This is a repository copy of Conditional gene deletion with DiCre demonstrates an essential role for CRK3 in Leishmania mexicana cell cycle regulation.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/97258/

Version: Accepted Version

Article:
Duncan, Samuel M., Myburgh, Elmarie, Philipon, Cintia et al. (4 more authors) (2016) Conditional gene deletion with DiCre demonstrates an essential role for CRK3 in Leishmania mexicana cell cycle regulation. Molecular Microbiology. pp. 931-944. ISSN 0950-382X

https://doi.org/10.1111/mmi.13375

Reuse
["licenses_typename_unspecified" not defined]

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Conditional gene deletion with DiCre demonstrates an essential role for CRK3 in
Leishmania mexicana cell cycle regulation

Samuel M. Duncan\(^1\), Elmarie Myburgh\(^{1,2}\), Cintia Philipon\(^1\), Elaine Brown\(^{1,2}\), Markus
Meissner\(^1\), James Brewer\(^1\), Jeremy C. Mottram\(^{1,2}\).

\(^1\)Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and
Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow,
Glasgow, G12 8TA, UK.
\(^2\)Centre for Immunology and Infection, Department of Biology, University of York,
Wentworth Way, Heslington, York, YO10 5DD, UK

Running Head: Conditional gene deletion in Leishmania

Key words: genome engineering, DiCre recombinase, cyclin-dependent kinase

Correspondence: jeremy.mottram@york.ac.uk

Abstract

Leishmania mexicana has a large family of cyclin-dependent kinases (CDKs) that reflect the
complex interplay between cell cycle and life cycle progression. Evidence from previous
studies indicated that Cdc2 related kinase 3 (CRK3) in complex with the cyclin CYC6 is a
functional homologue of the major cell cycle regulator CDK1, yet definitive genetic evidence
for an essential role in parasite proliferation is lacking. To address this, we have implemented
an inducible gene deletion system based on a dimerised Cre recombinase (diCre) to target
CRK3 and elucidate its role in the cell cycle of *L. mexicana*. Induction of diCre activity in
promastigotes with rapamycin resulted in efficient deletion of floxed *CRK3*, resulting in
G2/M growth arrest. Co-expression of a *CRK3* transgene during rapamycin-induced deletion
of *CRK3* resulted in complementation of growth, whereas expression of an active site
CRK3\(^{T178E}\) mutant did not, showing that protein kinase activity is crucial for CRK3 function.
Inducible deletion of *CRK3* in stationary phase promastigotes resulted in attenuated growth in
mice, thereby confirming CRK3 as a useful therapeutic target and diCre as a valuable new
tool for analysing essential genes in *Leishmania*.

Introduction
The leishmaniases, diseases caused by protozoan parasites of the genus *Leishmania*, have diverse clinical manifestations dependent on the species and host immune response. Leishmaniasis is a substantial public health issue, causing an estimated 40,000 deaths annually and approximately 0.2 to 0.4 and 0.7 to 1.2 million visceral and cutaneous manifestations of the disease respectively (Alvar *et al*., 2012). Existing drug therapies are problematic due to high treatment costs, toxicity and undesirable administration routes, making the development of novel and effective drug therapies to expand the current repertoire crucial. Phenotypic strategies to identify drug targets in the mammalian infective amastigote life cycle stage are of particular importance for drug discovery programs.

As unicellular organisms, *Leishmania* depend on stringent control of cellular division to propagate and maintain infection. Protein kinases elicit pronounced effects on the *Leishmania* cell cycle by regulation of cell signalling pathways, and a number of protein kinases have been identified that are essential for promastigote viability (Wang *et al*., 2005; Dacher *et al*., 2014). The cyclin-dependent kinases (CDK) are of particularly interest due to their pivotal roles as cell cycle regulators. The use of CDK inhibitors in cancer therapy (Cicenas and Valius, 2011; Knapp and Sundström, 2014) and the relative expansion of this protein family in *Leishmania* relative to other unicellular organisms distinguishes them as suitable drug targets. In particular, the CDK related kinase CRK3 has been demonstrated as being important for regulation of the *L. mexicana* promastigote cell cycle by existing genetic manipulation techniques and cell cycle arrest following treatment with CDK inhibitors (Grant *et al*. 1998; Hassan *et al*. 2001; Grant *et al*. 2004). Recombinant protein kinase activity assays (Gomes *et al*., 2010) and yeast recovery mutants (Wang *et al*., 1998) have provided further validation of CRK3 as a drug target, leading to the identification and synthesis of a number of CRK3 inhibitors (Grant *et al*., 2004; Cleghorn *et al*., 2011; Walker *et al*., 2011; Goyal *et al*., 2014; Řezníčková *et al*., 2015). Regulation of CRK3 expression in *L. mexicana* is desirable to further assess its function in both procyclic promastigote and amastigote life cycle stages, however, no system exists for conditional deletion of essential genes. Recent application of plasmid shuffle methodology has addressed this issue by enabling the generation of partial null mutants to further study essentiality and important residues within coding sequences (Morales *et al*., 2010; Dacher *et al*., 2014), however the gene is not deleted and this prevents phenotyping of a null mutant.
To address this limitation, we have implemented a rapamycin-inducible gene deletion system using a dimerised Cre recombinase (diCre) (Jullien et al., 2003; Collins et al., 2013; Andenmatten et al., 2013) to target CRK3 and elucidate its role in the cell cycle of L. mexicana. L. mexicana is generally diploid (Rogers et al., 2011) and both CRK3 alleles were replaced with a ‘floxed’ CRK3 open reading frame and the diCre coding sequence through promastigote transfection and homologous recombination. This system was used to conditionally delete CRK3 during promastigote growth and so prove that CRK3 mediates the transition through G2/M. Induced loss of CRK3 was complemented by expression of a CRK3 transgene but not by expression of an inactive site (T178E) CRK3 mutant, showing that protein kinase activity is crucial for CRK3 function. Significantly, conditional deletion of CRK3 in stationary phase promastigotes and subsequent attenuation during murine infection demonstrates that CRK3 activity is essential for establishing infection. This system represents a new method to directly assess whether a gene is essential to parasite viability and provides novel insight into the function of essential genes in Leishmania.

Results

DiCre activity is tightly regulated in L. mexicana promastigotes and amastigotes

To test the activity of diCre in L. mexicana promastigotes, a reporter cell line was generated by integration of a loxP-flanked GFP into the ribosomal locus: [SSU GFP^Flox]. This cell line was transfected with a diCre construct containing the two dimerizable Cre recombinase subunits with the homologous flanks of crk3 to generate the heterozygous line (crk3::DICRE/CRK3 [SSU GFP^Flox]). Integration of the diCre construct at the CRK3 locus was confirmed by PCR analysis (Fig. S1A). No effect on the growth of SSU GFP^Flox or crk3::DICRE/CRK3 [SSU GFP^Flox] was observed in the presence of the dimerization ligand, rapamycin, up to the highest dose of 250 nM (Fig. S1B). GFP excision following incubation with increasing concentrations of rapamycin was investigated by PCR using specific primers flanking GFP. A single 1.45 kb PCR product, the floxed GFP fragment, was detected in the absence of rapamycin, whilst a 0.69 kb PCR product, representing the excised locus, was detected following rapamycin treatment only (Fig. 1A), indicating tight regulation of diCre activity. crk3::DICRE/CRK3 [SSU GFP^Flox] and [SSU GFP^Flox] promastigotes grown for 5 days in the presence or absence of increasing concentrations of rapamycin were analysed by flow cytometry to measure levels of GFP expression (Fig. 1B). Treatment of
Δcrk3::DICRE/CRK3 [SSU GFPFlox] promastigotes with greater than 5 nM rapamycin resulted in substantial loss of GFP expression compared with the untreated controls, whilst GFP expression in [SSU GFPFlox] was the same following growth in all concentrations of rapamycin. GFP loss in Δcrk3::DICRE/CRK3 [SSU GFPFlox] promastigotes grown in the presence or absence of 100 nM rapamycin for 5 days was further assessed by Western blotting of total protein extracts using anti-GFP antibody (Fig. 1C). Rapamycin treated promastigotes had considerably reduced GFP compared with the untreated controls, thereby demonstrating that gene loss results in reduced protein expression. These data also demonstrate that expression of diCre from the CRK3 locus is sufficient to efficiently excise the GFP transgene at rapamycin concentrations above 5 nM, and that no background diCre activity can be detected in the absence of ligand. 100 nM rapamycin was chosen as the optimum concentration to induce diCre activity in promastigotes whilst having no effect on \textit{in vitro} cell growth.

To test diCre functionality in amastigotes, infectious promastigotes of the experimental line Δcrk3::DICRE/CRK3 [SSU GFPFlox] were inoculated into BALB/c footpads and amastigotes purified from the resulting lesion. \textit{Ex vivo} amastigotes retained high levels of green fluorescence and were incubated with rapamycin for 24 hrs in Schneider’s medium prior to infection of bone-marrow derived macrophages. Efficient excision of GFPFlox was detected by PCR amplification of a 0.69 kb fragment representative of GFP loss in all rapamycin treated samples (Fig. 1D) and GFP− (non-fluorescent) amastigotes were observed by comparing images obtained through fluorescence live cell imaging (Fig. S1C). Residual GFP+ amastigotes were still visible by microscopy (Fig. S1C) and could be detected by flow cytometry (Fig. S1D); this was possibly due to the slow replication rate of amastigotes leading to a low rate of GFP turnover. These data demonstrate inducible diCre activity in amastigotes.

\textit{Inducible deletion of CRK3 in L. mexicana promastigotes}

The functional and efficient levels of diCre-mediated excision of GFP underpinned the development of a system for conditional deletion of essential genes. Gateway recombineering was used to flank appropriate diCre and loxP expression constructs with gene-specific, homologous flanks (Fig. S2). Plasmids were generated by this method to replace the two alleles of CRK3, an essential gene in \textit{L. mexicana} (Hassan \textit{et al.}, 2001) (Fig S3A). The first allele of CRK3 was replaced with DICRE (Δcrk3::DICRE/CRK3) and the second allele of
CRK3 was subsequently replaced with a floxed C-terminal GFP-tagged CRK3 version (Δcrk3::DICRE/Δcrk3::CRK3Flox; Figs. 2A and S3B). In addition, an mCherry red fluorescent protein coding sequence was incorporated downstream from the floxed CRK3-GFP to facilitate flow cytometry and microscopy analysis. Transfection resulted in multiple clones with the expected genetic modifications, as confirmed by PCR analysis (Fig. S3B).

The growth of promastigotes from two Δcrk3::DICRE/Δcrk3::CRK3Flox clones were assessed following diCre-mediated excision induced with 100 nM rapamycin (Fig. 2B). Cells were counted over the course of 5 days, revealing a pronounced growth defect and reduction in cell number in rapamycin treated cells compared with uninduced controls. PCR analysis of promastigotes grown in the presence or absence of 100 nM rapamycin for 24 h and 48 h confirmed efficient loss of the CRK3 gene (Fig. 2C) by the amplification of a single 1.36 kb DNA fragment for both rapamycin treated clones. The retention of the 3.4 kb amplicon containing the CRK3 gene in both untreated clones is evidence that no background diCre activity can be detected in the absence of rapamycin. To test for loss of the CRK3-GFP protein, total protein extracts of clone 2 promastigotes grown for 96 h in the presence or absence of 100 nM rapamycin were analysed by Western blot analysis with anti-GFP antibody (Fig. 2D) Very low levels of protein were detected in the treated promastigotes compared to the untreated cells, confirming that the conditional gene loss leads to reduced protein levels. Treatment with 100 nM rapamycin did not result in any noticeable effect on L. mexicana promastigote growth (Fig. S1B), however the pronounced growth arrest arising from loss of the essential gene could possibly result in cellular stress that synergises with rapamycin. These data show that this is a viable genetic manipulation strategy and that loss of CRK3 resulted in growth arrest and reduced cell numbers, both phenotypes consistent with loss of an essential gene.

Cell cycle analysis of CRK3-deficient promastigotes.

Previous attempts to impair CRK3 function in Leishmania by treatment with protein kinase inhibitors may have resulted in off-target effects (Grant et al., 2004; Reichwald et al., 2008; Cleghorn et al., 2011; Jorda et al., 2011; Efstathiou et al., 2014; Řezničková et al., 2015). Here the utilisation of diCre mediated gene deletion enabled the effect of CRK3 depletion on the cell cycle to be investigated. Firstly, microscopic analysis of the cells at 96 h post-induction showed an accumulation of large, aberrant cells with altered organelle homeostasis...
as evidenced by the presence of cells with multiple flagella (Fig. 3A). DAPI labelling of such multi-flagellated cells to visualise cellular DNA revealed the presence of enlarged nuclei indicative of an arrest in mitosis. Interestingly, cells were also observed that lacked a nucleus but retained the kinetoplast (‘zoids’), a cell cycle defect observed previously by the treatment of promastigotes with CDK inhibitors (Grant et al., 2004). Secondly, flow cytometry was performed to determine the overall DNA content of Δcrk3::DICRE/Δcrk3::CRK3FloxF promastigotes grown in the presence or absence of 100 nM rapamycin for 72 and 96 h (Fig. 3B). This analysis showed that conditional deletion of CRK3 resulted in the accumulation of cells with 4C DNA content, associated with cell cycle arrest at G2/M, whilst an increasing population of cells with DNA content <1C indicates the accumulation of zoids. Finally, to assess the rate of cell death occurring in CRK3-deficient cells a viability assay was performed on promastigotes after growth in the presence or absence of 100 nM rapamycin for 72 h (Figs. 3C & S4). After 72 h the proportion of propidium iodide positive cells (PI+) was around 40% indicating a high level of cell death, which likely resulted from the accumulation of anucleated zoids at this time point. Flow cytometry analysis of cell size (using forward scatter) was in agreement with the microscopy analysis and showed that CRK3 deficient cells were substantially larger than cells retaining the gene (Fig. S4). Taken together, these data provide evidence that CRK3 plays an essential role in regulating mitosis in replicating promastigotes.

Active CRK3 is required for cell cycle progression in promastigotes

We demonstrated that diCre could be used to efficiently delete a floxed copy of CRK3, so we exploited the efficiency of this system to further study gene function through complementation. Such a system was established by expressing a histidine-tagged CRK3 (CRK3his) (Hassan et al., 2001) transgene in Δcrk3::DICRE/Δcrk3::CRK3FloxF promastigotes. No significant difference in growth was noted in the presence or absence of rapamycin over a 5 day period (Fig. 4A). Efficient excision of floxed CRK3 in the induced culture was confirmed by PCR amplification of the diagnostic 1.36 kb fragment by 24 h post-treatment with 100 nM rapamycin (Fig. 4B). The proliferation of promastigotes, despite loss of floxed CRK3, indicates CRK3 transgene complementation in the induced Δcrk3 cell line. Previous studies have shown that recombinant L. mexicana CRK3T178E protein lacks H1 kinase activity (Gomes et al., 2010) and an L. major CRK3T178E mutant fails to complement a cdc2-33(ts) yeast mutant (Wang et al., 1998). To test whether active CRK3 is required for cell growth,
we exploited this complementation approach by generation of the cell line \(\Delta crk3::DICRE/\Delta crk3::CRK3^{\text{Flox}} \) expressing a T-loop residue mutated version of \(CRK3 \) from the ribosomal locus. Growth curves indicate that expression of the \(CRK3^{\text{T178E}} \) transgene failed to complement the loss of \(CRK3^{\text{Flox}} \) following induction with rapamycin (Fig. 4A, B) thereby demonstrating that \(CRK3^{\text{T178E}} \) cannot rescue loss of active \(CRK3 \). The overall growth rate of both complementation mutants was reduced relative to the parental line (Table 1) and may explain the growth arrest at 72 h following excision of \(CRK3 \) in \(\Delta crk3::DICRE/\Delta crk3::CRK3^{\text{Flox}} \) compared with a more rapid onset of growth arrest in the parental line (Fig. 2B). These data show that active \(CRK3 \) is required for parasite growth. The \(CRK3 \) deficient cells were analysed by flow cytometry and fluorescence microscopy showing that \(\Delta crk3::DICRE/\Delta crk3::CRK3^{\text{Flox}} \) cells were blocked in G2/M (Fig. 4C) and were multi-nucleate and aberrant (Fig. 4D). These data are in agreement with the phenotype observed following excision of \(CRK3 \) in wild-type cells (Fig. 3A & B), thereby indicating the importance of the T-loop in regulating \(CRK3 \) activity. Based on these results, we conclude that transgene complementation can be used to confirm the specificity of conditional deletion of essential genes and also to probe the function of genes following mutagenesis.

\[CRK3 \text{ is essential for in vivo infection of murine hosts} \]

The lack of a conditional system to regulate expression of essential genes is a major obstacle for \textit{in vivo} studies of essentiality, with such studies having crucial applications for drug target validation. To address this we tested if \(CRK3 \) activity is essential for survival of the parasite over the course of \textit{in vivo} infection. Monitoring infection by detection of the light signal emitted from bioluminescent \textit{Leishmania} using an \textit{in vivo} imaging system (IVIS) is an established, longitudinal and non-invasive method to correlate signal with pathogen load (Lang \textit{et al.}, 2005; Lecoeur \textit{et al.}, 2007; Talmi-Frank \textit{et al.}, 2012; Vasquez \textit{et al.}, 2015). To assess the outcome of \(CRK3 \) loss on the proliferation of \textit{L. mexicana} \textit{in vivo}, bioluminescent lines were generated by transfection of \textit{L. mexicana} wild-type and \(\Delta crk3::DICRE/\Delta crk3::CRK3^{\text{Flox}} \) promastigotes with a ribosomal integration construct encoding red-shifted firefly luciferase, Ppy RE9H (Branchini \textit{et al.}, 2010; McLatchie \textit{et al.}, 2013). Both lines were bioluminescent as determined by luciferase expression assays on logarithmic stage promastigotes. The resulting \(\Delta crk3::DICRE/\Delta crk3::CRK3^{\text{Flox}} \) [SSU RE9H] cell line produced 5 fold higher bioluminescence compared with the wild-type [SSU RE9H]
control (Fig. S4). Footpad bioluminescence detected with an in vivo imaging system (IVIS) correlated well with parasite burden in mice infected with L. mexicana expressing Ppy RE9H (Fig. 5A; y = 4.8 + 0.43x, $R^2 = 0.743$ and $p < 0.0001$). The slope of the linear regression line (0.43) revealed smaller increases in bioluminescence with increasing parasite burden. This may be related to tissue absorbance of light in vivo or limited substrate availability with increasing numbers of amastigotes within the lesion. Nevertheless, these data show that parasite burdens can be predicted from bioluminescence and that IVIS could be used for the non-invasive monitoring of parasite growth in mice over 10 weeks of infection. Following treatment of $\Delta crk3::DICRE/\Delta crk3::CRK3^{Flox}$ stationary phase promastigotes with rapamycin for 24 h the amplification of a 1.36 kb fragment (Fig. 5B) indicated that the majority of parasites had successfully excised floxed CRK3. The presence of small amounts of a 3.4 kb amplicon corresponding to the intact floxed CRK3 gene, however, also suggested that some parasites had retained the gene. These stationary phase $\Delta crk3::DICRE/\Delta crk3::CRK3^{Flox}$ [SSU RE9H] promastigotes either rapamycin treated (+ Rap) or not treated (- Rap) were then inoculated into the footpads of BALB/c mice. The in vivo bioluminescence in footpads of mice infected with the rapamycin-treated $\Delta crk3::DICRE/\Delta crk3::CRK3^{Flox}$ [SSU RE9H] was significantly reduced compared to the uninduced control by 5 weeks post-infection ($p <0.001$) and this continued up to 9 weeks post-infection ($p<0.005$) (Fig. 5C, D). From 5 to 9 weeks the bioluminescence from footpads infected with rapamycin-treated parasites increased 100-fold and was likely due to the proliferation of parasites that had not responded to rapamycin treatment and persisted in the lesion. To investigate this possibility, viable amastigotes were purified from the lesions of four mice at 10 weeks post-infection and analysed for the presence of $CRK3^{Flox}$ by PCR after a single round of in vitro culture (Fig. 5E). A 3.4 kb PCR product containing $CRK3$ was amplified from all samples, indicating the persistence of parasites that had escaped diCRE mediated excision of $CRK3$.

The ability of $CRK3$ deficient promastigotes to establish infection was further assessed by measuring footpad sizes at weekly intervals (Fig. 5F). The footpad sizes of mice infected with either untreated or rapamycin-treated $\Delta crk3::DICRE/\Delta crk3::CRK3^{Flox}$ [SSU RE9H] parasites were similarly low until about 4 weeks post-infection. Subsequently, footpads containing untreated parasites increased steadily over the course of infection, whilst those infected with rapamycin-treated $\Delta crk3::DICRE/\Delta crk3::CRK3^{Flox}$ [SSU RE9H] remained low until 9 weeks post infection. Comparison of the bioluminescence and lesion sizes suggest that there is a delay in lesion development despite parasite proliferation and that the lesions only increase
significantly when parasite load reaches a certain level (equating to bioluminescence ≈10^7 photons/sec); in the case of the untreated parasites this occurred from about 5 weeks while for rapamycin-treated parasites this level of parasite burden had still not been reached by 9 weeks. Altogether these data show that loss of active CRK3 impairs the establishment of infection in vivo, and that a later resurgence of parasites likely results from a small population of cells which previously escaped CRK3 conditional deletion.

Discussion

We have developed an inducible system for the genetic manipulation of essential genes in Leishmania. Inducible diCre was used to demonstrate the requirement for CRK3 activity in the regulation of mitosis. A distinct growth defect was observed 48 h after induced deletion of CRK3 (Fig. 2) resulting in cells arrested in G2/M, as well as an accumulation of zoids and eventually a population of enlarged, multi-flagellated cells (Fig. 3). This phenotype was rescued by expression of a CRK3 transgene from the ribosomal locus, confirming that loss of CRK3 caused mitotic arrest (Fig. 4). Arrest in G2/M and the accumulation of zoids have previously been reported following incubation of L. mexicana promastigotes with the CRK3 inhibitors flavopiridol (Hassan et al., 2001) and indirubin (Grant et al. 2004), showing correlation between genetic and chemical downregulation of CRK3 activity. In Trypanosoma brucei RNAi knockdown of the syntenic orthologue of CRK3 in the procyclic form also results in G2/M arrest and zoid formation (Tu and Wang, 2004), with the accumulation of such aberrant cells explained by the lack of a checkpoint controlling exit from mitosis and entry in cytokinesis (Ploubidou et al., 1999; Hammarton et al., 2003). Inducible deletion of CRK3 indicates that this checkpoint is also absent in L. mexicana promastigotes, resulting in impairment of mitotic progression, followed by re-initiation of G1 in the absence of cytokinesis. It appears that these abnormal cells can eventually undergo cytokinesis; however the daughter cell lacks a nucleus and is often multi-flagellated (see bi-flagellated zoid in Fig 3A), whilst the high levels of cell death occurring 72 h after gene loss show that such progeny are not viable.

CRK3 is active at different stages in the cell cycle by forming complexes with cyclin partners such as CYC6 and CYCA, therefore CRK3 deletion could impact the cell cycle at multiple stages. RNAi of the CYC6 in T. brucei procyclic forms results in growth arrest within 48 h of induction and the accumulation of zoids and cells in G2/M (Hammarton et al., 2003). A
similar phenotype was found in this study with CRK3 inducible deletion, suggesting that the
CRK3:CYC6 complex is involved in regulation of mitosis (Walker et al., 2011). Less is
known about the activity of CRK3:CYCA. Protein expression assays of L. donovani CYC1
(the functional orthologue of CYCA) demonstrates an increased abundance during S-phase
(Banerjee et al., 2006) coupled with histone phosphorylation by an active CRK3:CYC1
complex (Maity et al., 2011), which is suggestive of S-phase kinase activity. Active, recombinant L. mexicana CRK3:CYCA has also been engineered, with phosphorylation of the T-loop residue T178 by the CDK activating kinase (CAK) Civ-1 increasing activity
(Gomes et al., 2010). The T178 residue is essential for CRK3 activity as T178E mutagenesis
inhibits functional rescue in S. pombe (Wang 1998) and ablates kinase activity in recombinant CRK3T178E:CYCA (Gomes et al., 2010). The necessity of T178 was tested
directly in this study, with excision of floxed CRK3 in the ∆crk3::DICRE/∆crk3::CRK3Flox
[SSU CRK3T178E] line leading to cell cycle arrest in G2/M and zoid formation. The growth
rate of this line and ∆crk3::DICRE/∆crk3::CRK3Flox [SSU CRK3] were reduced when
compared to ∆crk3::DICRE/∆crk3::CRK3Flox (Table 1), indicative of generally reduced
growth rate when expressing a transgene. Episomal complementation with CRK3 did not
result in an observable growth defect (Hassan et al., 2001), but this may result from the
modulation of the number of episomal copies, as has been observed previously following
complementation of the essential MCA gene (Ambit et al., 2008). Integration into the 18s
rRNA locus results in consistently high levels of expression (Misslitz et al., 2000) leading to
non-physiological levels of CRK3 and subsequent CRK3:CYC6 activity at potentially
inappropriate stages of the life cycle.

The reduced growth rate of promastigotes overexpressing CRK3T178E is likely due to a partial
dominant negative effect, whereby inactive CRK3T178E binds endogenous CYC6 leading to
impaired protein kinase activity even in the presence of active CRK3. This reduced growth
rate may explain both the cell cycle arrest at 72 h in the [SSU CRK3T178E] complemented line
(Fig. 4A) compared to arrest at 48 hours in ∆crk3::DICRE/∆crk3::CRK3Flox (Fig. 2B) and
additionally the lower proportion of zoids when analysed by flow cytometry (Fig. 4C). The
accumulation in G2/M suggests that mutation ablates CRK3:CYC6 activity, rather than
CRK3:CYCA, where an increase of cells in G1/S might be anticipated. Both induced and
uninduced ∆crk3::DICRE/∆crk3::CRK3Flox [SSU CRK3T178E] have dramatically reduced
flagellum length and are immotile (Fig. 4D). The reduced size of the flagellum and a growth
defect are similar phenotypes to those observed in cell lines deficient in ATG5, a key
component of the autophagic pathway (Williams et al., 2012). This is likely a result of their impaired ability to salvage material through the autophagic pathway, imparting selection on the parasites to reduce energy through flagellum regression. The partial dominant negative effect of CRK3T178E may also result in metabolic stress in these cells leading to the phenotype observed. The importance of T178 as an active site residue for regulating progression through G2/M implicates upstream modifiers of this residue as essential regulators of the L. mexicana cell cycle. In mammalian cells CDK7 acts as a CAK to regulate CDK1 by phosphorylation at this T-loop residue, yet no CAK homologues have been identified in the Leishmania genome (Gomes et al., 2010). The identification of potential post-transcriptional modifiers of the CRK3 T-loop residue that act in an analogous fashion to CDK7 would therefore yield promising targets for drug discovery. The phenotype of the induced cell line shows the importance of the T-loop residue for CRK3 activity and mitotic function within the cell, endorsing this complementation assay as a rational approach for active site investigation.

The assessment of gene essentiality for amastigote viability is an important approach in the context of drug target validation as this life cycle stage is the pathologically significant form. The recent utilisation of plasmid shuffle has facilitated the study of Leishmania genes involved in life cycle differentiation and essentiality both in amastigote and promastigote forms by the generation of partial null mutants (Morales et al., 2010; Dacher et al., 2014). Retention of an episomal gene in a null mutant cell line after murine infection is a useful approach to assess that gene as necessary to amastigote survival in vivo (Wiese, 1998). Despite such elegant utilisation of reverse genetic methods to probe gene function, no method exists for the generation of conditional null mutants during in vivo infection. Our study does not address this lack directly due to the sensitivity of amastigotes to rapamycin, however as diCre activity remains high in stationary-phase promastigotes CRK3 was efficiently excised (Fig. 5B) to probe the subsequent infectivity of CRK3-deficient promastigotes. By tracking the progression of infection with reporter parasites expressing the highly sensitive red-shifted luciferase (Branchini et al., 2010; McLatchie et al., 2013) and by footpad size measurement, we demonstrate that the CRK3-deficient L. mexicana are unable to proliferate in their mammalian host (Figs. 5C, 5D and 5F). Importantly, the wild-type line expressing luciferase grows normally in mice following rapamycin treatment, which indicates that lack of growth of the CRK3-deficient mutant is not a result of the drug treatment. The average light intensities emitted from footpads infected with the wild-type [SSU RE9H] line and those from footpads infected with the Δcrk3::DICRE/Δcrk3::CRK3Flox [SSU RE9H] line retaining floxed
CRK3 are at similar levels throughout infection, yet mean footpad size is larger in wild-type [SSU RE9H] infected mice after 3 weeks post infection; such disagreement may be a result of the 5 fold lower signal intensity of the wild-type [SSU RE9H] compared with the experimental line (Fig. S5) and therefore an overall higher burden of the wild-type line is likely masked by a reduced bioluminescent signal intensity.

Interestingly, parasite burden as measured by total flux remains consistently above the background intensity (dashed line, Fig. 5D) in those footpads infected with the CRK3-deficient line, suggestive of the survival of a low number of bioluminescent parasites. The outgrowth of these parasites was observed through an increased bioluminescence signal at 9 weeks post infection compared with 5 weeks (Fig. 5C and 5D). Purification and PCR analysis of these parasites shows they retained the floxed CRK3 (Fig. 5E) and that the persistence of signal and subsequent increase are a result of incomplete excision of floxed CRK3 during the 24 h incubation with rapamycin. These data further demonstrate the essentiality of CRK3 activity for establishing infection.

This is the first time an essential gene in promastigotes has been studied in vivo by conditional deletion, representing a useful tool to probe gene function. We are validating the feasibility of conditional gene deletion ex vivo and in vivo using rapamycin and non-immuno-inhibitory rapamycin analogues (‘rapalogs’), with such work being useful for the future of drug target validation. DiCre activity has been demonstrated in vivo (Jullien et al., 2007), however rapamycin treatment may be a limitation due to influence on the host immune response and on amastigote proliferation. Our attempts to study the effect of CRK3Flox deletion in lesion-derived amastigotes grown in axenic culture medium was problematic due to reduced proliferation of both experimental and wild-type L. mexicana at the relatively low dose of 50 nM rapamycin, therefore the use of rapalogs would be a rational approach for induction of diCre activity if they have reduced binding affinity for Leishmania TORs (Madeira da Silva and Beverley, 2010). A second generation diCre is currently in development and may present an alternative method for inducible gene deletion in vivo. In diCre2, each subunit is fused to mutant FKBP domains that are dimerised by the rapalog AP20187, which is amenable to in vivo use (Collins et al., 2013). Such a system could be applied for use in Leishmania and would complement our existing floxed gene replacement approach.
In conclusion we have developed a highly efficient inducible gene deletion system that when used with transgene complementation allows for the first time the function of essential *Leishmania* genes to be elucidated. We have applied this approach to show that CRK3 is required for promastigote progression through mitosis, with gene deletion mutants showing a G2/M arrest and an accumulation of zoids, indicative of a lack of a cell cycle checkpoint in cytokinesis. Inducible deletion of CRK3 in stationary phase promastigotes attenuates infection in a murine host, providing further genetic validation of CRK3 as a potential drug target (Grant et al. 1998; Hassan et al. 2001; Grant et al. 2004; Gomes et al. 2010; Walker et al. 2011). Our diCre method provides a powerful tool for analysing genes essential for promastigote proliferation and to the study of the differentiation of promastigotes to amastigotes.

Figure legends

Fig. 1. Validation of inducible diCre in *L. mexicana*: conditional deletion of *GFP* in promastigotes and amastigotes.

A. Gene excision analysed by PCR amplification. Schematic (lower) shows the SSU *GFP* \(^{\text{Flox}}\) locus and the recombination event expected after treatment with rapamycin (Rap). (upper) PCR amplification with oligonucleotides 4287 and 4288 from experimental (Δcrk3::DICRE/Δcrk3::CRK3[^{\text{SSU GFP}^{\text{Flox}}}] and control [SSU *GFP*^{\text{Flox}}] promastigotes at 5 days post-treatment with different concentrations of rapamycin.

B. Flow cytometry assessment of GFP intensity of experimental and control promastigotes incubated in the presence or absence of rapamycin for 5 days.

C. Western blotting analysis with anti-GFP and anti-EF1α loading control antibodies of protein extracted from experimental promastigotes grown for 5 days in the presence or absence of 100 nM rapamycin.

D. PCR analysis of *GFP*^{\text{Flox}} loss (as described in A) in amastigotes after 24 h rapamycin treatment (0 – 1000 nM), followed by 120 h infection in bone-marrow derived macrophages. Lane 2 contains a 1 kb+ DNA ladder.

Fig. 2. Generation of a CRK3 conditional deletion cell line.

A. Schematic showing the replacement of endogenous CRK3 to generate Δcrk3::DICRE/Δcrk3::CRK3[^{\text{Flox}}]. One allele contains a loxP flanked CRK3-*GFP* coding
sequence with mCherry red-fluorescent protein cassette (RFP) and puromycin drug selectable marker (PAC). The other allele contains genes encoding both diCre subunits (CRE59, CRE60) each linked with rapamycin binding domains (not shown: FKBPI2 and FRB respectively) and a blasticidin resistance cassette (BSD). Each construct was flanked with 500 bp arms of homology (light grey) by Gateway recombination to facilitate integration at the CRK3 locus. All coding sequences are flanked by regulatory elements (dark grey). L. mexicana parasites were transfected sequentially with the diCre construct and floxed CRK3 to confer resistance to blasticidin and puromycin antibiotics respectively.

B. Clones 2 and 8 promastigotes were seeded at a density of 5 x 10^5 cells ml^{-1} and grown in the presence or absence (+/-) of 100 nM rapamycin for 5 days. Cell density was determined by counting at 24 h intervals and mean ± SD of triplicate values was plotted. C. (lower) A schematic representation of the floxed CRK3 locus after excision. PCR amplification shows the primers binding upstream of the 5' CRK3 homologous flank and within the PAC cassette. (upper) PCR amplification of clones 2 and 8 at 24 h and 48 h +/- 100 nM rapamycin treatment was conducted and the resulting amplicons resolved on an agarose gel.

D. Western blotting analysis with anti-GFP and anti-EF1α loading control antibodies of protein extracted from experimental clone 2 promastigotes grown for 4 days in the presence or absence of 100 nM rapamycin.

Fig. 3. Analysis of CRK3 deficient promastigotes.

A. Representative images of cells grown in the absence (top) or presence (bottom two rows) of 100 nM rapamycin for 96 h. Promastigotes (clone 2) were stained with DAPI to observe nuclear and kinetoplast content alongside mCherry expression by fluorescence microscopy. Scale bar represents 5μm.

B. (upper) DNA content analysis of clone 2 promastigotes at 72 and 96 h post treatment. Cells were fixed with methanol and stained with propidium iodide for flow cytometry analysis of 100,000 cells to examine nuclear content. Arrows indicate the positions of cells in G1 phase (2C), in G2/M (4C) and low DNA content associated with increased incidence of <1C zoids. (lower) Graphical representation of the DNA content of each population based on the flow cytometry plots.

C. The viability of cells grown in the absence (-) or presence (+) of 100 nM rapamycin for 72 h. Promastigotes (clone 2) were incubated with 5 μg ml^{-1} propidium iodide (PI) for 15 min
and analysed by flow cytometry. A heat lysed (HL) control in which half the sample was
lysed by incubation at 70°C for 3 min was included to enable an appropriate live / dead gate
to be drawn. Numbers represent the percentage of cells assessed as PI positive (PI+) based on
the HL control. Data shown are the means of 3 technical replicates, data are representative of
2 independent experiments.

Fig. 4. CRK3 wild type and active site mutant complementation assays.

A. Wild type complemented (Δcrk3::DICRE/Δcrk3::CRK3Flox [SSU CRK3], left graph) and
mutant complemented (Δcrk3::DICRE/Δcrk3::CRK3Flox [SSU CRK3T178E], right graph) cell
lines were seeded as promastigotes at 1 x 105 cells ml-1 and grown +/- 100 nM rapamycin for
5 days. Cell density was determined by counting at 24 h intervals and the mean ± SD of
triplicate values was plotted.

B. The resulting amplicons generated by PCR amplification of each cell line at 24 and 48 h
after growth +/- 100 nM rapamycin.

C. (left) DNA content analysis of Δcrk3::DICRE/Δcrk3::CRK3Flox [SSU CRK3T178E]
 promastigotes after methanol fixation and staining with propidium iodide for flow cytometry
analysis (100,000 cells) to examine nuclear content. Arrows indicate the positions of cells in
G1 phase (2C), in G2 (4C) and low DNA content associated with increased incidence of <2C
zooids. (right) Graphical representation of the DNA content of each population based on the
flow cytometry analysis.

D. Representative images of Δcrk3::DICRE/Δcrk3::CRK3Flox [SSU CRK3T178E] promastigotes
grown in the absence (top) or presence (bottom two rows) of 100 nM rapamycin for 96 h.
Parasites were stained with DAPI to detect nuclear and kinetoplast DNA by fluorescence
microscopy. Scale bar represents 5\textmu m.

Fig. 5. CRK3 conditional deletion in stationary phase promastigotes and in vivo infection.

A. Correlation between in vivo bioluminescence (total flux in photons per second) and
parasite burdens from the same infected footpads. BALB/c mice were infected with \textit{L.
mexicana} WT or Ppy RE9H-expressing stationary phase promastigotes and imaged weekly
using an in vivo imaging system (IVIS). At 2, 4, 6 and 8 weeks post-infection mice were
sacrificed after imaging and parasite burdens in infected footpads determined using limiting
dilution assays. Each point shows the total flux and parasite burden from the footpad in one
mouse (n = 3-4 mice per time point). Linear regression line and R^2 was calculated from the log transformed data.

B. PCR amplification of the floxed CRK3 locus of $\Delta crk3::DICRE/\Delta crk3::CRK3^{\text{Flox}} [\text{SSU RE9H}]$ stationary phase promastigotes after incubation in the presence (+) or absence (-) of 1 μM rapamycin for 24 h.

C. Control (-) or 24 h rapamycin-treated (+) stationary phase promastigotes were inoculated into the footpads of BALB/c mice. The total flux (photons/sec) emitted from the infected footpad region of interest (ROI) was quantified weekly.

D. The total flux measured from infected footpads was plotted over 9 weeks of infection. Data shown represent the mean flux and SD from groups of four mice. The dotted line indicates the average background flux emitted from uninfected footpads measured 1 week post infection (n=12). A significant difference in the mean total flux emitted between the footpads of mice infected with untreated and rapamycin-induced parasites was observed at 5 and 9 weeks post infection (2-way ANOVA, ***P=<0.001; **P=<0.005).

E. PCR amplification of the floxed CRK3 locus of $\Delta crk3::DICRE/\Delta crk3::CRK3^{\text{Flox}} [\text{SSU RE9H}] +$ Rap after purification of amastigotes from the footpads of 10-week infected mice. Cells were propagated in vitro to obtain sufficient genomic DNA for PCR analysis.

F. Footpad sizes were recorded by weekly caliper measurement. Data shown represent the mean footpad size and SD from groups of four mice (Unpaired t-test *P=<0.05).

Table 1. Comparisons of the growth rates of conditional CRK3 deletion lines measured during logarithmic growth.

Experimental Procedures

Ethics statement

Animal studies were carried out under UK Home Office regulations (Project licence PPL 60/4442).

Parasite culture and transfection

Leishmania mexicana mexicana (MNYC/BZ/62/M379) promastigotes were cultured at 25°C in HOMEM supplemented with 10% heat inactivated foetal calf serum (HI-FCS) and 1%
penicillin/streptomycin (PEN/STREP). Amastigotes were cultured in Schneider’s Insect Medium supplemented with 20% HI-FCS, 1% PEN/STREP and 15μg mL⁻¹ Hemin at pH5.5. Mid-log phase *L. mexicana* promastigotes were transfected with 10μg of digested DNA by electroporation using the Nucleofector system with the Human T-Cell kit (Lonza) as described previously (Castanys-Muñoz et al., 2012). Transgenic cell lines were grown in the presence of appropriate antibiotics at the following concentrations: G418 50 μg mL⁻¹, blasticidin 10 μg mL⁻¹ and puromycin 10 μg mL⁻¹ (InvivoGen).

Construct design and development

A full list and descriptions of all primers (Table S1) and plasmids (Table S2) used in this study are available. To produce a diCre expression vector, the diCre coding sequences Cre59-FKBP12 and Cre60-FRB were each flanked by actin and β-tubulin sequences in array with blasticidin resistance cassette flanked by *DHFR-TS* regulatory elements. The sequence was synthesised and sub-cloned into the pDONR221 vector (GenScript). The backbone of the loxP vector containing the loxP sites flanking a multiple cloning site and other restriction enzyme regions flanked by regulatory elements was synthesised (GenScript). The *PAC, mCherry* and *CRK3-GFP* cassettes were inserted by enzymatic restriction digest mediated ligation, and subsequently sub-cloned into pDONR221. Addition of *CRK3* homology flanking homology was performed by MultiSite Gateway 3-fragment vector construction (Invitrogen) as per manufacturers’ guidelines. Briefly, flanks were amplified by PCR by Phusion polymerase (New England BioLabs) using oligonucleotides conferring *attB* recombination sites to the amplicons. Subsequent BP reactions inserted the flanks into appropriate pDONR vectors containing *attL* sites for site-specific recombination. An LR reaction resulted in the flanking of diCre and loxP vectors into a pDEST vector for transfection. Finally, complementation plasmids were generated by inserting the *CRK3, CRK3T178E* and *RE9H* genes (Branchini et al., 2010; McLatchie et al., 2013) into a modified version of pGL631 (Misslitz et al., 2000) containing a G418r cassette for SSU integration construct by XhoI & NotI restriction enzyme digestion and ligation.

Induction of diCre mediated gene deletion

All experiments were conducted using cells in the early to mid log stage of exponential growth (between 1-5 x 10⁶ cells mL⁻¹) with the exception of the stationary phase inducible
gene deletion. Between 1nM to 1μM rapamycin (Abcam) was administered by inoculation into the cell culture medium from a 100 μM working stock.

Conditional gene deletion analysis

Taq polymerase (NEB) was used to PCR amplify the regions surrounding \(\text{GFP}^{\text{Flox}}\) and \(\text{CRK3}^{\text{Flox}}\) using primers shown in Table S1 and a \(T_a\) calculated using an online \(T_m\) calculator (New England BioLabs) and 30 cycles for amplification.

Western Blot Analysis

For western blotting analysis, either \(1 \times 10^7\) cells were loaded per lane or equal concentrations of protein extract as quantified by Bradford assay of a 10% NuPAGE Bis-Tris gel (Invitrogen) in MOPS running buffer and transferred onto Hybond-C nitrocellulose membranes (GE Healthcare). Primary antibodies against GFP were used to detect GFP and CRK3-GFP expression at 1:1000 whilst anti-EF1\(\alpha\) was used as a loading control at 1:5000. Membranes were washed three times in TBST, incubating for 10 min each time, before incubation with horseradish peroxidase (HRP)-conjugated secondary rabbit and mouse antibodies at 1:5000 dilution for 1 h at room temperature. After washing three times in TBST, the membrane was treated with an ECL (enhanced chemiluminescence) kit (SuperSignal West Pico Chemoluminescent Substrate, Pierce) according to manufacturer’s instructions and then exposed on Kodak photographic film.

Infection of mice

BALB/c mice were purchased from Charles River (MA., USA) and infected in the right footpad with \(2 \times 10^6\) stationary-phase \(L.\) mexicana promastigotes in 1 x PBS. Lesion size was monitored weekly and \(\Delta\text{crk3::DICRE/CRK3 [SSU GFP}^{\text{Flox}}]\) amastigotes were purified before the lesions reached a thickness of 5mm.

Purification of lesion derived amastigotes

Lesion derived \(\Delta\text{crk3::DICRE/CRK3 [SSU GFP}^{\text{Flox}}]\) amastigotes were purified by homogenising the extracted lesion in 1xPBS and passing the solution through a 20 μm cell strainer. Amastigotes were pelleted by centrifugation at 2,000 g for 10 mins, followed by re-suspension in culture medium. To prevent cells from clumping together and ensure accurate cell counting, amastigote cultures were first centrifuged at 2,000 g for 10 mins and the
supernatant removed to leave the pellet in 500uL volume. The pellet was re-suspended in this volume by gentle syringing through a blunt 16G needle and the single cell suspension added back to the culture medium. Cell counting was performed by mixing the homogenised culture 1:1 with Trypan blue and cell counting with a Haemocytometer (Neubauer).

Macrophage differentiation and amastigote infection

Non-differentiated monocytes were extracted from the femurs and tibia of BALB/c mice by dissection to remove the bones. RPMI 1640 medium was used to wash the bone marrow out of the intact bones by syringing with a 25G needle. Extracted cells were quantified by dilution in Trypan blue (1:1) and counting with a haemocytometer. Monocytes were seeded at 5x10^5 cells ml\(^{-1}\) in MΦ Medium (DMEM + L-Glut + 20%FCS + 1% P/S + 30% L-Cell M) in 8 ml volumes in Petri dishes and incubated at 37°C with 5% CO\(_2\) for 3 days to induce differentiation to monocyte-derived macrophage. After this period the medium was replaced and by day 5 the cells were removed from the dishes using a cell scraper with ice-cold RPMI 1640. Bone marrow derived macrophage were adhered at a concentration of 5 x 10^5 cells ml\(^{-1}\) overnight in DMEM medium with 10 % HIFCS at 37°C in 5% CO\(_2\) onto 8-chamber tissue culture slides (LAB-TEK) for microscopic analysis or 12 well plates for DNA extraction and flow cytometry analysis. Macrophages were then infected at a ratio of 5 parasites per macrophage with lesion-derived Δcrk3::DICRE/CRK3 [SSU GFP\(^{}\text{Flox}\)] amastigotes, which had been previously grown in axenic medium in the presence or absence of rapamycin for 24 h. Wells were washed at 24 h post infection to remove extracellular parasites and media replenished with DMEM/10% HIFCS. Cells were removed from the plates for DNA extraction and flow cytometry analysis by gentle scraping in ice cold RPMI at the 120 h end time point.

Fluorescence microscopy analysis

For imaging, 2 x 10^6 parasites were washed in 1 x PBS, re-suspended in Fluoromount-G (SouthernBiotech) DAPI infused mounting medium and mounted on glass slides for analysis. Parasite morphology was observed by DIC and mCherry fluorescent imaging, and DNA content observed by DAPI fluorescent imaging using a Delta Vision core (Image Solutions) inverted microscope equipped with mCherry and DAPI filter sets. Images were processed using Photoshop CS (Adobe) image software. GFP expression of intracellular amastigotes was assessed by fluorescent microscopy. Cells were imaged between 24 and 120 h after
infection in the DeltaVision Core environmental chamber at 37°C and 5 % CO₂ upon incubation in 1 x PBS infused with DAPI.

DNA content and GFP expression analysis by flow cytometry

Parasites were prepared for DNA content analysis as described previously (Paul Hassan et al., 2001) with the exceptions that a MacsQuant flow cytometer was used to analyse 100,000 cells per sample. Cell distribution was modelled using FlowJo software (Tree Star). For determining GFP expression of promastigotes and amastigotes by flow cytometry analysis, live cells were washed twice in 1xPBS and passed through a nitex mesh prior to acquisition.

Viability assay

Log-phase promastigotes were seeded at 5 x 10⁵ cells ml⁻¹ and grown in the presence or absence of 100 nM rapamycin. At 72 h post treatment 1 x 10⁷ cells were washed once with 1 x PBS and incubated with 5ug ml⁻¹ propidium iodide (PI) for 15 minutes at room temperature in the dark. A heat lysed (HL) control in which half the sample was lysed by incubation at 70°C for 3 min was included to enable an appropriate live / dead gate to be drawn. Cells were washed with 1 x PBS and used to acquire 100,000 events per group by flow cytometry using a MacsQuant flow cytometer.

In vivo imaging

For imaging, mice were anaesthetised with 4.0% isofluorane/1.5 L O₂ per minute and inoculated by subcutaneous injection with 200μl D-luciferin (15 mg ml⁻¹ in Mg/Ca-free Dulbecco’s modified PBS). Light emission was recorded 10 minutes after inoculation using an IVIS Spectrum bioluminescence imaging system (PerkinElmer). Imaging was performed with an open emission filter, for 30-60 second exposures, large binning, and 1 f/stop, and captured with a charge-coupled device (CCD) camera. The absolute unit of photon emission was given as radiance (photons /second/cm²/steradian). Images were analysed using Living Image Software (PerkinElmer) and regions of interest (ROI) of equal size were selected over the infected footpads to quantify the amount of photon emission as total photon flux in photons per second (photons/sec).

Statistical analysis

Statistical analysis was performed using GraphPad Prism 5. The analysis of significance of
the data was performed by 2-way ANOVA when comparing data from induced (+Rap) and uninduced (-Rap) $\Delta crk3::DICRE/\Delta crk3::CRK3^{\text{Flox}} [SSU \text{ RE9H}]$ infections and by paired t-test when comparing footpad sizes.

Acknowledgements

We thank Jim Scott and Alana Hamilton for technical support, Ryan Ritchie for imaging assistance, and Bruce Branchini and colleagues (Department of Chemistry, Connecticut College) for the Ppy-RE9H. SD was supported by a Medical Research Council studentship. This work was supported by the Medical Research Council grant (MR/K019384) and the Wellcome Trust (104976, 104111).

Conflict of Interest

The authors declare no conflict of interest.

References

Fig. S1. A. Replacement of a single copy of CRK3 by diCre construct integration into the [SSU GFP Flox] cell line was confirmed by PCR amplification of genomic DNA extracted from two clones (3 and 4). Oligonucleotides (OL) that bind outside the integration site (grey arrows) and within the diCre coding sequence (red arrows) were used to amplify 940 bp and 950 bp amplicons. Clone 3 was designated as the experimental line Δcrk3::DICRE/CRK3 [SSU GFP Flox].
B. Experimental Δcrk3::DICRE/CRK3 [SSU GFPFlox] or control [SSU GFPFlox] L. mexicana promastigotes were seeded at 1x10^6 cells ml-1 and incubated in the presence or absence of between 1 to 250 nM rapamycin. Cell density was determined at 24 hour intervals by cell counting (N=1-3 technical replicates, error SEM).

C. Representative DIC (upper) and GFP (lower) images from live cell imaging of amastigotes-infected macrophages at 5 days post-infection. GFP expression from live amastigotes was imaged using a Delta Vision core fluorescent microscope.

D. GFP intensity loss in amastigotes extracted at day 5 post in vitro macrophage infection; (left) amastigotes were gated from large, granular macrophage by forward scatter (FSC) for size and side-scatter (SSC) for granularity. (middle) Histograms of amastigote GFP intensity were generated from amastigote gates with retention of GFP expression at >10^3 fluorescence intensity based on rapamycin untreated controls. Blue plots represent the amastigote gate plotted from a macrophage only control group to represent background cellular ‘debris’ as a result of macrophage lysis following sample preparation (left). >20,000 amastigote events were analysed per treatment group based on two biological replicates shown as dark and light grey plots. (right) Retention of GFP signal as a % of amastigote gate displayed as bar graphs for each treatment group (Data represent means ± SEM).
Fig. S2. Pipeline of Gateway-mediated addition of target gene homologous flanks to diCre and loxP vectors. (1) Primers (blue arrows) containing appropriate att sites and 5’ PacI or 3’ PmeI unique restriction sites amplify a 0.5-1 kb region up- and downstream of the gene. (2) BP clonase catalyses the insertion of these flanks into their appropriate vectors. (3) The resulting 5’, 3’ and diCre or loxP vectors are recombined into a pDEST vector by LR clonase. (4) The final vector is linearised by PacI and PmeI digest for (5) transfection into L. mexicana. This method enables flanking of both the floxed gene of interest (GOI) expression cassette and diCre expression cassette.
Fig. S3. A. Schematic representing the diCre and floxed CRK3 replacement strategy. Homologous recombination was facilitated by Gateway flanking of both diCre and loxP vectors with ~500 bp of crk3 5’ and 3’ homologous regions to replace both alleles.

B. Transfection of wild-type L. mexicana with the diCre construct: integration was confirmed by PCR amplification of genomic DNA extracted from six clones with oligonucleotides (OL) binding outside the integration site (grey arrows) and within the diCre coding sequence (blue arrows) to amplify 940 and 950 bp amplicons. A single blasticidin (BSD) resistant clone F with diCre integrated at the crk3 locus was subsequently transfected with the loxP construct to replace the remaining endogenous crk3 allele with a floxed CRK3 fused to a 3’ GFP tag, thereby generating a diCre-mediated conditional deletion line: Δcrk3::DICRE/
Δcrk3::CRK3^{Flo\text{\textsc{x}}}. PCR amplification of genomic DNA extracted from two blasticidin/puromycin (PUR) double resistant clones (2 and 8) with oligonucleotides binding outside the integration site (grey arrows), within the crk3 coding sequence (grey arrows), within the loxP vector (blue arrows) and diCre sequences (red arrows).
Figure S4. Viability assay of Δcrk3::DICRE/Δcrk3::CRK3Flox promastigotes. Cells were grown in the presence or absence of 100 nM rapamycin for 72 h. Live cells were incubated with 5µg ml-1 propidium iodide (PI) for 15 minutes and uptake measured by flow cytometry alongside a heat lysed (HL) control in which half the cells were lysed by incubation at 70°C for 3 min prior to flow cytometry analysis. Top panel shows cell size as measured by forward scatter in the y-axis and cell lysis by increasing PI fluorescence along the x-axis. Bottom left panel shows the gating strategy whereby cells are defined as + or – in PI uptake based on the HL control. Bottom right panel is an analysis of promastigote cell size following incubation in the presence or absence of rapamycin. Results are representative of 2 independent experiments.
Figure S5. In vitro bioluminescence expression assay of experimental and control promastigotes. Promastigotes were assayed during logarithmic growth and luminescence expression data was acquired 30 minutes post luciferin treatment. Error bars represent the SEM of two technical replicates per clone.
Table S1

A list of the oligonucleotides used in this study.

<table>
<thead>
<tr>
<th>Oligo No.</th>
<th>Description</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>OL4249</td>
<td>F Amplification of a 5 CRK3 homologous flank with attB4/attP1r</td>
<td>GGGGAAACACATTTTGTATAGAAAAGGATAGAGATGCGCGTTT</td>
</tr>
<tr>
<td>OL4250</td>
<td>R homologous flank with attB4</td>
<td>GGGGAAACACATTTTGTATAGAAAAGGATAGAGATGCGCGTTT</td>
</tr>
<tr>
<td>OL4251</td>
<td>F Amplification of a 3 CRK3 homologous flank with attB2/attB3</td>
<td>GGGGAAACACATTTTGTATAGAAAAGGATAGAGATGCGCGTTT</td>
</tr>
</tbody>
</table>

Generation of CRK3 loxP expression and complementation vectors

OL4065	F Amplification of purmorphic resistance cassette from pGLO31	GATCCCTGCAAGCCGCGGATGTCGCGCGGACG
OL4066	R	GATCGTTAGACCGCTAGGAGAAGCGGCGCTG
OL4263	F Amplification of BAS-HASPB-mCherry from pGLO193 to integrate at reporter site	GATCCCTGCAAGCCGCGGATGTCGCGCGGACG
OL4264	R	GATCGTTAGACCGCTAGGAGAAGCGGCGCTG
OL4316	F Amplification of GFP from pGLO1773 for integration as N-terminal tag	GATCCATATGATGCTGAGGAAGGCCGAG
OL4317	R	GATCGTTAGACCGCTAGGAGAAGCGGCGCTG
OL4318	F Amplification of 6xHA integration as N-terminal tag	GATCCCAATAATCGATCGATCGATCGAT
OL4319	R	GATCGTTAGACCGCTAGGAGAAGCGGCGCTG
OL4320	F Amplification of GFP from pGLO1773 for integration as C-terminal tag	GATCGTTAGACCGCTAGGAGAAGCGGCGCTG
OL4321	R	GATCGTTAGACCGCTAGGAGAAGCGGCGCTG
OL4341	F Amplification of BAS-HASPB-mCherry for insertion via HindIII; enables the replacement of HASPB-mCherry by Xhol and NotI	GATCGTTAGACCGCTAGGAGAAGCGGCGCTG
OL4342	R	GATCGTTAGACCGCTAGGAGAAGCGGCGCTG
OL4067	F Amplification of the CRK3 CDS for insertion into the loxP MCS; no stop codon amplified due to C-terminal GFP fusion	GATCGTTAGACCGCTAGGAGAAGCGGCGCTG
OL4068	R	GATCGTTAGACCGCTAGGAGAAGCGGCGCTG
OL4358	F Amplification of the CRK3 CDS for insertion into the loxP MCS; Stop codon amplified due to N-terminal GFP fusion	GATCGTTAGACCGCTAGGAGAAGCGGCGCTG
OL4359	R	GATCGTTAGACCGCTAGGAGAAGCGGCGCTG
OL4501	F Amplification of CRK3-As for insertion into pGLO2277 to generate an inducible deletion line	GCCGGCGGCGCTGGATAAGTTGCTGAGGCAGGG
OL4502	R	GCCGGCGGCGCTGGATAAGTTGCTGAGGCAGGG
OL4503	F Mutagenesis primers for T178 mutation to a glutamic acid residue to create CRK3^{178E}	GCCGGCGGCGCTGGATAAGTTGCTGAGGCAGGG
OL4504	R	GCCGGCGGCGCTGGATAAGTTGCTGAGGCAGGG

Primers for analysis of vector integration and floxed gene loss by PCR amplification

| Primers for analysis of vector integration and floxed gene loss by PCR amplification |
|-------------------------|----------------------------------|
| OL4101 F | Internal forward (Bla) and reverse (KBP12) primers to detect dCre integration into the genome | CTGTTTGTGTTGAGGAGG |
| OL4102 R | GATGTTTCCACCTGAGC |
| OL4287 F | Upstream and downstream primers to amplify the floxed GFP fragment to detect gene loss by dCre induction | GCCGCGGCGGCGGCGG |
| OL4288 R | GATGTTTCCACCTGAGC |
| OL4296 F | Primers binding out with the CRK3 integration site | GCCGCGGCGGCGGCGG |
| OL4297 R | GATGTTTCCACCTGAGC |
| OL4298 F | Primers binding the CRK3 gene | GCCGCGGCGGCGGCGG |
| OL4299 R | GATGTTTCCACCTGAGC |
| OL4300 F | Primers binding the loxP vector at the 5' splice acceptor site (SAS) and 3' polyadenylation site (PAS) | GCCGCGGCGGCGGCGG |
| OL4301 R | GATGTTTCCACCTGAGC |
| OL4781 F | Upstream and downstream primers for amplification of a floxed CRK3-GFP fragment to detect gene loss | GCCGCGGCGGCGGCGG |
| OL4782 R | GATGTTTCCACCTGAGC |
| OL4748 F | Primers to check for integration of RESH construct (pGLO298) into the ribosomal locus | GCCGCGGCGGCGGCGG |
| OL4750 R | GATGTTTCCACCTGAGC |
Table S2. A list of the plasmids generated in this study.

<table>
<thead>
<tr>
<th>pGL No.</th>
<th>Gene ID</th>
<th>Gene Name</th>
<th>Backbone</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2313</td>
<td>N/A</td>
<td>dICre</td>
<td>pDONR221</td>
<td>DCre expression cassette entry vector</td>
</tr>
<tr>
<td>2314</td>
<td>N/A</td>
<td>lsoP- C-6xHA</td>
<td>pDONR221</td>
<td>LsoP (empty) expression cassette: c-terminal 6xHA tag</td>
</tr>
<tr>
<td>2315</td>
<td>N/A</td>
<td>lsoP-C-GFP</td>
<td>pDONR221</td>
<td>LsoP (empty) expression cassette: c-terminal GFP tag</td>
</tr>
<tr>
<td>2316</td>
<td>N/A</td>
<td>lsoPA-4-GFP</td>
<td>pDONR221</td>
<td>LsoP (empty) expression cassette: n-terminal GFP tag</td>
</tr>
<tr>
<td>2375</td>
<td>LmxM.38.0550</td>
<td>CRK3</td>
<td>pGL63</td>
<td>WT CRK3 ribosomal SSU integration vector</td>
</tr>
<tr>
<td>2376</td>
<td>LmxM.38.0550</td>
<td>CRK3WT</td>
<td>pGL63</td>
<td>Mutated CRK3WT ribosomal SSU integration vector</td>
</tr>
<tr>
<td>2393</td>
<td>N/A</td>
<td>R69Y</td>
<td>pGL63</td>
<td>Red-shifted luciferase bioluminescent protein in G418r pRIB</td>
</tr>
<tr>
<td>2445</td>
<td>LmxM.38.0550</td>
<td>CRK3 flank</td>
<td>pDONR P41-Pr</td>
<td>5' Flank (5000bp) ready for Gateway recombination</td>
</tr>
<tr>
<td>2446</td>
<td>LmxM.38.0550</td>
<td>CRK3 flank</td>
<td>pDONR P21-P3</td>
<td>3' Flank (5000bp) ready for Gateway recombination</td>
</tr>
<tr>
<td>2455</td>
<td>N/A</td>
<td>dICre</td>
<td>pDEST R4-R3</td>
<td>DCre cassette flanked with CRK3 homologous arms</td>
</tr>
<tr>
<td>2456</td>
<td>LmxM.38.0550</td>
<td>CRK3</td>
<td>pDEST R4-R3</td>
<td>CRK3-GFP cassette flanked with CRK3 homology</td>
</tr>
<tr>
<td>2481</td>
<td>N/A</td>
<td>GFP55</td>
<td>pGL63</td>
<td>Flaged GFP in pRIB; for functional analysis of dCre</td>
</tr>
</tbody>
</table>