. These poor outcomes are attributed to suboptimal traditional abdominoperineal excision (APE) techniques that fail to achieve an adequate CRM at the distal mesorectum and at the sphincter complex. Additionally the surgical decision-making between restorative-resection and an APE has been inconsistent. From the patient's perspective this has led to unacceptable variations in permanent colostomy rates. Hence, low rectal cancer management is a unique challenge due to poor oncological outcomes and high permanent colostomy rates.

A curative low rectal cancer restorative-resection requires both the mesorectal fascia plane and the intersphincteric plane to be clear of tumor (Figure 1). The MERCURY study prospectively validated the ability of high-resolution MRI to pre-operatively assess the ‘tumor-mesorectal fascia relationship’. No pre-operative staging system to assess the intersphincteric plane has been prospectively validated. If tumour invades the intersphincteric plane, sphincter excision and a permanent stoma are needed to achieve a clear pCRM. Therefore currently it is not possible to pre-operatively assess the feasibility of a restorative resection or quantify the risk of pCRM involvement in low rectal cancer.

An MRI staging system to assess ‘tumor-intersphincteric plane relationship’ has been developed, figure 2a&b. This staging system was retrospectively tested in low rectal cancer patients from the MERCURY study; tumor extending into the intersphincteric plane had a seventeen-fold increased risk of pCRM involvement. The MERCURYII study was
designed to prospectively validate this MRI low rectal cancer staging system. This MRI assessment guided pre-operative decisions by identifying tumors at risk of pCRM involvement. The primary aim was to reduce low rectal cancer pCRM involvement to less than 15% by using MRI planning to determine the relationship of tumor to both the mesorectal fascia and intersphincteric plane. This information allows a clear pCRM to be achieved through appropriate selection for pre-operative therapy and choosing the correct plane of surgery.

Patients and Method

Eligibility for Enrolment

The prospective, multicentre, observational MERCURY II low rectal cancer study ([NCT02005965](https://clinicaltrials.gov/ct2/show/NCT02005965)) was approved by UK research and ethics committee (REC 07/Q1702/75) and local review boards in Aarhus, Belgrade, Berlin and Dresden. Consecutive patient enrolment occurred between January 2008 - March 2012. Eligibility criteria included adenocarcinoma with distal margin at or below 6·0cm from anal verge on clinical examination and MRI. Exclusion criteria were pregnancy, previous pelvic malignancy, pelvic radiotherapy, pelvic floor surgery or contraindicated MRI.

Radiological Assessment

Pelvic high-resolution MRI was performed according to MERCURY protocol. Twenty one designated radiologists (7-18 years experience) from 14 centres prospectively pro forma reported MRIs for: tumor height (determined by distance from inferior tumor edge to anal verge on sagittal MRI view); tumor quadrant (defined by the site of maximal invasion on axial MRI imaging); mrT stage (mrT1-submucosa invasion, T2-muscularis propria invasion, T3a&b<5mm beyond muscularis propria, T3c&d≥5mm beyond muscularis propria, T4-invasion into adjacent structure or perforating peritoneum): mrN status (morphologic rather than size criteria determined whether a node was benign or malignant - malignant nodes require irregular outlines or internal signal heterogeneity [mrN1 0-3 nodes, mrN2...
≥4nodes; extramural venous invasion (tumor signal intensity expanding a vessel).

MRI low rectal cancer plane staging

As routine current practice, radiologists reported the relationship of the tumor to the mesorectal fascia. All MERCURYII radiologists underwent workshop training in order to implement a previously developed staging system
to assess the intersphincteric plane (figure 2a&b). MRI intersphincteric plane ‘safe’ tumors do not involve the intersphincteric plane or levator muscle. MRI intersphincteric plane ‘unsafe’ tumors extend into the intersphincteric plane, ≤1mm of levator ani or involve adjacent structures such as the external sphincter. By combining the previously validated assessment of the mesorectal fascia with intersphincteric plane staging, for the first time, radiologists were able to assess the entire low rectal cancer plane (figure 1). Combined staging of intersphincteric plane and mesorectal fascia plane was termed MRI low rectal plane (mrlRP). Hence, low rectal cancer threatening: mesorectal fascia or the intersphincteric plane was termed mrlRP ‘unsafe’. Recommended surgical techniques were advocated according to MRI staging of the operative plane (table 1).

When pre-operative therapy was utilised, post-treatment MRI reassessment of all tumor characteristics occurred (post-treatment staging was denoted by ‘y’ pre-fix). Post-treatment assessment included low rectal cancer plane (ymrRP) restaging and evaluation of treatment response using MRI tumor regression grade (mrtRG), as previously described.

A ‘good response’ was defined as mrtRG1-2 and a tumour regressing from a mrlRP ‘unsafe’ plane to a ymrRP ‘safe’ plane.

Treatment and Surgery

Treatment decisions were made by multidisciplinary cancer teams. Pre-operative therapy was recommended for adverse radiological features: an ‘unsafe’ intersphincteric plane, tumor <1mm from mesorectal fascia CRM, ≥mrt3c, mrtN2 or mrem VI. The policy for high-risk stage II and all stage III rectal cancer was to offer adjuvant chemotherapy.
A standardised technique for high-quality mesorectal dissection was used. An extralevator APE (ELAPE) was recommended for tumors extending beyond the intersphincteric plane; whereby a wider resection margin at the level of puborectalis was achieved by an extended excision that included a cuff of levator muscle (figure 1c). Protocol pathway deviations are recorded in figure 3.

Histopathological Assessment

Specialist colorectal histopathologists at each centre (26 in total with 5–25 years experience) applied prospective proforma reporting by TNM classification and current UK guidelines. To enable MRI comparison with histopathology additional detail relating to planes of excision (mesorectum and sphincters), tumor orientation and relationship to sphincter complex were recorded (appendix 1). Histopathologically involved circumferential resection margin (pCRM) was defined as tumor ≤1 mm from the resection plane. An ELAPE was distinguished from “standard” APE (sAPE) by operation record; confirmed by the presence (ELAPE) or absence (sAPE) of a cuff of levator muscle on pathological examination. For quality control, specimens were routinely photographed; auditing mesorectal dissection quality and in APEs, tissue volume at puborectalis level.

Statistical Analysis

Demographic and outcome data were compared as proportions by χ^2 test, and ordered categorical variables by Mann-Whitney U test. mrLRP status (‘safe’ and ‘unsafe’) was assessed against the pCRM outcome (\leq1mm or $>$1mm) using χ^2, a significant difference was determined by p-value <0.05 and by non-overlapping 95% confidence intervals. Historically, with conventional staging, the low rectal cancer pCRM involvement rate has been 30%. The primary end-point was to reduce pCRM involvement from 30% to 15%. Sample size by single stage Simon design (α0.05, β0.9) with 25% dropout, required 271 patients. The odds ratio and confidence limits for mrLRP resulting in pCRM involvement were calculated by using Cox-Hinkley-Miettinen-Nurminen method.
Risk factors related to pCRM involvement were identified using univariate logistic regression. Continuous variables were grouped into subcategories according to increasing pCRM risk and univariate logistic regression used to compare these with a reference category (table 5). Multivariate regression analysis to adjust for multiple risk factors and their interactions was used, subsequently derived coefficients were used to weight the predicted risk of an incomplete resection (pCRM involvement) (table 6).

Although no external validation was performed we internally validated the model by bootstrapping method; deemed most suitable for this sample size. Hosmer-Lemeshow statistic evaluated the model calibration or goodness of fit (model’s ability to assign the correct outcome probabilities to individual patients). Model discrimination (the ability to assign higher probabilities of pCRM involvement to patients who actually develop an involved margin) was measured by area under the receiver operator characteristic (ROC) curve or c-index. Values exceeding 0.8 represent good discrimination. Analyses were performed using SPSS 21.0 (SPSS, Chicago, IL).

Role Of The Funding Source

The Pelican Cancer Foundation and NIHR Biomedical Research Centres had no role in study design, data collection, analysis, interpretation, or writing of the report. The corresponding author had full access to all study data and had final responsibility for the decision to submit for publication.

Results

Patients

Fourteen units across Europe (Denmark, Germany, Serbia and UK) recruited 326 patients with 38 exclusions and 9 additional dropouts, reported in figure 3. Thus, 279 patients were eligible for primary endpoint analysis. Median age was 65 years (IQR 55-73), with 99 females (35%) and median BMI was 26 (IQR 23-28).
MRI Assessment Of The Intersphincteric Plane

Surgery confined to the intersphincteric plane was performed in 142 (83·0%, [95% CI 77·4-88·7%]) of 176 MRI ‘safe’ intersphincteric plane patients compared with 39 (39·39%, [95% CI 29·6-49·2%]) of 103 MRI ‘unsafe’ intersphincteric plane patients (p<0·0001). Pre-operative therapy was also offered selectively, 87 (49·4%, [95% CI 42·0-56·9%]) of 176 MRI intersphincteric plane ‘safe’ patients were treated compared with 83 (80·6%, [95% CI 72·8-88·4%]) of 103 MRI ‘unsafe’ patients (p<0·0001). Hence, the baseline intersphincteric plane assessment guided low rectal cancer management. Furthermore, pCRM involvement occurred in 9 (5·1%, [95% CI 1·8-8·4%]) of 176 MRI intersphincteric plane ‘safe’ patients compared with the significantly higher rate of 16 (15·5%, [95% CI 8·4-22·7%]) of 103 for the MRI ‘unsafe’ cases (p=0·003).

MRI Assessment Of The Low Rectal Plane (mrLRP)

This study has validated MRI staging system for evaluating the intersphincteric plane, which complements the previous MRI mesorectal fascia validation. Hence, MRI assessment of the entire low rectal plane (mrLRP) is valid (table 2). All cause pCRM involvement occurred in 8 (4·2%, [95% CI 1·3-7·1%]) of 191 MRI ‘safe’ mrLRP patients, compared with 17 (19·3%, [95% CI 10·9-27·7%]) of 88 ‘unsafe’ mrLRP patients (p<0·0001).

Overall pCRM Involvement

Overall, pCRM involvement occurred in 25 (9·0% [95% CI 5·6-12·3%]) of 279 patients, therefore the primary end point of ≤15% pCRM involvement was achieved. Table 3 provides a comparison between recommended and actual treatment according to baseline mrLRP and adverse MRI features, where CRT was given the re-assessed plane of surgery is reported (ymrLRP). This shows that 62 of 124 (50%) the low-risk mrLRP safe group followed MRI recommendations to proceed straight to surgery with a resulting 1.6% pCRM involvement rate, overall the pCRM rate for this group was 4.0%. In contrast an unsafe baseline mrLRP with adverse MRI features resulted in a 17.7% pCRM involvement risk, which represented a five-fold increase in pCRM involvement (OR 5·1, [95% CI 1·8-
Following CRT 41 patients underwent ELAPE/Exenteration for adverse features and unsafe ymrLRP the resulting pCRM involvement rate was 20.41%.

Preoperative MRI Predictors for pCRM Involvement

The demographics and tumour characteristics are reported in table 4 according to pCRM involvement rate, with univariate and multivariate regression analysis of key pCRM involvement predictors reported in table 5. The mrT stage and mrNode status were significant pCRM involvement predictors on univariate but not on multivariate regression analysis. Four significant factors were evident on multivariate regression analysis: an ‘unsafe’ mrLRP, MRI anterior quadrant tumor invasion, an MRI tumor height <4·0cm from anal verge and mrEMVI. The respective score weightings for these factors were: 1·23, 1·00, 1·20 and 1·30. The respective 95% confidence intervals, based on 5000 bootstrap samples, were: 1.4-11.3; 1.1-8.0; 1.4-11.0; and, 1.3-10.8. The model fitted the data well, as evidence by the Hosmer-Lemeshow statistic $\chi^2 = 6.23, 6$ df, $p=0.398$. The c-index or AUC on ROC analysis was 0·82 (95% CI 0·74-0·90), which suggests the model is strongly predictive for pCRM involvement.

Probabilities derived from multivariate regression analysis are reported as a percentage risk of pCRM involvement in Table 6. Of the 279 patients, 176 (63%) had one risk factor or less and were low risk (risk ≤5%) for pCRM involvement, 70 (25%) patients had two risk factors and were intermediate risk (risk 6-14%) and 33 (12%) patients had three or all four risk factors and were high risk (risk >15%). The results imply that tumors <4·0cm from anal verge with an ‘unsafe’ mrLRP have a 12·6% pCRM involvement risk. If the tumor was also anterior the pCRM risk increased to 28·6%, this high pCRM risk is despite 77% (13 of 17) of patients receiving pre-operative therapy and 77% receiving an ELAPE (n=9) or exenteration (n=4). These high pCRM involvement figures, along with the unsafe ymrLRP data in table 3, suggests that high-risk patients may require treatment beyond CRT and an ELAPE.
Discussion:

In this prospective multicentre international study, the MRI low rectal cancer plane (mrLRP) can reliably assess extent of tumor invasion and predict for pathological circumferential resection margin (pCRM) involvement. Furthermore, in this multicentre setting, through standardised and better preoperative staging, we have achieved our stated objective of appropriately selecting the correct plane of surgery and guiding use of pre-operative therapy. This enabled optimal clinical management, which led to reduced pCRM involvement to 9.0%; a marked improvement on previously published low rectal cancer results and meets the primary objective of reducing pCRM involvement to ≤15%. Thus, an improved approach to low rectal cancer treatment potentially eliminated a significant proportion of preventable pelvic recurrences.

A ‘safe’ low rectal plane on baseline MRI (‘safe’ mrLRP)

Almost half (44.4%, 124/279) of study participants had a ‘safe’ mrLRP and no adverse MRI features. The recommended management was to proceed straight to surgery with an intersphincteric resection, encouragingly adhering to this guidance (50%) led to a clear pCRM in 98% of cases. Added clinical concern may result in these low-risk patients being offered CRT or an ELAPE, however this resulted in a higher pCRM involvement. Additional treatment and more radical surgery did not result in a benefit to the patient and may represent overtreatment. Therefore when the baseline mrLRP is ‘safe’, with no other risk factors and optimal TME dissection is anticipated, it is feasible and safe to avoid the morbidity of chemoradiotherapy or an extralevator resection by offering sphincter-preserving surgery alone.

Post-treatment MRI low rectal plane assessment (ymrLRP)

The majority of patients with an MRI ‘unsafe’ surgical plane received CRT (81.4%) as recommended. Favourable tumor-regression occurred in 29.2% (33/113) of patients. The operative strategy varied from local excision to an exenteration but notably, amongst these ‘good responders’, there were no cases of pCRM involvement. The plane of surgery
became less radical in 8 (24·2%) of these 33 patients (local excision n=1, anterior resection n=6, intersphincteric resection n=1) compared with the initial plan for an ELAPE. Furthermore five patients who initially entered the study were excluded from analysis due to deferral of surgery, all of whom had no evidence of regrowth at 1 year follow-up. Contrary to current consensus this emphasises the importance of restaging the primary tumor with a willingness to selectively change the initial plan.

On the other hand, almost 25% of ymrLRP unsafe patients developed pCRM involvement (table 3). Routinely offering CRT and an ELAPE to this high-risk group does not appear to be sufficient. In order to improve pCRM involvement, efforts are required to preoperatively determine specific factors that cause individuals to become high-risk and to offer patient tailored management, such as carefully planned exenterative surgery and optimal pre-operative therapy.

Additional Risk Factors for pCRM involvement

After validating the role of mrLRP in predicting pCRM involvement, additional MRI predictors were investigated by multiple regression analysis. Three other key risk factors were identified: anterior quadrant tumor invasion; mrEMVI; and, tumor height.

Tumors less than 4cm from the anal verge carry a 3·4 fold increased pCRM involvement risk, however in the absence of additional risk factors the pCRM involvement risk is 4%. Arguably these are precisely the patients who should avoid radiotherapy in order to achieve optimal function equally with suitable CRT there is a reported 19-5% chance of an excellent clinical and radiological response which may enable deferral of surgical Each approach requires careful patient discussion and deferral should be performed in the context of a clinical trial.
Overall pCRM involvement was 2.8 fold more likely in the 35% of tumors with anterior quadrant invasion. This supports findings by West et al that even the wider excision produced by ELAPE surgery still removes relatively less volume anteriorly compared with other quadrants. In high-risk cases an ELAPE may fail to achieve a clear pCRM for these anterior tumors and an anterior compartment exenteration should be considered.

The majority of high-risk patients received chemoradiotherapy, yet mrEMVI (19%, 54/279) was associated with a 3.8 fold increased risk of pCRM involvement. Histological EMVI is associated with a poor prognosis (30% five-year overall survival), high local recurrence and distant failure rates. In several independent series mrEMVI also carries a poor prognosis. Perhaps the high pCRM involvement seen in this group relates to inadequate downstaging in mrEMVI positive patients. Seemingly mrEMVI is associated with relative chemoradiotherapy resistance. Although, promising early work indicates that following induction chemotherapy mrEMVI status is more likely to change from positive to negative and better outcomes are observed. Thus pre-operative chemoradiotherapy may be a useful treatment strategy for mrEMVI patients.

Compared with all the assessable low rectal cancer pCRM involvement risk factors outlined above, we did not find mrT and mrN stage to be significant on multivariate regression analysis. Therefore their importance regarding the surgical approach and use of pre-operative therapy may be superseded in favour of plane ‘safety’ (mrLRP) and the risk factors reported on multivariate regression analysis.

From the patient’s perspective, the risk quantifying model has special relevance. This model improves the information available to healthcare professionals and patients, which enhances the consent process and increases the likelihood of concordant patient decision-making. It may be hypothesised that ‘predicted risk’ information will hinder consent by
overwhelming the patient. However, a recent Canadian study by Kennedy et al used a threshold decision-making tool to assess the local recurrence risk that patients’ were willing to take in order to avoid pre-operative therapy. Most patients (84%) changed their choice of treatment depending on the risks presented to them and many patients accepted surprisingly high risks of recurrence in order to avoid pre-operative therapy. It is therefore feasible to expect the majority of patients to participate in the decision-making process. Long-term outcomes and quality of life data are still awaited and this accumulating data will also provide important information for this discussion and decision-making process.

Limitations
The study was designed to test MRI low rectal cancer plane assessment and the pre-stated sample size criteria for this primary endpoint were met. However, the quantification model will need validating in independent datasets and prospective implementation to test the impact on oncological outcomes. Finally, although this multicentre study demonstrates the reproducibility of mrLRP, the MERCURY group required exacting standards from highly trained individuals from specialist centres, this implies that results may not be immediately and universally applicable. However, units that recruited to MERCURY II did not wholly represent teaching hospitals and the key to success has been optimal MDT functioning which can be achieved by appropriate training.

Conclusion
This is the first study to prospectively validate MRI staging of the entire low rectal cancer plane (mrLRP). The use of optimal staging in an MDT setting has aided the decision for pre-operative therapy and improved surgical planning, resulting in a significant reduction in pCRM involvement after low rectal cancer surgery. The study findings indicate mrLRP
reporting is required for all low rectal cancers and in those who have pre-operative therapy, post-treatment restaging should be routine.

The commonly used strategy of managing low rectal cancer with chemoradiotherapy and an ELAPE potentially overtreats low-risk patients and undertreats the high-risk group. The pCRM risk stratification model will require further validation in independent datasets but it has the potential to mark a step forwards in low rectal cancer management by providing patient-tailored treatment according to the predicted likelihood of circumferential resection margin involvement.

Acknowledgments

Funding: Pelican Cancer Foundation provided the grant and funding for the running of this study. GB is supported by Pelican Cancer Foundation and Royal Marsden Hospital National Institute for Health Research (NIHR) Biomedical Research Centre. PQ is supported by Yorkshire Cancer Research and Experimental Cancer Medicine Centre Leeds. NW is supported by Yorkshire Cancer Research, Pathological Society of Great Britain and Ireland, and the Academy of Medical Sciences. NJB, PH and RJH are supported by the Pelican Cancer Foundation. The sponsors of the study had no role in study design, study conduct, data collection, management, analysis, data interpretation, preparation, review, manuscript approval or the decision to submit the article for publication. Gina Brown had full access to all data in the study, and had responsibility for the decision to submit for publication. This data was presented in part as a Best 6 presentation at ESCP, Barcelona 2014.

References

Figure 1. Diagrammatic coronal oblique view through long-axis of anal canal. Low rectal cancer is defined as adenocarcinoma with an inferior tumour edge less than six centimeters from the anal verge, anatomically represented by a line between the origins of the levator muscle (horizontal beige line). The horizontal black line (1cm above puborectalis sling) represents the site between mesorectal fascia plane and intersphincteric plane. MRI evaluation of the mesorectal fascia (dashed green line) has been validated previously. This study aimed to validate a previously reported technique for MRI assessment of the intersphincteric plane (dashed red line).

Low rectal cancer circumferential resection margin involvement may occur at the mesorectal fascia plane or at the intersphincteric plane (figure 1b). When tumour extends beyond muscularis propria/internal sphincter the intersphincteric plane is ‘unsafe’ (figure 1c) therefore pre-operative therapy and an extra-levator abdominoperineal excision (dashed blue line) is recommended. When the intersphincteric plane is ‘safe’ (figure 1d) an intersphincteric resection (dashed green line) +/- anastomosis is feasible.

Figure 2a & b. A coronal oblique high-resolution MRI image through long-axis of anal canal for two different low rectal cancers. Figure 2a shows a tumor confined to the muscularis propria (+). The MRI assessed low rectal cancer resection plane (mrLRP) appears ‘safe’ suggesting an intersphincteric resection is feasible. In figure 2b the tumor (¥) appears to breach the muscularis propria and is invading the distal mesorectum and intersphincteric plane. This tumor is mrLRP ‘unsafe’ and an intersphincteric resection would be high-risk for pCRM involvement, therefore an extralevator APE was suggested.

Figure 3. The Mercury II study profile.

Table 1 outlines the recommended operation according to the MRI staging.

Table 2. The relationship between the MRI assessed low rectal cancer plane and pathological circumferential resection margin (pCRM) involvement.

Table 3 provides a comparison between recommended and actual treatment according to baseline mrLRP and adverse MRI features, where CRT was given the re-assessed plane of surgery is reported (ymrLRP).

Table 4. The proportion of low rectal cancer cases with pCRM involvement according to demographics and MRI assessed tumor characteristics.

Table 5. A unifactorial and multifactorial logistic regression analysis evaluating pre-operative factors that predict pathological circumferential resection margin (pCRM) involvement in low rectal cancer.

Table 6. The MRI predicted risk (%) of pCRM involvement according to the four risk factors identified on multivariate regression analysis of 279 low rectal cancer patients.

Appendix 1. The MRI and Pathology low rectal cancer study pro formas.
Recommended low rectal cancer surgery according to MRI assessment of the low rectal cancer plane (mrLRP)

<table>
<thead>
<tr>
<th>MRI intersphincteric plane (mrIP) status</th>
<th>MRI mesorectal fascia (mrMF) status</th>
<th>Distance from Puborectalis</th>
<th>Recommended Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Safe’: tumor above intersphincteric plane</td>
<td>tumor >1mm from MF</td>
<td>>10mm</td>
<td>Intersphincteric Resection +/- colo-anal anastomosis</td>
</tr>
<tr>
<td>‘Safe’: tumor confined to submucosa with full thickness of muscularis propria preserved</td>
<td>tumor >1mm from MF</td>
<td>≤10mm</td>
<td>Local excision</td>
</tr>
<tr>
<td>‘Safe’: tumor involving part of muscularis propria</td>
<td>tumor >1mm from MF</td>
<td>≤10mm</td>
<td>Intersphincteric Resection +/- colo-anal anastomosis</td>
</tr>
<tr>
<td>‘Unsafe’ (one of):</td>
<td>tumor >1mm from MF</td>
<td>≤10mm</td>
<td>Extralevator APE</td>
</tr>
<tr>
<td>- full thickness of the muscularis propria/ internal sphincter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- extends into the intersphincteric plane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- tumor extends into the external sphincter or <1mm from levator ani</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘Safe’ or ‘Unsafe’</td>
<td>tumor extends beyond MF into adjacent structures (prostate/vagina/bladder/sacrum/pelvic fascia)</td>
<td>-</td>
<td>Exenteration</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>clear pCRM (%)</td>
<td>Involved pCRM (%)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>MRI intersphincteric plane (mrIP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘Safe’ (at baseline)</td>
<td>176</td>
<td>167</td>
<td>9</td>
</tr>
<tr>
<td>‘Unsafe’ (at baseline)</td>
<td>103</td>
<td>81</td>
<td>16</td>
</tr>
<tr>
<td>Missing</td>
<td>0 [16]</td>
<td>0 [13]</td>
<td>0 [3]</td>
</tr>
<tr>
<td>MRI mesorectal fascia plane (mrMF)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘Safe’ [ymr]</td>
<td>237 [120]</td>
<td>222 [112]</td>
<td>15 [8]</td>
</tr>
<tr>
<td>Missing</td>
<td>0 [16]</td>
<td>0 [13]</td>
<td>0 [3]</td>
</tr>
<tr>
<td>MRI Low Rectal Plane (mrLRP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘Safe’ (at baseline)</td>
<td>166</td>
<td>158</td>
<td>8</td>
</tr>
<tr>
<td>‘Unsafe’ (at baseline)</td>
<td>113</td>
<td>96</td>
<td>17</td>
</tr>
<tr>
<td>‘Unsafe’ [ymr]</td>
<td>88 [58]</td>
<td>71 [46]</td>
<td>17 [12]</td>
</tr>
<tr>
<td>Missing</td>
<td>0 [16]</td>
<td>0 [13]</td>
<td>0 [3]</td>
</tr>
</tbody>
</table>

*The preoperative MRI is used; this would be the post treatment MRI [reported in brackets] for patients who received preoperative therapy. The mrLRP is the combined assessment of the mesorectal fascia and the intersphincteric plane.
Baseline MRI staging

<table>
<thead>
<tr>
<th>Recommended Management</th>
<th>Preoperative MRI assessment of low rectal plane (mrLRP) [post-treatment (ymrLRP)]</th>
<th>Surgery performed [Surgery performed post-treatment]</th>
<th>Overall pCRM Involvement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clear TME/intersphincteric plane [post-CRT]</td>
<td>Involved TME/intersphincteric plane [post-CRT]</td>
<td>TME/ intersphincteric plane*</td>
</tr>
<tr>
<td>Safe plane with no adverse MRI features†(n=124)</td>
<td>Total (n)</td>
<td>Involved (n)</td>
<td>pCRM rate (%)</td>
</tr>
<tr>
<td>Unsafe Plane with no other MRI adverse features (n=17)</td>
<td>0 [16]</td>
<td>0 [0]</td>
<td>0 [0]</td>
</tr>
<tr>
<td>Total</td>
<td>279</td>
<td>25</td>
<td>8.96%</td>
</tr>
</tbody>
</table>

The straight to surgery data is adjacent to post-treatment data, with post-treatment values reported in [brackets]. †MRI adverse features were ≥mrT3c,mrN2 or mrEMVI. ELAPE – extralevator abdominoperineal excision (APE) *The operations performed are reported in figure 3. The ‘y’ value denotes post-treatment report. Pre-operative short course radiotherapy was used in 8 cases with 1 involved pCRM, these are denoted by [superscript].
<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Clear pCRM</th>
<th>pCRM Involvement</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>279</td>
<td>254 (91.0%)</td>
<td>25 (9.0%)</td>
<td></td>
</tr>
<tr>
<td>Age [median (IQR)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>99</td>
<td>92</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>180</td>
<td>162</td>
<td>18</td>
<td>0.412</td>
</tr>
<tr>
<td>BMI [median (IQR)]</td>
<td>195</td>
<td>26 (23-28)</td>
<td>26 (25-29)</td>
<td>0.336</td>
</tr>
<tr>
<td>MRI Tumour height [median (IQR)]</td>
<td>279</td>
<td>4.25 (3.3-5.0)</td>
<td>3.4 (2.4-4.3)</td>
<td>0.003</td>
</tr>
<tr>
<td>Quadrant of tumour invasion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anterior</td>
<td>99</td>
<td>85</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>180</td>
<td>169</td>
<td>11</td>
<td>0.025</td>
</tr>
<tr>
<td>Pre-operative treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>109</td>
<td>104</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>170</td>
<td>150</td>
<td>20</td>
<td>0.041</td>
</tr>
<tr>
<td>Time interval between pre-operative MRI and surgery [median (IQR)] (days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgery alone</td>
<td>100</td>
<td>29 (18-41)</td>
<td>46 (32-49)</td>
<td>0.100</td>
</tr>
<tr>
<td>Pre-operative therapy</td>
<td>155</td>
<td>26 (7-46)</td>
<td>29 (6-81)</td>
<td>0.311</td>
</tr>
<tr>
<td>missing</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mrT stage (baseline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mrT0&1</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>0.016</td>
</tr>
<tr>
<td>mrT2</td>
<td>72</td>
<td>70</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>mrT3a&b</td>
<td>104</td>
<td>96</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>mrT3c&d</td>
<td>49</td>
<td>41</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>mrT4</td>
<td>39</td>
<td>32</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>mrT stage (pre-operative)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mrT0&1 [ymrT0&1]</td>
<td>34</td>
<td>32 [20]</td>
<td>2 [2]</td>
<td>0.003</td>
</tr>
<tr>
<td>mrT3a&b [ymrT3a&b]</td>
<td>95</td>
<td>87 [45]</td>
<td>8 [6]</td>
<td></td>
</tr>
<tr>
<td>[missing]</td>
<td>0</td>
<td>0 [13]</td>
<td>0 [3]</td>
<td></td>
</tr>
<tr>
<td>mrN stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative [ymrN]</td>
<td>174</td>
<td>164 [106]</td>
<td>10 [12]</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>4</td>
<td>4 [13]</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>mrEMVI staging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>13</td>
<td>[13]</td>
<td>[3]</td>
<td></td>
</tr>
</tbody>
</table>

*The preoperative MRI is used; this would be the post treatment MRI [reported in brackets] for patients who received preoperative therapy.
Table 5

Univariable Analysis

<table>
<thead>
<tr>
<th>All Cause pCRM in all patients (Surgery with or without pre-operative therapy, n=279)</th>
<th>Odd ratio (95% CI)</th>
<th>p value</th>
<th>Odd ratio (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cause mrLRP†¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘Safe’</td>
<td>1</td>
<td>5·48 (2·7 – 13·2)</td>
<td>0·0002</td>
<td>1</td>
</tr>
<tr>
<td>‘Unsafe’</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Quadrant of tumour invasion²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
<td>2·53 (1·1 – 5·8)</td>
<td>0·029</td>
<td>1</td>
</tr>
<tr>
<td>Anterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height (from the anal verge)³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 4cm</td>
<td>1</td>
<td>4·00 (1·7-9·7)</td>
<td>0·002</td>
<td>1</td>
</tr>
<tr>
<td>< 4cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mrT stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤mrT3b</td>
<td>1</td>
<td>4·42 (1·9 – 10·3)</td>
<td>0·0006</td>
<td></td>
</tr>
<tr>
<td>>mrT3b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mr Node status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>1</td>
<td>2·86 (1·2 – 6·6)</td>
<td>0·014</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mr EMVI status⁴</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>1</td>
<td>4·66 (2·0 – 10·9)</td>
<td>0·0004</td>
<td>1</td>
</tr>
<tr>
<td>Positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†The mrLRP is a combined binary score, ‘unsafe’ included either at risk mesorectal fascia margin or intersphincteric plane. C-index 0·82 (95% CI 0·74-0·90). Internal validation based on 5000 bootstrap samples 95% CI ¹(1·4-11·3), ²(1·1-8·0), ³(1·4-11·0), ⁴(1·3-10·8).
The risk of pCRM involvement: green, low risk ≤5%; amber, intermediate risk 14-6%; red, high risk ≥15%. The probabilities are calculated from the multivariate model (table 5), all values are reported as a predicted percentage (%) risk of pCRM involvement (n=279). †mrLRP, MRI assessment of low rectal cancer plane (a ‘safe’ mrLRP implies that the mesorectal fascia and intersphincteric planes are clear of tumour). *the quadrant of tumour invasion ¥the data is based on the preoperative MRI this would be the post treatment MRI for patients who received preoperative therapy.
Figure 1a. Diagrammatic coronal oblique view through long-axis of anal canal. Low rectal cancer is defined as adenocarcinoma with an inferior tumour edge less than six centimeters from the anal verge, anatomically represented by a line between the origins of the levator muscle (horizontal beige line). The horizontal black line (1cm above puborectalis sling) represents the site between mesorectal fascia plane and intersphincteric plane. MRI evaluation of the mesorectal fascia (dashed green line) has been validated previously. This study aimed to validate a previously reported technique for MRI assessment of the intersphincteric plane (dashed red line).

Low rectal cancer circumferential resection margin involvement may occur at the mesorectal fascia plane or at the intersphincteric plane (**figure 1b**). When tumour extends beyond muscularis propria/ internal sphincter the intersphincteric plane is ‘unsafe’ (**figure 1c**) therefore pre-operative therapy and an extra-levator abdominoperineal excision (dashed blue line) is recommended. When the intersphincteric plane is ‘safe’ (**figure 1d**) an intersphincteric resection (dashed green line) +/- anastomosis is feasible.
Figure 3. Study profile MERCURY II.

Assessed and clinically eligible (n=326)

Excluded (n=38)
- Cancer >6.0cm from anal verge on MRI (n=32)
- MRI no tolerated/not done (n=4)
- Not an adenocarcinoma (n=2)
- Dropouts (n=9)
- Deferral of Surgery (n=5)
- Palliative (no operation) (n=4)

Low Rectal Cancer Assessed Clinically and by MRI (n=279)

Safe MRI Low Rectal Plane (mrLRP) (n=166)
- No pre-operative therapy (n=88)
- Pre-operative therapy (n=78)

Operation (n=88):
- Anterior Resection (n=59)
- Intersphincteric APE (n=4)
- SAPE (n=6)
- ELAPE (n=14)
- Local (n=5)

Involved pCRM 2/88 (2.27%)

Operation (n=78):
- Anterior Resection (n=43)
- Intersphincteric APE (n=5)
- SAPE (n=10)
- ELAPE (n=15)
- Local (n=1)
- Missing (n=4)

Involved pCRM 6/78 (7.69%)

Unsafe MRI Low Rectal Plane (mrLRP) (n=113)

Pre-operative Therapy (n=92)

Pre-operative Therapy (n=92):
- Good response (pCRM 0/33 – 0%)
 - Anterior Resection (n=10)
 - Intersphincteric APE (n=1)
 - SAPE (n=8)
 - ELAPE (n=18)
 - Exenteration (n=1)
 - Local (n=1)
- Poor response (pCRM 11/46 - 23.91%)
 - Anterior Resection (n=8)
 - Intersphincteric APE (n=1)
 - SAPE (n=8)
 - ELAPE (n=21)
 - Exenteration (n=6)
 - Missing (n=2)
- No restaging MRI (pCRM 3/13 – 23.08%)
 - Anterior Resection (n=3)
 - Intersphincteric APE (n=1)
 - SAPE (n=4)
 - ELAPE (n=4)
 - Missing (n=2)

Operation (n=21):
- Anterior Resection (n=6)
- Intersphincteric APE (n=1)
- SAPE (n=3)
- ELAPE (n=10)
- Local (n=5)
- Missing (n=1)

Involved pCRM: 3/21 (14.29%)
Authorship

We appreciate that there are a large number of named co-authors but this is an international multicentre multidisciplinary study that required expertise in a number of specialties.

The thirteen authors listed below meet all of the following conditions: 1) substantial contributions to conception and design, and/or acquisition of data, and/or analysis and interpretation of data; 2) participated in drafting the article or revising it critically for important intellectual content; and 3) Authors give final approval of the version to be published.

1) Nicholas J Battersby
2) Peter How
3) Brendan Moran
4) Sigmar Stelzner
5) Nicholas P West
6) Graham Branagan
7) Joachim Strassburg
8) Philip Quirke
9) Paris Tekkis
10) Bodil Ginnerup Pedersen
11) Mark Gudgeon
12) Bill Heald FRCS
13) Gina Brown

We would be grateful if the following individuals could be acknowledged in a pubmed citable way “on behalf of the MERCURY II study group”

Trial Management Committee Gina Brown, Brendan J Moran, Phil Quirke, Nick J Battersby, Peter How, Nick West, Omar Omar, Karen Thomas, Oliver Shihab, Paris Tekkis, Sigmar Stelzner, Lisa Scerri.