

This is a repository copy of *Modeling a halogen dance reaction mechanism: A density functional theory study.*

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/97279/

Version: Accepted Version

Article:

Jones, L and Whitaker, BJ (2016) Modeling a halogen dance reaction mechanism: A density functional theory study. Journal of Computational Chemistry, 37 (18). pp. 1697-1703. ISSN 0192-8651

https://doi.org/10.1002/jcc.24385

© 2016 Wiley Periodicals, Inc. This is the peer reviewed version of the following article: Jones, L and Whitaker, BJ (2016) Modeling a halogen dance reaction mechanism: A density functional theory study. Journal of Computational Chemistry, 37 (18). pp. 1697-1703, which has been published in final form at http://dx.doi.org/10.1002/jcc.24385. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supporting Information

Contents

1.	Basis set convergence2
2.	Nucleophilic Attack of 2-bromothiophene3
3.	Geometries of the Transition States5
3.1	Transition State 1a
3.2	Transition State 1b6
3.3	Transition State 1c7
3.4	Transition State 2 (Four Centre)8
3.5	Transition State 3 (Four Centre)9
3.6	Transition State 4 (Four Centre)10
3.7	Transition State 2 (S _N 2 Type)11
3.8	Transition State 3 ($S_N 2$ Type)12
3.9	Transition State 4 (S _N 2 Type)13
4.	Intrinsic Reaction Coordinates14
4.1	Four Centre Type14
4.2	2 S _N 2 Type
5.	Gibbs Energy Profile Diagrams20
6.	Activation Energies21
7.	Internal Energies of Reaction

1. Basis set convergence

Table 1 shows the optimised energies, in atomic units, for 2-bromothiophene at the B3LYP and CCSD levels of theory.

Table 1. Bas	is set convergence	
Theory	Basis Set	Energy / A.U. (Hartree.)
B3LYP	3-21G	-3111.354
	6-31G(d)	-3124.087
	6-31+G(d)	-3124.116
	6-31+G(d,p)	-3124.121
	6-311G(d)	-3126.59
	6-311G(d,p)	-3126.593
	6-311+G(d,p)	-3126.596
	6-311++G(d,p)	-3126.596
	cc-pVDZ	-3126.566
	cc-pVTZ	-3126.706
	AUG-cc-pVDZ	-3126.579
	AUG-cc-pVTZ	-3126.708
CCSD	STO-3G	-3089.494
	3-21G	-3108.400
	6-31G(d)	-3121.360
	6-31+G(d)	-3121.393
	6-31+G(d,p)	-3121.417
	6-311G(d)	-3123.932
	6-311G(d,p)	-3123.955
	6-311+G(d,p)	-3123.963
	6-311++G(d,p)	-3123.963
	cc-pVDZ	-3123.923
	cc-pVTZ	-3124.294
	AUG-cc-pVDZ	-3123.971

2. Nucleophilic Attack of 2-bromothiophene

Chemical intuition would suggest that the proton at position 3 would be the most easily removed. This is confirmed by calculating the energies of the anions (Table 3). The free Gibbs energy of anion **4** is more negative and hence more stable than **5**, suggesting preferential lithitation at this position.

Table 3. Internal and free Gibbs energies in THF ^a									
Anion U / a.u. ΔG / a.u.									
4	-3126.067706	-3126.055707							
5 -3126.062513 -3126.050591									
[a] Calculated using IEFPCM at the B3LYP/6-311++G(d,p) level.									

Additionally, pKa values were calculated by evaluating the equilibrium constant (1)

$$K_{a} = \frac{[C_{4}H_{2}BrS^{-}][H^{+}]}{[C_{4}H_{3}BrS]}$$
(1)

using the free-energy change for the reaction (2)

$$C_4H_3BrS \longrightarrow C_4H_2BrS^- + H^+$$
. (2)

Standard frequency calculations (B3LYP/cc-pVTZ) were employed to estimate the enthalpic and entropic contributions to the free energies of 2-bromo-thiophene and its deprotonated anion in the gas phase and in solution (the later using the standard integral equation formalism variant of the polarizable continuum model). The gas phase reaction free energy change was corrected to account for the difference in the definition of the standard state in the gas phase and solution (1 atm versus 1 M) by adding RT ln(24.46) and the corrected $\Delta_r G_g$ was then added to the solvation energy difference between reactants and products to obtain a measure of the free energy change for deprotonation in the solution phase. The difficulty with this procedure is that the solvation energy of H⁺ cannot be calculated using the IEFPCM since the proton has no electrons. The standard solution to this problem is to use the experimental value, but we have been unable to find a value for $\Delta_{sol}G(H^+)$ in THF. The generally accepted value for $\Delta_{sol}G(H^+)$ in water is -1112.3 kJ/mol²³. Using this value one obtains pK_a values of 46, 52 and 50 for deprotonation of 2-bromo-thiophene at the 3, 4 and 5 positions respectively but these values are unlikely to be a good reflection of reality since THF and water are as chalk is to cheese.

An alternative way of proceeding is to calculate the dissociation constant for a substance whose value is experimentally known in THF and then adjusting $\Delta_{sol}G(H^+)$ in THF to obtain agreement with experiment. Using the value for the pK_a of aniline in THF obtained spectroscopically by Garrido and co-workers²⁴, we estimate $\Delta_{sol}G(H^+)$ in THF to be -1301 kJ mol⁻¹ and obtain pK_a values of 13, 19 and 17 for deprotonation of 2-bromo-thiophene at the 3, 4 and 5 positions. As a check on the validity of this approach we then calculated the pK_a of piperazine and obtained 22, which is to be compared with the experimental value of 19. The absolute accuracy of these calculations is therefore doubtful and further complicated by the low permittivity and aprotic nature of THF. Calculations on LiNH₂ give a similar conclusion. We calculate $\Delta_{sol}G(Li^+)$ in THF to be -446 kJ mol⁻¹ which results in a dissociation pK of

lithium amide of 35. Our value for the solvation energy of Li⁺ is considerably smaller than the value of -566.4 kJ mol⁻¹ calculated by Westphal and Pliego in another aprotic solvent, DMSO²⁵. Using $\Delta_{sol}G(Li^+)$ DMSO reduces the calculated pK of lithium amide to 14, and the truth probably somewhere in between. Despite the shortcomings in the calculations, these considerations nonetheless suggest lithiation at position 3 should be favoured over position 4.

Atomic charges were calculated. All the methods except for MK show the H³ atom is relatively more positive than H⁴ and thus in the model HD reaction the H³ atom would be expected to be attacked by the lithium amide preferentially. All methods show that the H³ atom is more positive than the bromine atom (Br) thus the bromine is unlikely to be attacked.

Table 4.	Table 4. Atomic charges (eV) with various methods ^a											
Atom	Mulliken	МК	NBO	AIM								
S	-0.18	0.10	0.45	0.25								
C ²	-0.078	-0.21	0.35	-0.26								
C ³	0.16	0.083	0.28	0.030								
C ⁴	-0.56	-0.25	-0.24	0.013								
C⁵	0.13	-0.18	-0.39	-0.20								
H³	0.19	0.099	0.23	0.055								
H⁴	0.15	0.17	0.22	0.044								
H⁵	0.25	0.19	0.23	0.071								
Br	-0.051	0.0047	0.13	-0.011								
[a] Calcul	ated at the B3L	_YP/6-311++0	G(d,p) level.									

3. Geometries of the Transition States

3.1 Transition State 1a

Table 5. S	able 5. Structural data for Transition state 1a										
	Selected	d Structural Data			Cartesian Coordinates						
	H ₄ C H ₅	H _N " H ₃ Li C ₂ -Br						•			
Bond L	ength / Å	Bond Ang	gle / °				_				
S-C ₂	1.751	S-C ₂ -C ₃	116.2	Center	Atomic	Atomic	c Coordi	nates (Ange	stroms)		
C ₂ -C ₃	1.357	C ₃ -C ₂ -Br	125.2	Number	Number	туре		Y ,	۲ 		
C ₃ -C ₄	1.441	$C_2 - C_3 - C_4$	107.9	1	6	0	-2.297853	3.979407	0.446345		
C ₄ -C ₅	1.366	$C_{3}-C_{4}-C_{5}$	115.3	2	6	0	-3.053674	2.856797	0.262869		
C₅-S	1.739	C ₃ -C ₄ -H ₄	122.6	3	6	0	-0.918034	3.865575	0.046879		
C₂-Br	1,945	C4-CE-S	111.8	4	6 16	0	-0.727227	2.612762	-0.438077		
	1 290		100.0	6	10	0	-2.709583	4.886011	-0.434623		
С ₃ -п ₃	1.309	C ₄ -C ₅ -⊓ ₅	120.0	7	1	0	-4.096787	2.696677	0.495240		
C ₄ -H ₄	1.084	C ₂ -C ₃ -H ₃	129.7	8	1	0	-0.001336	4.891033	0.239880		
C_5-H_5	1.081	H_3 -N- $H_{N''}$	110.7	9	35	0	0.947874	1.930859	-1.153657		
H ₃ -N	1.368	H_3 -N- $H_{N'}$	113.4	10	1	0	0.638545	6.744513	0.028238		
N-H _{N"}	1.017	$H_{N''}$ -N- $H_{N'}$	105.9	11	3	0	0.924254	4.501841	-1.260418		
N-H _N	1.017	H ₃ -N-Li	65.9	12	7	0	1.008611	5.798370	0.074429		
N-Li	1.863	 Н₄-С₄-С₃-Н₃	3.0	13	1	0	1.679856	5.799068	0.838664		
Calculate	d at the B3L	∕P/6-311++G(d,p)	evel, in vacu	l Jm							

3.2 Transition State 1b

Table 6. S	elected structu	ural data for transitio	on state 1b						
	Selected	Structural Data				Ca	rtesian Coord	linates	
			-		-				
Bond I	_ength / Å	Center	Atomic	Ato	omic Coord	inates (Ang	stroms)		
S-C ₂	1.738	S-C ₂ -C ₃	112.6	Number	Number	Т	уре Х	Y	Z
C ₂ -C ₃	1.365	C ₃ -C ₂ -Br	127.0		6	0	-4.593678	2.997609	0.928694
C ₃ -C ₄	1.440	$C_2 - C_3 - C_4$	113.7	2	6	0	-3.692823	3.540150	0.045109
C ₄ -C ₅	1.374	$C_{3}-C_{4}-C_{5}$	110.2	3	6	0	-2.364889	3.496595	0.599668
C ₅ -S	1.753	C ₃ -C ₄ -H ₄	125.8	4	6	0	-2.306704	2.929206	1.840260
C Br	1 900		112.9	5	16	0	-3.865266	2.414722	2.412797
C ₂ -Di	1.055	04-05-0	113.0	6	35	0	-0.757032	2.669684	2.906912
C ₃ -H ₃	1.083	C_4 - C_5 - H_5	128.7	7	1	0	-4.023423	3.870312	-1.294786
C ₄ -H ₄	1.419	C_2 - C_3 - H_3	122.0	8	1	0	-1.4/915/	3.858267	0.091254
C₅-H₅	1.083	H_4 -N- $H_{N'}$	112.6	9 10	1	0	-5.657844	2.841546 4.754598	-3.035575
H4-N	1.354	H_4 -N- $H_{N''}$	111.4	11	7	0	-4.508186	4.572521	-2.345853
N-H _{N'}	1.017	H ₆ -N-H _{N"}	105.8	12	3	0	-4.625680	5.351990	-0.658553
N-H _{N"}	1.017	H ₄ -N-Li	62.4	13 1 0 -5.243545 4.076041 -2.84258					
N-Li	1.862	$H_4\text{-}C_4\text{-}C_3\text{-}H_3$	9.8						
Calculated	at the B3LYP	/6-311++G(d,p) lev	el, in vacuum	1					

3.3 Transition State 1c

Table 7. Se	Table 7. Selected structural data for transition state 1c										
	Selected	Structural Data		Cartesian Coordinates							
Hį	$ \begin{array}{ccc} H_4 & H \\ C_4 - C_3 \\ // & \\ C_5 - C_5 \\ S \\ \end{array} $	3 2Br		c	Ì		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
Bond L	ength / Å	Bond A	ngle / °	Center	Atomic	Aton	nic Coordi	nates (Ang	stroms)		
S-C ₂	1.733	S-C ₂ -C ₃	109.2	Number	Number	Тур	e X	Y	Z		
C ₂ -C ₃	1.383	C ₃ -C ₂ -Br	117.4	1	6	0	-2.422290	3.444021	0.024562		
C ₃ -C ₄	1.437	$C_2 - C_3 - C_4$	114.3	2	6	0	-2.926896	2.193403	-0.179716		
C ₄ -C ₅	1.364	$C_{3}-C_{4}-C_{5}$	112.5	3	6	0	-1.026198	3.424777	0.362608		
C₅-S	1.745	C3-C4-H4	124.1	4	6	0	-0.477260	2.158243	0.444010		
	0.014		110 7	5	16	0	-1.689720	0.983986	0.049231		
С ₂ -Ы	2.214	04-05-3	110.7	6	1	0	-0.480317	4.320494	0.657265		
C ₂ -Li	2.610	C_4 - C_5 - H_5	128.4	7	1	0	-3.017872	4.346187	-0.045600		
C ₃ -H ₃	1.090	C_2 - C_3 - H_3	122.6	8	1	0	-3.938571	1.911737	-0.432361		
C ₄ -H ₄	1.083	C ₂ -Br-N	152.8	9	35 1	0	4 266081	2 891677	0.314939		
C₅-H₅	1.080	Br-N-H ₇	107.8	10	3	0	1.050477	3.500719	-1.191314		
	1 021		108.0	12	7	0	3.687090	2.568875	-0.501327		
IN-I 16	1.021	DI-IN-I 16	108.0	13	1	0	4.147728	1.723893	-0.842016		
N-H ₇	1.021	Br-N-Li	50.0								
N-Li	2.880	C ₂ -Li-N	102.7								
N-Br	2.200	C ₂ -Li-Br	53.7								
Li-Br	2.235	Li-Br-N	81.0								
Calculated	at the B3LYF	P/6-311++G(d,p)	evel, in vacuum	-							

3.4 Transition State 2 (Four Centre)

Table 8. Selected structural data for transition state 2												
	Selected S	Structural Data		Cartesian Coordinates								
H ₅ -		H ₄ ' -Br ₂ -C ₃ ' C ₂ ' Br ₂ '		6-	¢	Ľ.	¥	g				
Bond Le	ength / Å	Bond Ar	igle / °	Center	Atomic	Atomic	coordir	nates (Angs	troms)			
S ₁ -C ₂	1.741	S ₁ -C ₂ -C ₃	109.8	Number	Number	Туре	Х	Y Z				
C ₂ -C ₃	1.388	C_3 - C_2 - Br_2	110.1		35	0	-0 /88701	0 20/837	1 702091			
C ₃ -C ₄	1.422	C ₃ -C ₂ -Li	114.1	2	35	0	3.707606	-0.265952	1.336144			
C_4-C_5	1.373	$C_2 - C_3 - C_4$	113.8	3	16	0	3.114636	0.100711	-1.778103			
0.8	1 740		112.5	4	16	0	-0.184560	2.923810	4.402611			
05-01	1.740	$C_3 - C_4 - C_5$	112.5	5	6	0	1.627283	0.830833	-2.319190			
C_2 -Br ₂	2.657	$C_2 - C_3 - H_3$	122.8	6	6	0	0.816751	1.190982	-1.282567			
C ₂ -Li	1.996	C_3 - C_4 - H_4	124.2	7	6	0	1.390633	0.911656	-0.003596			
C ₃ -H ₃	1.084	C4-C5-S	111.3	8	6	0	2.590644	0.291626	-0.114663			
CH.	1 083	CCH.	127.0	9	6	0	0.268166	2.615544	2.750527			
04-114	1.005	04-05-115	121.5	10	6	0	-0.154086	3.663113	1.944382			
C₅-H₅	1.081	C_2 - Br_2 - C_3 '	81.2	11	6	0	-0.788208	4.508354	4.013662			
Br ₂ -Li	2.541	C ₂ -Li-C ₃ '	114.7	12	6	0	-0.689164	4.763418	2.668559			
Br ₂ -C ₃ '	2.612	Br ₂ -C ₂ -Li	64.4	13	3	0	1.727959	1.512154	1.952842			
Li-C ₂ '	2 074	Bra-Ca'-Li	64.5	14	1	0	1.452979	0.944635	-3.379604			
2.03	2.071		01.0	15	1	0	-0.158954	1.03/721	-1.420197			
$S_2 - C_2'$	1.754	$S_2 - C_2' - C_3'$	113.1	17	1	0	-0.004773	5 17/855	4 703030			
C ₂ '-C ₃ '	1.355	S_2 - C_2 '- Br_2 '	120.8	18	1	0	-1.002120	5 695805	2 215517			
C ₃ '-C ₄ '	1.429	C ₂ '-C ₃ '-C ₄ '	111.8	10	·	0	1.002120	0.000000	2.210017			
C ₄ '-C ₅ '	1.364	C ₃ '-C ₄ '-C ₅ '	112.9									
C ₅ '-S ₂	1.743	C ₃ '-C ₄ '-H ₄ '	123.8									
C ₂ '-Br ₂ '	1.914	C4'-C5'-S2	112.4									
C4'-H4'	1.082	C ₅ '-S ₂ -C ₂ '	89.6									
C₅'-H₅'	1.081	S ₂ -C ₅ '-H ₅ '	119.1									

Table 9. Sele	ected structur	al data for transitio	on state 3						
	Selecte	d Structural Data				Ca	rtesian Coord	linates	
H ₅ -	$\begin{array}{c} H_4 & Br_3 \\ C_4 - C_3 \\ // \\ C_5 & C_2 \\ S_1 \end{array}$	Br ₂ -C ₂ ' Li		e	Ç		X.	2	
Bond Le	ngth / Å	Bond A	ngle / °	Center	Atom	nic At	omic Coord	dinates (Ang	stroms)
S ₁ -C ₂	1.748	$S_1 - C_2 - C_3$	108.0	Number	Num	ber T	ype X	Y Z	Z
C ₂ -C ₃	1.384	C_2 - C_3 - Br_3	123.4	1	35	0	0.982705	-0.918235	-3.260416
C ₃ -C ₄	1.420	$C_2 - C_3 - C_4$	115.8	2	35	0	-1.355194	-4.087471	-2.235886
C ₄ -C ₅	1.370	$C_{3}-C_{4}-C_{5}$	111.5	3	16	0	2.956495	-3.918123	-3.138815
C₅-S₁	1.736	$C_4 - C_5 - S_1$	111.5	4	16	0	0.909638	1.141325	-0.122156
C ₂ -Br ₂	2,645	C2-C4-H4	124.1	5	6	0	2.253764	-5.405047	-3.694497
	2.002		02.0	6	6	0	0.921005	-5.476666	-3.384504
	2.002	05-01-02	93.0	8	6	0	1.460968	-3.377727	-2.411835
C ₃ -Br ₃	1.908	C_4 - C_5 - H_5	127.7	9	6	0	0.301009	-0.414967	-0.625118
C ₄ -H ₄	1.081	C_3 - C_2 - Br_2	115.3	10	6	0	-1.073454	-0.463042	-0.435461
C_5 - H_5	1.080	C_2 - Br_2 - C_2 '	84.7	11	6	0	-1.594378	0.664176	0.251174
Br ₂ -Li	2.621	C ₂ -Li-C ₂ '	132.1	12	6	0	-0.643222	1.629623	0.482582
Br ₂ -C ₂ '	2.768	Br ₂ -C ₂ -Li	67.0	13	3	0	1.421462	-2.032720	-0.929537
Li-Ca'	1 991	Bro-Co'-Li	64 4	14	1	0	2.863846	-6.162350	-4.165411
	4.745		444.0	15	1	0	-1 683477	-0.316805	-3.621485
S ₂ -C ₂	1.745	Br ₂ -C ₂ '-C ₃ '	111.6	17	1	0	-0.757169	2.557688	1.024116
C ₂ '-C ₃ '	1.388	S ₂ -C ₂ '-C ₃ '	109.7	18	1	0	-2.627559	0.763376	0.559538
C ₃ '-C ₄ '	1.419	C ₂ '-C ₃ '-C ₄ '	113.7						
C ₄ '-C ₅ '	1.375	C ₃ '-C ₄ '-C ₅ '	112.7						
C ₅ '-S ₂	1.737	C ₃ '-C ₄ '-H ₄ '	124.1						
C ₃ '-H ₃ '	1.083	C_4 '- C_5 '- S_2	111.3						
C4'-H4'	1.083	C ₅ '-S ₂ -C ₂ '	92.3						
C ₅ '-H ₅ '	1.081	$S_2-C_5'-H_5'$	120.7						
Calculated a	t the B3LYP/	6-311++G(d,p) lev	el, in vacuum						

3.5 Transition State 3 (Four Centre)

Table 10. S	elected struc	ctural data for trar	nsition state	4							
	Selected S	Structural Data			Cartesian Coordinates						
H ₄ .	\mathbf{Br}_{3}	$\begin{array}{c} H_4'\\ G_{r_2}\\ C_3'\\ C_2'\\ B_{r_2'} \end{array}$	H ₅ '		e e	L.	- 5				
Bond Le	ngth / Å	Bond Ang	jle / °	Center	Atomic	Atomic	Coord	inates (Angs	stroms)		
S ₁ -C ₂	1.747	S ₁ -C ₂ -C ₃	108.1	Number	Number	Туре	Х	Y	Z		
C ₂ -C ₃	1.383	C ₂ -C ₃ - Br ₃	122.2			0	-0.148085	-1.398314	-3.925373		
C ₃ -C ₄	1.416	$C_2 - C_3 - C_4$	115.9	2	35	0	-0.814673	-4.874524	-2.113245		
C4-C5	1.373	C ₃ -C ₄ -C ₅	111.3	3	16	0	2.998151	-2.792548	-2.830581		
CS	1 733	ССН.	124 3	4	16	0	-0.236040	2.754160	-1.151276		
05-01	1.700		124.0	5	6	0	3.197778	-4.508972	-2.964172		
C ₃ -Br ₃	1.909	$C_4 - C_5 - S_1$	111.7	6	6	0	2.024777	-5.176973	-2.711586		
C_4 - H_4	1.081	C_4 - C_5 - H_5	127.5	7	6	0	0.970225	-4.274362	-2.429322		
C₅-H₅	1.081	C ₃ -C ₂ -Li	122.1	8	6	0	1.319452	-2.937194	-2.369476		
C ₂ -Br ₂	2.635	C_2 - Br_2 - C_3 '	87.1	9	6	0	0.493583	1.192853	-1.469903		
C-Li	1 990	CLi-Co'	132.9	11	o A	0	-0.427120	0.702681	-1.801088		
	1.300		102.0	12	6	0	-1.804816	2 109336	-1.505252		
Br ₂ -Lı	2.606	Br ₂ -C ₂ -Lı	66.9	13	35	0	2.370893	0.969819	-1.303170		
Br ₂ -C ₃ '	2.701	Br ₂ -C ₃ '-Li	65.2	14	1	0	4.169431	-4.938137	-3.162345		
Li-C₃'	2.019	S ₂ -C ₂ '-C ₃ '	112.4	15	1	0	1.921799	-6.253368	-2.714435		
S ₂ -C ₂ '	1.753	S ₂ -C ₂ '-Br ₂ '	120.0	16	3	0	0.240529	-1.606101	-1.356888		
Ca'-Ca'	1 361	Ca'-Ca'-Cu'	112 1	17	1	0	-2.610927	0.217447	-2.212756		
	1.001		112.1	18	1	0	-2.672179	2.751081	-1.504527		
$C_3'-C_4'$	1.432	$C_{3}' - C_{4}' - C_{5}'$	112.9								
C ₄ '-C ₅ '	1.362	C ₃ '-C ₄ '-H ₄ '	123.7								
C ₅ '-S ₂	1.746	C_4 '- C_5 '- S_2	112.2								
C ₂ '-Br ₂ '	1.898	C ₅ '-S ₂ -C ₂ '	90.1								
C ₄ '-H ₄ '	1.082	$S_2-C_5'-H_5'$	119.3								
C5'-H5'	1.081	Li-C ₃ '-C ₂ '	111.1								
Calculated	at the B3LYF	⊃/6-311++G(d,p)	level, in vacı	Jum							

3.6 Transition State 4 (Four Centre)

3.7 Transition State 2 (S_N2 Type)

Table 11.	Selected struct	tural data for transi	ition state 2						
	Selecte	d Structural Data				Cartes	sian Coordir	ates	
	$H_4 \xrightarrow{H_3} H_4 \xrightarrow{C_4 C_3} H_5 \xrightarrow{C_5 S_1} H_5$	$= \frac{\mathbf{Br_2}}{\mathbf{Br_2}} = \mathbf{C_3}$	S2 / / H ₅ '		Ľ	X	•	-	2
Bond L	_ength / Å	Bond A	ngle / °	Center	Atomic	Atomic	Coordina	ates (Angstr	oms)
S ₁ -C ₂	1.741	S ₁ -C ₂ -C ₃	110.4	Number	Number	Туре	Х	Y Z	
C ₂ -C ₃	1.371	C ₂ -C ₃ - H ₃	122.9	1	35	0	0.561253	2.315554	0.726457
C ₃ -C ₄	1.432	$C_2 - C_3 - C_4$	113.5	2	35	0	0.494317	-1.694971	1.030857
C ₄ -C ₅	1.366	C ₃ -C ₄ -C ₅	112.9	3	16	0	1.869014	-1.753851	-1.828665
C-S	1 741	CarCurHu	123.0	4	16	0	0.856978	4.553597	3.266798
05-01	1.741	03-04-114	125.5	5	6	0	2.252987	-0.296711	-2.699359
C ₂ -Br ₂	2.111	$C_4 - C_5 - S_1$	111.0	6	6	0	1.894687	0.822158	-2.000107
C ₄ -H ₄	1.083	C_4 - C_5 - H_5	128.3	7	6	0	1.286433	0.576709	-0.719269
C₅-H₅	1.080	C ₃ -C ₂ -Br ₂	125.9	8	6	0	1.225389	-0.754315	-0.532063
Co-Ho	1 084	Co-Bro-Co'	170.8	9	6	0	-0.171173	3.610639	2.224542
03113	1.004	02 012 03	170.0	10	6	0	-1.483540	3.746967	2.597705
Br ₂ -Li	2.313	C ₂ -Br ₂ -Li	89.7	11	6	0	-0.497703	5.130257	4.195581
Br ₂ -C ₃ '	2.375	$Br_2 - C_3' - C_2'$	128.7	12	6	0	-1.670996	4.617473	3.719498
Li-Br ₂ '	2.510	Br ₂ -Li-Br ₂ '	113.0	13	3	0	0.354859	0.530785	2.183222
Sec.	1 759	SerCe'rCe'	116 3	14	1	0	2.718541	-0.366779	-3.6/3151
02 02	1.700	$0_{2} 0_{2} 0_{3}$	110.0	15	1	0	2.060187	1.820386	-2.390608
C ₂ '-C ₃ '	1.346	S_2 - C_2 '- Br_2 '	116.8	10	1	0	-2.298218	3.259785	2.073690
C ₃ '-C ₄ '	1.439	C ₂ '-C ₃ '-C ₄ '	108.2	17	1	0	-0.349853	5.811323	5.021271
C4'-C5'	1.367	C ₃ '-C ₄ '-C ₅ '	115.2	10	1	0	-2.030423	4.033942	4.140050
C ₅ '-S ₂	1.740	C ₃ '-C ₄ '-H ₄ '	122.8						
C ₂ '-Br ₂ '	1.965	C ₄ '-C ₅ '-S ₂	111.8						
C4'-H4'	1.085	$C_5'-S_2-C_2'$	88.5						
C ₅ '-H ₅ '	1.082	S ₂ -C ₅ '-H ₅ '	119.4						
		Li-Br ₂ '-C ₂ '	87.8						
Calculated	d at the B3LYP	-D2/6-311++G(d,p) level, in vacuu	m					

Table 12. Sel	Table 12. Selected structural data for transition state3												
	Selected S	structural Data		Cartesian Coordinates									
H ₄	$ \begin{array}{c} H_{3} \\ C_{4} \\ C_{5} \\ S_{1} \end{array} $	Br ₂ Br ₃	H ₅ '		X	>	• 2						
Bond L	ength / Å	Bond Ang	le / °	Center	Atomic	Atom	ic Coordi	nates (Angs	troms)				
S ₁ -C ₂	1.751	S ₁ -C ₂ -C ₃	110.7	Number	Number	Туре	e X	Y Z	2				
C ₂ -C ₃	1.363	C ₂ -C ₃ -H ₃	123.1	1	35	0	0 358746	-1 903974	0.588510				
C ₃ -C ₄	1.436	C ₂ -C ₃ -C ₄	113.0	2	35	0	-0.912301	1.822272	-0.250387				
C₄-C₅	1.363	C3-C4-C5	113.7	3	16	0	-3.405371	-1.786081	0.364450				
0.9	1 746		100 5	4	16	0	3.112268	-1.648323	-0.964409				
05-01	1.740	C3-C4-H4	123.5	5	6	0	-4.409166	-0.411347	-0.035854				
C ₂ -Br ₁	2.027	$C_4 - C_5 - S_1$	110.4	6	6	0	-3.632398	0.694515	-0.223965				
C ₄ -H ₄	1.083	C_4 - C_5 - H_5	128.8	7	6	0	-1.906464	-0.912728	0.299100				
C₅-H₅	1.080	C_3 - C_2 - Br_2	133.5	8	6	0	-2.256788	0.356931	-0.024736				
CH.	1 083	C-Br-C-'	162 7	9	6	0	3.303883	-2.488120	1.458588				
03-113	1.005	02-012-02	102.7	10	6	0	2.361389	-2.210619	0.514345				
Br ₂ -Li	2.367	C ₂ -Br ₂ -Li	87.2	11	6	0	4.644168	-2.260027	0.997422				
Br ₂ -C ₂ '	2.489	Br ₂ -C ₂ '-C ₃ '	129.5	12	6	0	4.711790	-1.776791	-0.275591				
S₁-Li	2.922	Br ₂ -Li-Br ₃ '	112.1	13	3	0	0.717526	0.012662	-0.752615				
li-Br₀'	2,487	Sa-Ca'-Ca'	104.9	14	1	0	-5.485140	-0.488670	-0.105034				
	4 700		105.5	15	1	0	-3.999000	-2 826027	2 457577				
$S_2 - C_2$	1.736	$S_2 - C_2 - Br_2$	125.5	17	1	0	5 524673	-2 451005	1 598970				
C ₂ '-C ₃ '	1.356	C ₂ '-C ₃ '-C ₄ '	120.2	18	1	0	5.585462	-1.548388	-0.867278				
C ₃ '-C ₄ '	1.430	C ₃ '-C ₄ '-C ₅ '	109.7			-							
C ₄ '-C ₅ '	1.364	C ₃ '-C ₄ '-H ₄ '	125.1										
C ₅ '-S ₂	1.749	C4'-C5'-S2	110.0										
C ₃ '-Br ₃ '	2.001	C ₅ '-S ₂ -C ₂ '	95.3										
C4'-H4'	1.082	S ₂ -C ₅ '-H ₅ '	122.0										
C5'-H5'	1.081	C ₂ '-C ₃ '-Br ₃ '	122.6										
Calculated at	the B3LYP-D2/	/6-311++G(d,p) leve	l, in vacuum										

3.8 Transition State 3 (S_N2 Type)

Table 13. Selected structural data for transition state 4									
Selected Structural Data				Cartesian Coordinates					
$ \begin{array}{c} $					X		•		
Bond Length / Å Bond Angle / °		Center	Atomic	Ator	mic Coore	dinates (Ang	gstroms)		
S ₁ -C ₂	1.733	S ₁ -C ₂ -C ₃	106.9	Number	Number	Тур	be X	Y	z
C ₂ -C ₃	1.357	C_2 - C_3 - Br_3	123.4				-4 171020	-1 833000	
C ₃ -C ₄	1.429	C ₂ -C ₃ -C ₄	118.1	2	10	0	-3.930549	-2.415518	-3.819579
Cu-Cr	1.364	Co-Cu-Cr	110.3	3	6	0	-3.352936	-2.152080	-2.944387
04 05	1.004	03 04 05	110.0	4	6	0	-2.617975	-1.533859	-0.685224
C₅-S₁	1.745	C_3 - C_4 - H_4	124.8	5	35	0	-2.580730	-1.069136	1.193724
C ₂ -Br ₂	2.235	$C_4 - C_5 - S_1$	110.6	6	6	0	-1.998357	-2.021986	-2.825982
C ₄ -H ₄	1.082	C_4 - C_5 - H_5	128.0	7	6	0	-1.550933	-1.667149	-1.510134
C5-H5	1.081	C2-C2-Br2	125.7	8	1	0	-1.319516	-2.177255	-3.655989
0, 1,	1.001		120.1	9	3	0	-0.615130	0.321097	0.284313
C ₃ -Br ₃	1.969	C_2 -Br ₂ - C_3	170.3	10	35	0	0.561627	-1.283263	-1.015447
Br ₂ -Li	2.377	C ₂ -Br ₂ -Li	94.0	11	35	0	1.393400	1.632153	1.195462
Br ₃ -Li	2.566	Br ₂ -C ₃ '-C ₂ '	126.9	12	6	0	2.575211	-0.580593	-0.345651
Br ₂ -C ₂ '	2.203	Br ₂ -Li-Br ₂ '	101.9	13	6	0	2.816012	0.490477	0.452744
	0.077		100.5	14	16	0	4.115296	-1.264932	-0.750130
LI-Br ₂ '	2.377	Br ₃ -Lı-Br ₂ ′	138.5	15	6	0	4.174225	0.804606	0.766556
S ₂ -C ₂ '	1.754	S ₂ -C ₂ '-C ₃ '	114.6	16	1	0	4.487810	1.630426	1.390818
C ₂ '-C ₃ '	1.355	S ₂ -C ₂ '-Br ₂ '	118.6	17	6	0	5.016929	-0.085579	0.167621
C ₃ '-C ₄ '	1.434	C ₂ '-C ₃ '-C ₄ '	109.7	18	1	0	6.096078	-0.115586	0.214482
C4'-C5'	1.366	C ₃ '-C ₄ '-C ₅ '	114.4						
C ₅ '-S ₂	1.738	C ₃ '-C ₄ '-H ₄ '	122.9						
2'-Br2'	1.936	C4'-C5'-S2	112.0						
C4'-H4'	1.083	C ₅ '-S ₂ -C ₂ '	89.3						
C₅'-H₅'	1.081	S_2 - C_5 '- H_5 '	119.5						
Calculated at the B3LYP-D2/6-311++G(d,p) level, in vacuum									

3.9 Transition State 4 (S_N2 Type)

4. Intrinsic Reaction Coordinates

4.1 Four Centre Type

Figure 1. Minimum energy path along the forward and reverse intrinsic reaction coordinates of step 2 (four-centre type), referenced to the optimised starting reagents (2 OR).

Figure 2. Minimum energy path along the forward and reverse intrinsic reaction coordinates of step 3 (four-centre type), referenced to the optimised starting reagents (3 OR).

Figure 3. Minimum energy path along the forward and reverse intrinsic reaction coordinates of step 4 (four-centre type), referenced to the optimised starting reagents (4 OR).

Figure 4. Minimum energy path along the forward and reverse intrinsic reaction coordinates of step 2 ($S_N 2$ type), referenced to the optimised starting reagents (2 OR).

Figure 5. Minimum energy path along the forward and reverse intrinsic reaction coordinates of step 3 ($S_N 2$ type), referenced to the optimised starting reagents (3 OR).

Figure 6. Minimum energy path along the forward and reverse intrinsic reaction coordinates of step 4 ($S_N 2$ type), referenced to the optimised starting reagents (4 OR).

5. Gibbs Energy Profile Diagrams

Figure 7. Relative Gibbs energy profile for the four-centre mechanism steps 2 and 3. For clarity, the wells in the entrance and exit channels are not shown.

Figure 8. Relative Gibbs energy profile for the four-centre mechanism step 4. For clarity, the wells in the entrance and exit channels are not shown.

6. Activation Energies

Figure 9. Chart comparing the activation energies *vs* theory level for the lithium-proton exchanges and lithium-bromine (four-centre type) exchange transition states.

	HF/	B3I VP/	B3I VP/	B3I VP-D2/	B3I VP-D3/	B3I YP-D3B I/	wB97XD/
Step	6-31G(d)	6-31+G(d)	6-311++G(d,p)	6-311++G(d,p)	6-311++G(d,p)	6-311++G(d,p)	6-311++G(d,p)
1a	15.40	-4.896	9.810	-27.33	0.5300	-6.14	-2.100
1b	63.25	22.93	30.26	1.260	21.92	17.02	19.46
1c	162.1	98.29	110.1	85.99	98.33	95.60	116.2
2	298.4	180.5	202.2	163.0	177.0	174.8	230.8
3	-	165.0	175.6	140.8	146.6	146.4	217.6
4	299.2	173.9	193.1	151.1	158.0	160.3	221.5

7. Internal Energies of Reaction

Table 15. Internal energies of reaction (kJ mol ⁻¹) for steps 1a-4 at various theory levels, in vacuum; lithium-proton exchanges and the lithium-halogen (four-centre type) exchange steps							
Step	HF/	B3LYP/	B3LYP/	B3LYP-D2/	B3LYP-D3/	B3LYP-D3BJ/	wB97XD/
b	6-31G(d)	6-31+G(d)	6-311++G(d,p)	6-311++G(d,p)	6-311++G(d,p)	6-311++G(d,p)	6-311++G(d,p)
1a	-6.720	13.60	20.35	8.810	19.07	17.28	14.95
1b	41.86	43.98	49.71	48.38	48.16	47.31	42.97
1c	106.5	131.39	115.87	117.8	116.6	120.1	116.1
2	26.62	4.150	11.36	19.16	7.330	9.360	6.970
3	-70.17	-41.92	-50.04	-58.37	-48.80	-48.06	-47.52
4	-43.55	-37.76	-38.7	-39.21	-41.47	-38.70	-40.55

Table 15 Continued					
Stop	MP2/	CCSD/			
Step	6-311++G(d,p)	6-311++G(d,p)			
1a	12.92	11.68			
1b	39.90	40.93			
1c	134.5	120.9			
2	4.120	8.640			
3	-44.06	-47.48			
4	-39.95	-38.84			