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High-Resolution Sensor Network for Monitoring

Glacier Dynamics
I. Martin, T. O’Farrell, R. Aspey, S. Edwards, T. James, P. Loskot, T. Murray, I. Rutt, N. Selmes, T. Baugé

Abstract—This paper provides an overview of a wide area
wireless sensor network that was deployed on the calving front
of the Helheim Glacier in Greenland during the summer of 2013.
The purpose of the network was to measure the flow rate of the
glacier using accurate satellite positioning data. The challenge
in this extreme environment was to collect data in real time
at the calving edge of the glacier. This was achieved using a
solar powered 2.4 GHz Zigbee wireless sensor network operated
in a novel hybrid cellular/mesh access architecture consisting
of ice nodes communicating with base stations placed on the
rock adjacent to the glacier. This highly challenging transmission
environment created substantial signal outage conditions which
were successfully mitigated by a radio network diversity scheme.
The network development and measurement campaign were
highly successful yielding significant results on glacial dynamics
associated with climate change.

Index Terms—PHEN, SYST, NET, WSN, GPS, extreme envi-
ronment, glacial calving, Helheim, Greenland.

I. INTRODUCTION

THE mass balance of the major ice sheets, and therefore

their contribution to global sea-level rise, is controlled

primarily by the speed of fast-flowing ice streams and outlet

glaciers, terminating in ocean waters. During the early 2000s,

there was a doubling of ice discharge in Greenland, which

primarily resulted due to an increased flow rate of these

tidewater glaciers [1] and it is possible that this phenomenon

has been triggered by changes in the ocean waters at their

calving margins [2]. Therefore, there is significant scientific

interest in characterising the relationship between the changes

in flow (i.e., the dynamics) of a tidewater glacier and the

changes in the terminus position and calving rates of the

glacier.

Insights into the dynamics of a tidewater glacier, in particu-

lar understanding the primary mechanisms for calving, enable

the relevant dynamic processes to be modelled in a computer

simulation of the ice sheet and its outlet glaciers in order to

enhance the prediction of how such tidewater glaciers respond

to climate change. To enhance our understanding of the
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calving mechanisms, detailed observations of iceberg calving

events are required. However, these are difficult to obtain

because of the challenges faced when placing and maintaining

instrumentation on the heavily crevassed ice surface. Currently,

the majority of knowledge on glacier flow dynamics is derived

from remote sensing.

To obtain the right observations, a network of expendable

Global Positioning System (GPS) sensors was deployed at

the calving edge of the Helheim Glacier in Greenland. The

GPS capability was used to make near real time velocity

and uplift measurements accurate to a few centimetres. The

GPS sensors were connected to each other as well as to base

stations via a self healing network of expendable, low-power

wireless transceivers. The innovative nature of the network

and its components made it economically and logistically

possible to deploy a relatively large number of sensors by

helicopter on the calving region of the glacier. The velocity

and elevation data from the GPS sensors was combined with

remotely sensed velocity fields from satellite, airborne lidar

and ground-based photogrammetry measurements in order to

generate a synthesised dataset of high temporal and spatial

resolution. This has formed a unique dataset for testing calving

models and to improve the understanding of the controls on

the contribution of these tidewater glaciers to sea-level rise.

The research reported in this paper has focussed on the

deployment of a wireless sensor network in an extreme en-

vironment close to the calving front of the Helheim Glacier

which is Greenland’s third-largest outlet glacier. The glacier

surface consists of crevasses and parallel fissures approxi-

mately 30 m deep and mounds of ice approximately 10 m

above the local surface height of the glacier. Figure 1 illustrates

the Helheim Glacier draining from the Greenland ice-sheet

with the calving front and ice mélange (i.e. calved blocks of

glacial ice), in the foreground. Figure 2 depicts the associated

catchment area. The combination of harsh environment and

glacial movement present significant challenges for the near

real time measurement of flow speed and direction at the

calving front of the glacier.

The project combined expertise in glaciology, GPS technol-

ogy and processing, and wireless networks to design, install

and operate a wireless network of GPS sensors at the margin

of the heavily crevassed Helheim Glacier in South East (SE)

Greenland. Moving at speeds of the order of 20 to 25 m/d,

calving large icebergs along its 6 km calving front, the glacier

is a major outlet of the SE Greenland ice sheet making it a

challenging environment to monitor [3]. From lessons learned

through the deployment of a small-scale field trial network

in July 2012, a scaled up network consisting of 20 GPS
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nodes was deployed on the glacier during the summer of

2013. The on glacier ice nodes provide full code and phase

dual frequency GPS data every few seconds to base stations

positioned on rock at the edge of the glacier. Of the 20

ice nodes deployed, 19 communicated successfully with the

network base stations. High resolution position data available

from the high temporal sampling has allowed calving events

to be monitored to the point of sensor loss, differentiating the

real time capability of the network from previous solutions.

Fig. 1: Calving front of Helheim Glacier.

Fig. 2: Helheim catchment location in Greenland (white

boundary shows catchment area). Background image is bal-

ance velocity - Created at the University of Montana by Jesse

Johnson in July 2009.

II. LITERATURE REVIEW

Such a remote and hostile terrain makes direct access both

difficult and expensive when installing observation platforms,

consequently glacier observation is frequently conducted using

satellite imagery. This, however, typically limits the informa-

tion on flow rates to a repeat cycle of 10 days. Given that the

flow rate of the ice streams greatly exceed this resolution,

surface flow measurements using GPS data are attractive.

Dual frequency GPS equipment can provide positional data

every second with an accuracy of 1-2 cm in plan and 2-

5 cm in vertical whereas single frequency GPS equipment

can exhibit positional accuracy of several tens of metres.

Reference [4] provides a review of remote sensing techniques

employed in glaciology studies. In particular, the value of GPS

in determining glacier surface velocity is discussed.

Previous significant research on monitoring the surface

velocity of a tidewater glacier in Greenland using GPS sensor

nodes is reported in [2], [5]. The research team successfully

operated a network of continuously recording GPS receivers

on the Helheim Glacier for periods of 54 and 55 days during

the summers of 2007 and 2008, respectively. In the field trial

of 2007, a total of twelve GPS receivers were deployed on

the glacier. The majority of nodes were deployed along the

glacier’s central flow line spanning a total distance of 20

km. A small number of nodes were deployed offset from the

centreline while a few nodes were positioned immediately

behind the calving front. In the 2008 field trial, 22 nodes

were deployed again focussing on the major flow lines of the

glacier but not extending to the calving front. In both field

seasons some GPS receivers were positioned on rock sites next

to the glacier in order to provide stable local GPS reference

frames. Results on glacier velocity were obtained using a 15

s sampling interval.

In contrast, the research reported in this paper focusses on

the deployment of a wide-area wireless sensor network of

20 GPS nodes immediately behind the calving front of the

Helheim Glacier. Using a sampling interval of ∼ 7 s, the

network provided near real time positioning information which

can be translated into high resolution spatial and temporal

information about the dynamic behaviour of the glacier at the

calving front. The wireless network used commercial off the

shelf (COTS) 2.4 GHz Zigbee technology and purpose built

antennas to achieve reliable communication over such a hostile

environment. The network was deployed for 50 days during

the summer of 2013.

III. NETWORK EQUIPMENT

The network consisted of 20 on-ice GPS receiver nodes

and 4 logging base stations placed on the rock at the side

of the glacier. Zigbee transceivers operating in the 2.4 GHz

ISM band were used to transmit the GPS data from the ice

nodes to the loggers. Zigbee transceivers were designed for

the hostile radio frequency (RF) environments and provided a

low-power, low-cost wireless network with automatic retries

and automatic network formation [6]. The whole network

was powered by solar panels with backup batteries to span

cloudy days and night time. Base stations acting as Zigbee

network coordinators collected data from the ice nodes. Figure

3 illustrates a logging base station whereas Figure 4 illustrates

an ice node.

To achieve high temporal sampling rates, ∼ 7 s for each ice

node, the network was divided into 4 sub-networks of 5 nodes

each operating simultaneously. Typically, Zigbee uses carrier

sense multiple access with collision avoidance (CSMA/CA)

in order to reduce the number of transmission collisions.
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However, on the glacier this functionality is severely restricted

because the crevassed surface shields the ice nodes from each

other giving rise to the hidden terminal problem. Therefore,

RF collisions within a subnetwork were avoided by employing

a base station round robin (RR) scheme that polled each ice

node for a message to which it replied with GPS data.

The RR scheme was designed and implemented as firmware

at the router level of each node participating in the network.

Each base station housed a router per Zigbee unit responsible

for coordinating and polling the ice nodes within its asso-

ciation list. Also, each ice node housed a router per Zigbee

unit allowing an ice node to send GPS data when polled. The

base station router sequentially polled each ice node in its

association list with a fixed duty cycle of approximately 7 s.

The RR protocol operated independently on top of the normal

mesh and medium access control (MAC) protocols defined in

the Zigbee standard. Each ice node was configured to allow at

least two hops on the return path between the node and its base

station. Thus, on occasions when data could not be returned

to the base station in a single hop, the possibility existed for a

node to send its data to the base station via at least one other

ice node. In practice, the vast majority of data was returned

in a single hop to the base station. At the data link level,

access to the RF transmission medium was controlled by the

CSMA/CA protocol. This protocol was operated in order to

avoid the collision of radio packets caused by retransmission

events at the boundaries of polling epochs. The number of

retransmission attempts was set to 8 which is a default value

for Zigbee.

Fig. 3: Logging base station.

IV. RADIO DIVERSITY

To provide wireless diversity each ice node contains two

completely independent Zigbee transceivers linked through an

RF 3dB splitter to an omnidirectional antenna with a 3dBi

gain. A schematic of the ice node hardware is shown in

Figure 5. The two transceivers communicate with different

base stations providing two distinct radio routes off the ice.

For the 20 node network this leads to 8 subnetworks, each

containing 5 ice nodes, operating in a different frequency band.

Figure 6 shows the nominal network layout and allocation

of the Zigbee channels to the 8 subnetworks. The hexagons

Fig. 4: Ice node.

represent ice nodes coloured according to the frequency allo-

cation chart whereas base stations are denoted by coloured

squares. The green dashed lines show the beam width (at

least 90◦) of the 12dBi high gain base station antennas [7].

The channel allocation is chosen to maximise the frequency

separation between collocated transceivers at both the nodes

and the base stations to reduce adjacent channel interference.

The network is split into North and South segments due to the

very large scale of the glacier topography. With a maximum

Zigbee transmit power of just 50 mW, 12 dBi antenna gain at

the base station and 3 dBi antenna gain at the ice node, the

network was designed to give radio coverage across the full 6

km width of the glacier [8].

The network configuration delivers diversity by transporting

control and payload data to and from an ice node through

two independent radio paths. Each radio path is supported by

its own Zigbee unit. That is, every base station and ice node

house two Zigbee units whereby each base station Zigbee unit

coordinates its own subnetwork as depicted in Figure 6. In this

respect, the RR, mesh and MAC protocols between Zigbee

units within the same subnetwork node do not interact but

instead provide independent data transport routes benefitting

from spatial separation of the base stations. The GPS data re-

turned from an ice node is logged separately at each supporting

base station. Post field trial processing combined the two sets

Fig. 5: Ice node subsystem diagram.
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Fig. 6: Wireless network layout and frequency allocation.

of logged GPS data from an ice node into a single record.

Since the subnetworks operated asynchronously, when both

data sets were available the diversity process generated GPS

positions more frequently that the planned 7 s duty cycle per

ice node. More importantly, when one radio path was blocked,

the other provided the required GPS data reliably.

Figure 7 shows successful GPS data reception at the base

stations for each ice node. Vertical grey shaded bars show

time periods of extensive calving activity. Visible data gaps at

one base station but spanned by the other, demonstrate return

channel diversity. Figure 8 shows the received signal strength

from ice node 3 at the North East (NE) and North West

(NW) base stations. Care taken on node deployment ensured

that the initial received signal strength indicator (RSSI) was

substantially above the hardware RSSI limit of -102 dBm.

Fig. 7: GPS data profile over trial period.

Despite the node to base station range changing slowly,

there are large changes in received signal strength at times

dropping below the operational threshold of -102 dBm. This

is due to the obstructions and multipath interference caused

by the complex local radio environment - see Figure 4. The

Fig. 8: RSSI at ice node 3.

average RSSI agrees within ±3 dB of values obtained by

modelling the environment [7]. Combining the data collected

at the two base stations for this particular node covers the

complete deployment period from mid July to the end of

August 2013.

V. GPS RESULTS

Over 7 million epochs of raw GPS observation data were

recorded during the 2013 field season. The observation inter-

vals for each ice node was in the range 4 to 8 seconds. Ice node

positions have been estimated using Track (GAMIT v10.5)

carrier phase relative positioning software. The GPS reference

site was the NW base station. Processing was performed

using the ionosophere free linear combination and CODE final

orbits/clocks. Tropospheric zenith delay was modelled [9] and

mapped to satellite elevation using the GMF [10], [11]. The

Zenith wet tropospheric correction was not estimated due to

the positional degradation it causes during periods of low

satellite visibility. The ice node position was estimated at each

epoch using a Kalman filter process noise of 1 cm/s to ensure

capture of calving dynamics. Formal errors are between 1-2

cm in plan and 2-5 cm in vertical. This allows detection and

isolation of tidal signals in the position time series which is

useful to future data analysis.

Figure 9 demonstrates the high resolving power of the

network right up to the time of the loss of a node. In Figure

9, the grey shaded vertical bars correspond to time periods of

calving activity with node 11 being lost during a calving event

at approximately 206.14 decimal days. These data provide

valuable information about the glacier at the time of calving

not previously measured [2]. The data will allow the authors

to investigate fundamental questions such as: the detailed

mechanics and dynamics of glacial calving; the significance

of surface water in calving; and the relationship between the

tides and calving events [12], [13].

VI. CONCLUSION

A robust wireless network of GPS sensors has been de-

signed and successfully operated at the active calving front
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Fig. 9: Node 11 height profile showing node loss at the calving

front.

of the marine outlet, Helheim Glacier. A key performance

metric for the network was the signal outage rate defined as

the percentage of time that the RSSI fell below the minimum

received power level of -102 dBm. Analysis of the results

demonstrated an outage rate of < 1% taking into account the

gains achieved from radio diversity. The results demonstrate

the significant benefit of using radio diversity to mitigate

signal fading due to shadowing from ice pinnacles. Further, the

network remained operational for the whole deployment period

of 50 days, with network nodes being powered by lead acid

batteries trickle charged from solar panels. No power outages

were observed throughout the deployment period which can

be attributed to the extended duration of sunlight available

at high latitude during the summertime as well as favourable

weather conditions. This enabled network tracking up to the

point of node loss. GPS data processing provided formal errors

between 1 to 2 cm (plan) and 2 to 5 cm (vertical), allowing

detailed evaluation of the glacier dynamics at the calving front.

GPS data obtained is one component of a unique and rich data

set including >6000 oblique stereo-photographs and 1.2 TB

of airborne data.

Importantly, the project demonstrated a number of key

design lessons relating to the use of low cost COTS wireless

network technology at the margin of a major tidewater glacier.

Foremostly, it proved possible to use 2.4 GHz Zigbee radios

to provide reliable radio communication over ranges >3 km

when radiating just 50 mW of RF power. This was mainly

achieved by the high placement of base stations giving a clear

view across the glacier as well as using high gain antennas.

Secondly, radio diversity exploiting the large separation be-

tween participating base stations provided a highly effective

means of combatting shadow fading due to ice pinnacles as

nodes moved relative to their associated base stations. Thirdly,

it was possible to operate the network in a constant power-on

mode without resorting to sleep-mode techniques to conserve

energy. This allowed the network to operate in real time with

a self-healing capability as nodes close to the calving edge

were lost whilst maintaining successful GPS data retrieval.

This network feature was achieved by developing each node

as a low power Zigbee router powered off batteries charged by

solar panels. The wireless network design proved to be highly

robust in such an extreme environment and future applications

such as volcano and landslide monitoring are currently being

considered.
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