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a b s t r a c t

Autonomous systems such as Unmanned Aerial Vehicles (UAVs) need to be able to recognise and
track crowds of people, e.g. for rescuing and surveillance purposes. Large groups generate multiple
measurements with uncertain origin. Additionally, often the sensor noise characteristics are unknown
but measurements are bounded within certain intervals. In this work we propose two solutions to the
crowds tracking problem—with a box particle filtering approach and with a convolution particle filtering
approach. The developed filters can cope with the measurement origin uncertainty in an elegant way, i.e.
resolve the data association problem. For the box particle filter (PF) we derive a theoretical expression
of the generalised likelihood function in the presence of clutter. An adaptive convolution particle filter
(CPF) is also developed and the performance of the two filters is compared with the standard sequential
importance resampling (SIR) PF. The pros and cons of the two filters are illustrated over a realistic scenario
(representing a crowd motion in a stadium) for a large crowd of pedestrians. Accurate estimation results
are achieved.

© 2016 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Tracking a large number of objects requires scalable algorithms
that are able to deal with large volumes of data characterised by
the presence of clutter. Although groups aremade up ofmany indi-
vidual entities, they typically maintain certain patterns of motion,
such as in the case of crowds of pedestrians (Ali & Dailey, 2009).
When the number of objects in the group is huge, e.g. hundreds and
thousands, it is impractical (and impossible) to track them all indi-
vidually. Instead of tracking each separate component, the group
can be considered as one whole entity. Large group techniques
identify and track concentrations, typically the kinematic states of
the group and its extent parameters (Koch, 2008).

✩ The material in this paper was presented at the 15th International conference
in Information Fusion, July 9–12, 2012, Singapore and the 17th International
Conference in Information Fusion, July 7–10, 2014, Salamanca, Spain. This paper
was recommended for publication in revised form by Associate Editor Huijun Gao
under the direction of Editor Ian R. Petersen.
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Recent results for the modelling, simulating and visual analysis
of crowds are presented in Ali, Nishino, Manocha, and Shah (2014)
from the point of view of computer vision, transportation systems
and surveillance. The social force model (Ali et al., 2014; Helbing &
Molnár, 1995; Mazzon & Cavallaro, 2013) has been used to model
behaviour of pedestrians, including evacuation of people through
bottlenecks. The social force model has also been combined with
some filtering techniques formultiple-target tracking in Pellegrini,
Ess, Schindler, and Van Gool (2009).

There is a wealth of approaches that are developed to track
kinematic states of large crowds (e.g. the centre of the crowds) and
their size (extent parameters). A recent survey (Mihaylova et al.,
2014) presents key trends in the area. Although, the problem of
tracking large groups has received attention in the literature, it
is far from being resolved due to the various challenges that are
present. Some of these challenges involve difficulties in modelling
the interactions between the entities of the crowd, data association
and dynamic shape changes of the crowd. Some of the approaches
that have been proposed includemixtures of Gaussian components
(Carmi, Septier, & Godsill, 2012) and awealth of Random finite sets
(RFS)methods, e.g., Grandström (2012), Granström, Lundquist, and
Orguner (2011), Mahler (2007, 2009, 2013) and Mahler and Zajic
(2002).
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This work proposes two novel solutions to the crowd tracking
problem based on the recently developed box particle filter (PF)
(Gning, Ristic, Mihaylova, & Abdallah, 2013) and convolution
particle filter (CPF) (Angelova, Mihaylova, Petrov, & Gning, 2013;
Campillo & Rossi, 2009; Rossi & Vila, 2006) frameworks.

The box PF (Abdallah, Gning, & Bonnifait, 2008; Gning,
Mihaylova, Abdallah, & Ristic, 2012; Gning et al., 2013) relies on the
concept of a box particle, which occupies a small and controllable
rectangular region having a non-zero volume in the state space.
The box PF affords to resolve the data association problems arising
from the multiple measurements originating from the crowd. This
is a common case when a UAV is flying over a region and collects
data, seeing the area from above.

This paper has several novel contributionswhen comparedwith
our previousworks such as Petrov, Gning,Mihaylova, andAngelova
(2012), Petrov, Ulmke et al. (2012) and Petrov, Mihaylova, de Fre-
itas, and Gning (2014). These novelties include: (i) a generalised
likelihood function for the box PF is derived when the state vec-
tor consists of kinematic states and extent parameters; (ii) the
likelihood of the Box PF is calculated based on optimisation, by
solving a constraint satisfaction problem (CSP) with multiple mea-
surements; (iii) the online estimation of the crowd and clutter
measurement rates; (iv) an adaptive CPF is proposed. The devel-
oped CPF is able to deal with multiple measurements, including a
high level of clutter. It is able to resolve the data association prob-
lem without the crowd and clutter measurement rates. The adap-
tive CPF can estimate both dynamic kinematic states and dynamic
parameters which is a different solution from the CPF based ap-
proach for static parameters presented in Angelova et al. (2013),
Campillo and Rossi (2009) and Rossi and Vila (2006).

Both filters have very appealing properties in solving nonlinear
estimation problems. Both filters operate in the condition of
uncertain and imperfect observations: fluctuating number of
sensor reports.

The performance of the box PF and CPF is evaluated for two
different cases. Firstly, in a fully matched case where the models
used by the filter directly match that used by the simulator, and
secondly, in an unmatched scenario of a realistic crowd moving
through a bottleneck. Both filters are compared with the standard
sequential importance resampling PF (SIR PF) (Doucet, De Freitas,
& Gordon, 2001) in terms of filter accuracy and computational
complexity.

A main advantage of the box PF consists in its robustness to
measurement characteristics and its ability to be implemented
efficiently in a distributed way. The CPF is based on the principles
of kernel based learning and can deal with problems where the
likelihood is not available in an analytical form or it is difficult to
calculate.

The rest of this paper is organised in the following way.
Section 2 describes the state space modelling of a crowd. Section 3
is a brief overview of inference in a Bayesian framework. Section 4
presents the adaptation of the box PF for group object tracking.
Section 5 introduces the CPF for crowd tracking, which is followed
by a performance evaluation of the presented approaches in
Section 6. Finally, conclusions are presented in Section 7.

2. State space modelling of a crowd

The characteristics of the crowd and scene that are required to
be inferred at each time step k, k = 1, 2, . . . , K , are represented
by an augmented state vector:

ζk =

λT
k ,X

T
k , 2T

k

T
, (1)

where Xk is the kinematic vector of the centre of the crowd, and
2k is the parameter vector which characterises the crowd extent.
Multiple measurements are received from the crowd and from
clutter at each time step, thus the state vector includes λk which
is the measurement rate vector. The notation (·)T is the transpose
operator. In this paper we consider the two-dimensional case,
where the kinematic vector consists of the position coordinates
and the velocity of the centre of the crowd and the extent of the
crowd is represented by a rectangle. The resulting kinematic vector
has the following form:

Xk = (xk, ẋk, yk, ẏk)T (2)

and the parameter vector is given by:

2k = (ak, bk)T (3)

where ak and bk represent the lengths of the sides of the rectangle
in the x and y dimensions, respectively. The measurement rate
vector is represented by:

λk = (λT ,k, λC,k)
T , (4)

where λT ,k and λC,k represent the crowd and clutter measurement
rates, respectively.

2.1. Crowd dynamics model

The motion of the centre of the crowd is modelled by a
correlated velocity model. The correlated velocity model is related
to the Singer model (Singer, 1970) and jerk model (Mehrotra
& Mahapatra, 1997) with the difference being that the velocity
component is correlated in time and that the second and other
higher order derivatives of position are negligible. The evolution
model for the kinematic state of the target is represented
mathematically by

Xk = AXk−1 + ηk, (5)

where ηk represents the system dynamics noise. The state
transition matrix is given by

A =

1
1
α


1 − e−αTs


0 e−αTs

⊗ I2 (6)

where Ts is the sampling interval, ⊗ denotes the Kronecker
product, I2 denotes the 2×2 identitymatrix, andα is the reciprocal
of the velocity correlation time constant. The covariance of the
system dynamics noise ηk can be modelled as

Q = 2ασ 2
v


q11 q12
q12 q22


⊗ I2, (7)

where σ 2
v is the variance of the velocity of the crowd centroid for a

single dimension and

q11 =
1

2α3


4e−αTs − 3 − e−2αTs + 2αTs


,

q12 =
1

2α2


e−2αTs + 1 − 2e−αTs


,

q22 =
1
2α


1 − e−2αTs


.

(8)

The evolution for the crowd extent is assumed to be a randomwalk
model, described by

2k = 2k−1 + ηp,k, (9)

where the parameter noise ηp,k is characterised by the standard
deviation σθ ∈ RnΘ .



382 A. De Freitas et al. / Automatica 69 (2016) 380–394
2.2. Observation model

In this paperwe consider the scenariowhere themeasurements
originate from within a confined area. However, other scenarios,
such as the case where the measurements only come from the
border of the crowd, have a similar solution.

The total number of measurements Mk, obtained at each time
step from the sensor consists of the MT ,k number of measure-
ments, originating from the crowd andMC,k cluttermeasurements,
i.e. Mk = MT ,k + MC,k. The number of measurements MT ,k origi-
nating from the crowd is considered as a Poisson-distributed ran-
dom variable with mean value of the crowd rate, λT ,k, i.e., MT ,k ∼

Poisson(λT ,k). Similarly, the number of clutter measurements is
MC,k ∼ Poisson(λC,k). TheMT ,k measurements originating from the
crowd are uniformly located in the area represented by the crowd.
TheMC,k clutter measurements are uniformly located in the region
about the crowd.

Typically in point target tracking, an observation model which
directly relates the states to the measurements is available, in the
form given by:

zk = h(ζk) + ξk, (10)

where ξk represents the observation noise. However, since the
crowd is an extended target,1 there is no direct observationmodel.
The observations can be indirectly related to the states through the
sensor characteristics and the target model.

The sensor characteristics describe the relationship between
the measurement point m, m = 1, . . . ,Mk and the measurement
source in a Cartesian coordinate system and is of the form:

zmk = h̃(xmk ) + ξk, (11)

where h̃(·) is the measurement function and xmk = (xmk , ymk )T

denotes the Cartesian coordinates of the measurement source in
a two dimensional space. In this paper we consider the following
model:

zmk = Hxmk + ξk, (12)

where H = I2, and the measurement noise ξk = (ξ1,k, ξ2,k)
T ,

is assumed (but not restricted) to be Gaussian, with a known
covariance matrix R = diag(σ 2

1 , σ 2
2 ). The vector of interval

measurements is [zmk ] = ([zm1,k], [z
m
2,k])

T , where [zm1,k] and [zm2,k] are
the intervals of the mth measurement point. One way to describe
these components is by representing the noise terms in Eq. (11) as
intervals:

[ξk] = [−3σ, +3σ]. (13)

At each time step k, the Mk interval measurements are combined
into an interval matrix [Zk] = {[z1k ], . . . , [z

m
k ]} ∈ Rnz×Mk .

Each measurement originates from either random clutter or
the crowd but its origin is unknown. The target model describes
the relationship between the states and the measurement sources
for the MT ,k measurements that originate from the crowd. As
previously described, the measurement sources are uniformly
distributed across the region which exhibits measurements, and
this region is represented by the states through the following
probability density:

p(xmk |xk) = Uq(xk)(x
m
k ), (14)

where U[x](·) denotes themultivariate uniform probability density
function (pdf) with the interval [x] as support. The support of
the uniform distribution describes two independent regionswhich

1 An extended target cannot be considered as a point, but instead it has a physical
extent characterising its size and volume.
cover the area of the rectangle used to approximate the extent of
the crowd:

q(xk) =


xk −

ak
2

≤ xmk ≤ xk +
ak
2

,

yk −
bk
2

≤ ymk ≤ yk +
bk
2

.

(15)

3. Inference in a Bayesian framework

Classic Bayesian inference relies on computing the posterior
distribution from a prior distribution and measurements. The
posterior distribution can be updated sequentially based on a
prediction step, followedby anupdate step. The following equation
describes the prediction:

p(ζk|Z1:k−1) =


Rnζ

p(ζk|ζk−1)p(ζk−1|Z1:k−1)dζk−1. (16)

The measurement update is described by the following equation:

p(ζk|Z1:k) =
p(Zk|ζk)p(ζk|Z1:k−1)

p(Zk|Z1:k−1)
. (17)

The recursive relationship of Eqs. (16) and (17) forms the optimal
Bayesian solution. Utilising these equations for Bayesian filtering is
generally not possible since an analytical solution rarely exists. A
solution for when the state space model is linear and perturbed by
Gaussian noise is referred to as the Kalman filter (Bar-Shalom, Li, &
Kirubarajan, 2001). Several techniques have been used in themore
general case consisting of non-linearities and non-Gaussianity in
the state space model, such as the extended Kalman filter (Bar-
Shalom et al., 2001), unscented Kalman filter (Wan & Van Der
Merwe, 2000) and particle filter based techniques (Cappe, Godsill,
& Moulines, 2007) to name a few.

For further notational convenience, the marginal state is
defined as follows:

xk =

X T
k , 2T

k

T
. (18)

In this application the posterior distribution can be further factored
into the following form:

p(ζk|Z1:k) = p(xk|Z1:k, λk)p(λT ,k|Z1:k)p(λC,k|Z1:k). (19)

This factorisation implicitly states that the crowd and clutter
measurement rates are independent of the kinematics and extent
of the crowd. This is true for the clutter measurement rate but not
necessarily valid for the crowd measurement rate. However, the
variance of the prior distribution for the crowd rate is sufficient to
represent the variation of the number of measurements over time.

It has been shown that a closed form recursive Bayesian so-
lution exists for the estimation of the mean of a Poisson distri-
bution, based on using the conjugate prior Gamma distribution
(Granström&Orguner, 2012). The crowd and cluttermeasurement
rates are estimated based on this concept,2 and the focus of this
paper thus lies on the calculation of the marginal posterior distri-
bution for the states representing the kinematics and extent of the
crowd, p(xk|Z1:k, λk), using the novel box particle filter and convo-
lution particle filter algorithms.

4. The box particle filter for crowd tracking

This section begins with a review of the box PF in point target
tracking without clutter, thus, the following subsection does not
consider the extent of the target, i.e. xk = Xk.

2 Refer to Appendix B for more information on crowd and clutter measurement
rate estimation.
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4.1. The classic box particle filter

The concept of a box particle is introduced where a box particle
represents a small region with controllable size (or volume).
The box PF approximates the posterior state pdf with a mixture
of uniform pdfs (Gning, Mihaylova, & Abdallah, 2010; Gning,
Mihaylova et al., 2012), i.e.

p(xk−1|z1:k−1) ≈

N
p=1

w
(p)
k−1U[x(p)k−1]

(xk−1). (20)

For the box PF, the time update can be written as:

p(xk|z1:k−1) ≈


Rnx

p(xk|xk−1)

N
p=1

w
(p)
k−1U[x(p)k−1]

(xk−1)dxk−1

=

N
p=1

w
(p)
k−1


[x(p)k−1]

p(xk|xk−1)U
[x(p)k−1]

(xk−1)dxk−1. (21)

For any transition function f , we can obtain an inclusion function
[f ] where f ([x]) ⊆ [f ]([x]). For the inclusion function, with ∀ p =

1, . . . ,N , if xk−1 ∈ [x(p)
k−1]we have xk ∈ [f ]([x(p)

k−1])+[ηk]. Thus, for
all p = 1, . . . ,N we can write

p(xk|xk−1)U
[x(p)k−1]

(xk−1) = 0, ∀ xk ∉ [f ]([x(p)
k−1]) + [ηk]. (22)

Using interval analysis techniques, the support function3 for the
pdf terms in (21) can be approximated by [f ]([x(p)

k−1]) + [ηk].
In the Box PF algorithm each pdf term in (21) is approximated
by one uniform pdf component having as support the interval
[f ]([x(p)

k−1], [ηk]), i.e.,
[x(p)

k−1]

p(xk|xk−1)U
[x(p)k−1]

(xk−1)dxk−1 ≈ U
[f ]([x(p)k−1])+[ηk]

(xk). (23)

Combining (21) and (23) gives

p(xk|z1:k−1) ≈

N
p=1

w
(p)
k−1U[f ]([x(p)k−1])+[ηk]

(xk)

=

N
p=1

w
(p)
k−1U[x(p)k|k−1]

(xk). (24)

Approximating each pdf term using one uniform pdf component
may not be accurate enough. However, as for the PF, it is sufficient
to approximate the first moments of the pdf. If a more accurate
representation is required then each term can be approximated
as a mixture of uniform pdfs as shown in Gning, Mihaylova et al.
(2012).

Under the assumption that at time instant k, the time update
pdf p(xk|z1:k−1) can be represented by a mixture of N uniform pdfs
with interval supports [x(p)

k|k−1] andweightsw
p
k−1, themeasurement

update step can be performed. A probabilistic model pξ for the
measurement noise ξk is also available. It is assumed in general
that pξ can be expressed by using a mixture of uniform pdfs. For
simplicity andwithout loss of generality, pξ is consideredhere to be
a single uniform pdf, such that the box measurement [zk] contains
all realisations of (10). Then we have: p(zk|xk) = U[zk](h(xk)) and
according to Eq. (17), the measurement update can be expressed

3 The support of a function is the set of points where the function is not zero-
valued or, in the case of functions defined on a topological space, the closure of that
set.
with the equation:

p(xk|z1:k) =
1
αk

p(zk|xk)p(xk|z1:k−1)

=
1
αk

U[zk](h(xk))
N

p=1

w
(p)
k−1 U[x(p)k|k−1]

(xk)

=
1
αk

N
p=1

w
(p)
k−1 U[zk](h(xk))U[x(p)k|k−1]

(xk), (25)

where αk denotes the normalising constant. Each of the terms
U[zk](h(xk))U[x(p)k|k−1]

(xk) is also a constant function with a support

being the following region Sp ⊂ Rnx , where

Sp =


xk ∈ [x(p)

k|k−1] | h(xk) ∈ [zk]


. (26)

Eq. (26) represents a constraint and from its expression we can
deduce that predicted supports [x(p)

k|k−1], from the time update pdf
p(xk|z1:k−1) approximation, have to be contracted with respect to
the measurement [zk]. These contraction steps result in the new
box particles denoted [x(p)

k ], which approximate the posterior pdf
p(xk|z1:k) at time k. Following the definition of the sets Sp in (26),
we can write

U[zk](h(xk))U[x(p)k|k−1]
(xk) ≃ U[zk](h(xk))

1

|[x(p)
k|k−1]|

∥Sp∥USp(xk), (27)

where | · | denotes the interval length (respectively the box volume
in themultidimensional case). By combining Eqs. (25) and (27), and
keeping in mind that [x(p)

k ] = [Sp] (i.e. by definition [x(p)
k ] is the

smallest box containing Sp),

p(xk|z1:k) =
1
αk

N
p=1

w
(p)
k−1

1
|[zk]|

1

|[x(p)
k|k−1]|

∥Sp∥USp(xk)

≈
1
αk

N
p=1

w
(p)
k−1

1
|[zk]|

1

|[x(p)
k|k−1]|

|[x(p)
k ]|U

|[x(p)k ]|
(xk)

∝

N
p=1

w
(p)
k−1

|[x(p)
k ]|

|[x(p)
k|k−1]|

U
|[x(p)k ]|

(xk). (28)

In the Sequential Importance Resampling (SIR) PF, each particle
weight is updated by a factor equal to the likelihood p(zk|x

(p)
k|k−1),

followed by normalisation ofweights. In the Box PF this step is very
similar, i.e., after contracting each box particle [x(p)

k|k−1] into [x(p)
k ],

according to (28) the weights are updated by the ratio

L(p)
k =

|[x(p)
k ]|

|[x(p)
k|k−1]|

. (29)

In summary, the posterior distribution is approximated by
{(w̃

(p)
k , [x(p)

k ])}Np=1, where w̃
(p)
k ∝ w

(p)
k−1 · L(p)

k .

4.2. Derivation of the box particle filter posterior distribution in crowd
tracking

The prediction step for the crowds tracking box PF follows
the same spirit as described by Eqs. (21) to (24). However, when
dealing with multiple target originated measurements and clutter
measurements, the update step is required to be re-derived. When
dealing with an extended target in a SIR PF, the generalised
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likelihood is given by (Gilholm & Salmond, 2005)

p(Zk|ζk) =

Mk
m=1


1 +

λT ,k

ρk
p(zmk |xk)



=

Mk
m=1


1 +

λT ,k

ρk


p(zmk |xmk )p(xmk |xk)dxmk


, (30)

where ρ =
λC,k
AC

represents the clutter density and AC represents
the area of the region where clutter may be emitted from. We ex-
tend the generalised likelihood for the crowd tracking box PF.

A probabilistic model pξk for the measurement noise ξk is
available. It is assumed in general that pξk can be expressed by
using a mixture of uniform pdfs. For simplicity and without loss
of generality, pξk is considered here to be a single uniform pdf,
such that the box measurement [zmk ] contains all realisations of

(11). Then we have: p(zmk |xmk ) = U[zmk ]


h̃

xmk


. Substituting this
equation and (14) into (30), we obtain

p(Zk|ζk) =

Mk
m=1


1 +

λT ,k

ρk


U[zmk ]


h̃

xmk


Uq(xk)(x
m
k )dxmk


. (31)

The updatedmarginal posterior distribution for crowd tracking can
then be expressed with the equation:

p(xk|Z1:k, λk) =
1
αk

p(Zk|ζk)p(xk|Z1:k−1)

=
1
αk

N
p=1

w
(p)
k−1

Mk
m=1


U

[x(p)k|k−1]
(xk)

+
λT ,k

ρk


U

[x(p)k|k−1]
(xk)U[zmk ]


h̃

xmk


Uq(xk)(x
m
k )dxmk


. (32)

Each of theMk product terms,U
[x(p)k|k−1]

(xk)U[zmk ]


h̃

xmk


Uq(xk)(x
m
k ),

is also a constant function with a support being the following
region Sp,m ⊂ Rnx , where

Sp,m =


xk ∈ [x(p)

k|k−1] | xmk ∈ q(xk), h̃

xmk


∈ [zmk ]


. (33)

Eq. (33) represents a constraint and from its expression we can
deduce that the predicted supports [x(p)

k|k−1], from the time update
pdf p(xk|Z1:k−1) approximation, have to be contractedwith respect
to the interval measurements [Zk]. These contraction steps result
inMk new box particles denoted [x(p)

k,m]. Following the definition of
the sets Sp,m in (33), we can write

U
[x(p)k|k−1]

(xk)U[zmk ]


h̃

xmk


Uq(xk)(x
m
k )

= U[zmk ]


h̃

xmk


Uq(xk)(x
m
k )

1

|[x(p)
k|k−1]|

∥Sp,m∥USp,m(xk),

≃ U[zmk ]


h̃

xmk


Uq(xk)(x
m
k )

|[x(p)
k,m]|

|[x(p)
k|k−1]|

U
[x(p)k,m]

(xk) (34)

since by definition [x(p)
k,m] is the smallest box containing Sp,m.

Substituting (34) in (32)we have the following updated expression
for the posterior distribution:

p(xk|Z1:k, λk) =
1
αk

N
p=1

w
(p)
k−1

Mk
m=1


U

[x(p)k|k−1]
(xk) +

λT ,k

ρk

×
|[x(p)

k,m]|

|[x(p)
k|k−1]|

U
[x(p)k,m]

(xk)


U[zmk ]


h̃

xmk


Uq(xk)(x
m
k )dxmk


. (35)
The integration is approximated by a uniform distribution,
U[zmk ]


h̃

xmk


Uq(xk)(x
m
k )dxmk = Ur(xk)


zmk

, where r(xk) repre-

sents an interval dependent on the states and measurement func-
tion. The validity of this assumption is explored in Appendix A. The
posterior distribution can thus be expanded accordingly:

p(xk|Z1:k, λk) =
1
αk

N
p=1

w
(p)
k−1

Mk
m=1


U

[x(p)k|k−1]
(xk)

+
λT ,k

ρk

1
|r(xk)|

|[x(p)
k,m]|

|[x(p)
k|k−1]|

U
[x(p)k,m]

(xk)


=
1
αk

N
p=1

w
(p)
k−1


U

[x(p)k|k−1]
(xk)

Mk

+

Mk
m=1


Mk
m


j=1


U

[x(p)k|k−1]
(xk)

Mk−m

×


i∈Am

j

λT ,k

ρk

1
|r(xk)|

|[x(p)
k,i ]|

|[x(p)
k|k−1]|

U
[x(p)k,i ]

(xk)

 (36)

where Am
=

Am

j , j ∈ J

, with J =


1, 2, . . . ,


Mk
m


and Am

j ⊆

S : |Am
j | = m, where S = {1, 2, . . . ,Mk}. For example, if Mk = 3

and m = 2 then Am
= {{1, 2}, {1, 3}, {2, 3}}. The posterior pdf is

a weighted sum of uniform pdfs. The number of weighted uniform
pdf’s increases exponentially with the number of measurements,
which can render the algorithm too computationally expensive
for a large number of measurements. Typically, there is a large
disparity between the weights of the summed uniform pdfs, since
λT ,k
ρk

1
|r(xk)|

|[x(p)k,i ]|

|[x(p)k|k−1]|
≫

1
|[x(p)k|k−1]|

. This allows for the approximation

of the posterior pdf by a single uniform pdf for each box particle.
The dominating term in the uniform pdf weights is λT ,k

ρk|r(xk)| |[x
(p)
k|k−1]|

.

This term is maximised when all the measurements are assumed
to originate from the crowd. If the posterior pdf was approximated
by this uniform pdf, the expression would be given by:

p(xk|Z1:k, λk)

≈
1
αk

N
p=1

w
(p)
k−1


i∈S

λT ,k

ρk

1
|r(xk)|

|[x(p)
k,i ]|

|[x(p)
k|k−1]|

U
[x(p)k,i ]

(xk)


. (37)

The multiplication of uniform pdfs can be further simplified to
obtain a single uniform pdf with a corresponding weight. This
includes the intersection of the intervals of all the uniform pdfs:

p(xk|Z1:k, λk) ∝

N
p=1

w
(p)
k−1


i∈S

λT ,k

ρk

1
|r(xk)|

|[x(p)
k,i ]|

|[x(p)
k|k−1]|



×
| ∩i∈S[x

(p)
k,i ]|

i∈S

|[x(p)
k,i ]|

U
∩i∈S [x(p)k,i ]

(xk)

∝

N
p=1

w
(p)
k−1


i∈S

λT ,k

ρk|r(xk)| |[x
(p)
k|k−1]|


× |∩i∈S[x

(p)
k,i ]|U∩i∈S [x(p)k,i ]

(xk). (38)

However, this intersection result typically does not exist or
leads to a poor contraction due to the implicit assumption that
the measurements originate from the crowd. A more robust
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Table 1
The proposed box particle filter for crowd tracking.

Initialisation
Use the available prior information about the target’s kinematics and extent parameters states to initialise the box particles.
Repeat for K time steps, k = 1, . . . , K , the following steps:
(1) Prediction

Propagate the box particles through the state evolution model to obtain the predicted box particles. Apply interval inclusion functions as described in Jaulin (2002)
and Jaulin et al. (2001).
(2) Measurement Update

Upon the receipt of new measurements:
(a) Form intervals around the measurements, taking into account the uncertainty of the sensor, thus obtaining the measurement boxes [Zk].
(b) Solve the CSP, as described in Section 4.3, to obtain the contracted box particles [x(p)

k,m].
(c) Determine [x(p)

k ] according to (40).
(d) Update and normalise the weights w

(p)
k , p = 1, . . . ,N according to (41).

(3) Output
Obtain an estimate for the state of the group object as a weighted sum of all of the particles:

[x̂k] =
N

p=1 w
(p)
k [x(p)

k ]. (42)
Further, a point estimate for the state can be obtained as the midpoint of the box estimate of the state.

(4) Resampling
(a) Compute the effective sample size:

Neff =
1N

p=1(ŵ
(p)
k )2

(b) If Neff ≤ Nthresh (with e.g. Nthresh = 2N/3) resample by division of particles with high weights. Finally, reset the weights: w(p)
k = 1/N .
approximation for the posterior pdf, which does not require
explicit knowledge of the origin of a measurement is given by:

p(xk|Z1:k, λk) ≈

N
p=1

w
(p)
k−1


U

[x(p)k|k−1]
(xk)

Mk−(|S
(p)
E |−q)

×


i∈S

(p)
E

λT ,k

ρk|r(xk)| |[x
(p)
k|k−1]|


× |

{q}
∩ i∈S

(p)
E

[x(p)
k,i ]|U{q}

∩
i∈S

(p)
E

[x(p)k,i ]
(xk) (39)

where S
(p)
E represents the set of indices for the contracted boxes,

[x(p)
k,m], that exist,4 and q represents the maximum number of

clutter measurements indexed by S
(p)
E . The symbol

{q}
∩ represents

the q-relaxed intersection first introduced in Jaulin (2009) to aid
in the processing of clutter measurements in a purely interval
framework.

The difference between the posterior pdf represented by
Eqs. (36) and (39) is highlighted graphically through an example
in Fig. 1.

In summary, p(xk|Z1:k, λk) is approximated by {(w̃
(p)
k ,

[x(p)
k ])}Np=1, where

[x(p)
k ] =

{q}
∩ i∈S

(p)
E

[x(p)
k,i ] (40)

and

w̃
(p)
k ∝ w

(p)
k−1


U

[x(p)k|k−1]
(xk)

Mk−(|S
(p)
E |−q)

×


i∈S

(p)
E

λT ,k

ρk|r(xk)| |[x
(p)
k|k−1]|

 |[x(p)
k ]|. (41)

The algorithm for crowd tracking is summarised in Table 1.

4 Measurements which result in a contraction of the state that does not exist
are located at a significant distance from the state and are considered to be clutter
measurements.
Fig. 1. Illustration of the difference between the posterior pdf represented by
Eqs. (36) and (39). This example consists of 3 measurements (measurement 3
represents a clutter measurement), a single state dimension, and a single box
particle.

4.3. Box particle filter implementation considerations

In general, an important step in interval based techniques used
for state estimation is in interval contraction (Jaulin, 2009). In
the box PF it is required to obtain the contracted box particles
by solving the CSP described by Eq. (33). For the crowds tracking
box PF, contraction is achieved by implementing the Constraints
Propagation (CP) technique. The main advantage of the CP method
is its efficiency in the presence of high redundancy of data and
equations. The CP algorithm, which in this application is the
calculation of the intersection of the box states for each particle
with all the interval measurements, is illustrated in Table 2. For
notational convenience, Table 2 refers directly to the supports of
the uniform distributions found in the posterior distribution, for
example in Eq. (35).

Generally, in particle filtering, there are a variety of different
resampling schemes available (Li, Bolic, & Djuric, 2015). Based on
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the weights, a particle is replicated a specific number of times.
The box PF differs by dividing a selected box particle into smaller
box-particles as many times as it was to be replicated. Several
subdivision strategies exist. In this paper we subdivided based on
the dimension with the largest box face.

The parameter q is introduced in Eq. (39). This specifies the
maximum number of clutter measurements that still result in
a contraction of the states that exists. These are the clutter
measurementswhich are located close in vicinity to the crowd. The
area in themeasurement spacewhere ameasurement can result in
a contraction of the state that exists is dependent on the size of the
box particle. An estimate for q can then be determined through:

q =
ρkACT

4
. (43)

The estimated clutter measurement rate is used to obtain an
approximate ρk:

ρk =
λC,k

ACR
, (44)

where the area of the clutter region is given by ACR = AS − AT ,
AS is the total area observed by the sensor, and AT is the area of
the crowd, approximated from the estimate of the crowd at the
previous time instant, k−1. For the given crowd tracking problem,
the area ACT is given by:

ACT =


x(p)
k +

a(p)
k

2


−


x(p)
k −

a(p)
k

2



×


y(p)
k +

b(p)
k

2


−


y(p)
k −

b(p)
k

2



−


x(p)
k +

a(p)
k

2


−


x(p)
k −

a(p)
k

2



×


y(p)
k +

b(p)
k

2


−


y(p)
k −

b(p)
k

2


, (45)

where the notation x and x refers to the infimum and supremum of
box x, respectively. The factor of 4 in Eq. (43)was introduced to take
into account that the area ACT also includes the region inside of the
crowd, where no clutter measurements are found. It is important
to note that the algorithm is fairly robust to the value of q as this
represents amaximumnumber of clutter points, and not the actual
number of clutter points.

5. The convolution particle filter for crowd tracking

This paper develops an adaptive CPF algorithm for crowds
tracking. The CPF approach relies on convolution kernel density
estimation and regularisation of the distributions, respectively, of
the state and observation variables (Campillo & Rossi, 2009; Rossi
& Vila, 2006; Vila, 2012). The CPF belongs to a class of particle
filters with valuable advantages: simultaneous estimation of state
variables and unknownparameters and continuous approximation
of the corresponding pdf. Being likelihood free filters makes them
attractive for solving complex problemswhere the likelihood is not
available in an analytical form.

The key novelty of the proposed adaptive CPF algorithm
stems from: (1) its ability to deal with multiple measurements,
including high level of clutter, (2) ability to resolve data association
problems, without the need to estimate clutter parameters,
(3) estimation of dynamically changing parameters of crowds
jointly with the dynamic kinematic states.

For the purposes of crowds tracking the marginal posterior
state distribution has to be calculated and can be expressed to be
Table 2
CSP for contraction of rectangularly shaped crowds.

Solve the CSP to contract each box particle with all of the measurements.

[x(p)
m ] = [x(p)

] ∩


[zm1 ] ∓

[a(p)]
2 · [0, 1]


,

(46)

[˜̇x
(p)
m ] = [ẋ(p)

] ∩


[x(p)m (k)]−[x(p)m (k−1)]

1
αx (1−e−αxTs )


,

[ỹ(p)
m ] = [y(p)

] ∩


[zm2 ] ∓

[b(p)
]

2 · [0, 1]

,

[˜̇y
(p)
m ] = [ẏ(p)

] ∩


[ỹ(p)m (k)]−[ỹ(p)m (k−1)]

1
αy (1−e−αyTs )


,

[ã(p)
m ] = [a(p)

] ∩ ±2


[zm1 ]−[x(p)m,s]

[0,1]


,

[b̃(p)
m ] = [b(p)

] ∩ ±2


[zm2 ]−[ỹ(p)m,s]

[0,1]


,

[z̃m,(p)
1 ] = [zm1 ] ∩


[x(p)

m ] ±
[ã(p)m ]

2 · [0, 1]

,

[z̃m,(p)
2 ] = [zm2 ] ∩


[ỹ(p)

m ] ±
[b̃(p)

m ]

2 · [0, 1]

.

independent of the clutter and measurement rates, reducing the
expression from Eq. (19) to:

p(ζk|Z1:k) = p(xk|Z1:k)p(λT ,k|Z1:k)p(λC,k|Z1:k). (47)

The CPF relies on the following representation of the conditional
state density:

p(xk|Z1:k) =
p(xk, Z1:k)
p(xk, Z1:k)dxk

. (48)

Suppose, thatwe can sample from the state andmeasurement pdfs,
p(xk|xk−1) and p(zmk |xk), respectively. Thenwe can obtain a sample
from the joint distribution {x(i)

k , Z (i)
k , i = 1, . . . ,N} at time step k

by k successive simulations, starting from the sample of the initial
distribution p0(x). We can obtain the following empirical estimate
of the joint density

p(xk, Z1:k) ≈
1
N

N
i=1

δ(xk − x(i)
k , Z1:k − Z (i)

1:k). (49)

The kernel estimate pNk (xk, Z1:k) of the true density p(xk, Z1:k) is
obtained by convolution of the empirical estimate (49) with an
appropriate kernel

pNk (xk, z1:k) =
1
N

N
i=1

K x
h (xk − x(i)

k )K Z̄
h (Z1:k − Z (i)

1:k), (50)

where

K Z̄
h (Z1:k − Z (i)

1:k) =

k
j=1

K Z
h (Zj − Z (i)

j ) (51)

and K x
h and K Z

h are the Parzen–Rosenblatt kernels of appropriate
dimensions and bandwidth h. According to Eq. (48), the estimate
of the posterior conditional state density has the following form:

pNk (xk|Z1:k) =

N
i=1

K x
h (xk − x(i)

k )K Z̄
h (Z1:k − Z (i)

1:k)

N
i=1

K Z̄
h (Z1:k − Z (i)

1:k)

. (52)

When dealing with point targets, the measurements are modelled
as points in the measurement space. However, in the application
of crowd tracking, a single point in the state space translates into
a region in the measurement space. The role of the kernel in
the point target case can be interpreted as a conversion of the
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Table 3
The Convolution Particle Filter for Crowd Tracking.

I. Initialisation:
k = 0, for i = 1, . . . ,N generate particles
x(i)
0 ∼ p0(x), w

(i)
0 = 1/N, k = k + 1

II. Iterate: over steps (1) to (5) for k ≥ 1
if k = 1: Prediction: for i = 1, . . . ,N
x(i)
k ∼ f (xk|x

(i)
0 )—state sampling

Z (i)
k ∼ p(zmk |x(i)

0 )—measurement region sampling
go to step (3)

if k > 1:
(1) Resampling: for i = 1, . . . ,N
x̄(i)
k−1 ∼ pNk−1(xk−1, |Z1:k−1), w

(i)
k−1 = 1/N

(2) Prediction: for i = 1, . . . ,N
x(i)
k ∼ p(xk|x̄

(i)
k−1)—state sampling

Z (i)
k ∼ p(zmk |x̄(i)

k )—measurement region sampling
(3) Weights updating: for i = 1, . . . ,N

Update the weights according to (53),
(5) Estimating the output state:
x̂k =

N
i=1 w̄

(i)
k x(i)

k ,
where w̄

(i)
k are the normalised weights.

measurement point to a measurement region. Thus there is no
need for the specification of a kernel in the crowd tracking CPF
framework, as the densities that describe the sensor characteristics
and target model can be used to obtain an approximate region in
the measurement space for each predicted particle, and are thus
equivalent to the kernel. The bandwidth h of the kernel varies
according to the state, resulting in a variable bandwidth which
adds additional flexibility to the CPF while also removing the need
to specify a bandwidth parameter. In this application the kernel is
approximated as a variable uniform distribution.

An advantage of the proposed CPF framework is that it
implicitly resolves the data association problem. Since there are
multiple measurements assumed to be independent, the weights
of individual measurements are multiplied to obtain a single
weight for the particle. However, clutter measurements may occur
outside of the support of the adaptive uniform kernel. This would
result in particles having a weight of 0 when evaluated by the
kernel. To overcome this, the adaptive uniform kernel based on the
crowd is addedwith a uniformdistributionwhich covers the entire
observation area of the sensor. The advantage to such an approach
is that it removes the need for the estimation of the clutter and
measurement rates when only the kinematic states and extent
parameters are of interest.

The weights are updated sequentially according to

w
(i)
k = w

(i)
k−1

Mk
m=1

K Z
h


zmk − Z (i)

k


. (53)

For the crowd tracking problempresented, the kernel K Z
h (zmk −Z (i)

k )
in Eq. (53) is a compositional kernel comprised of a sum of two
uniform pdfs:

K Z
h (zmk − Z (i)

k ) = UCS(zk) + USS(zk), (54)

where the support SS is the entire region observed by the
sensor, and the support CS is related to the location of crowd
measurements given the particle state. In this paper we utilised
the region, r(xk), as described in Appendix A.

A detailed description of the CPF algorithm is given in Table 3.

6. Performance evaluation

In this work the performance evaluation is done using
simulated measurements data. All simulations were performed
on a mobile computer with Intel(R) Core(TM) i7-4702HQ CPU @
2.20 GHz with 16 GB of RAM.
6.1. Test environment

Two different crowd simulations were used to demonstrate the
performance of the crowd tracking box PF and CPF.
Rectangular group object simulator: A crowd with a rectangular
extent located in a two dimensional plane. The centre of the crowd
undergoes motion according to a correlated velocity model. The
lengths of the sides of the crowd vary at each time step according
to a random walk. Crowd measurements comprise of a number
of points uniformly located within the confines of the crowd at
each time step. In addition to the crowd measurements, clutter
measurements are also present, uniformly located in a region
about the crowd.
Realistic crowd simulator: Individuals within the crowd are
represented as points moving in a two dimensional space. The
dynamics of the group is determined by forces acting on those
individuals: Forces of attraction towards one or more static goal
points; constrained forces of repulsion between the elements of
the group; constrained forces of repulsion from a set of linear
contextual constraints. The net effect is that a crowd of individuals
will move in a reasonably realistic manner between constraints.
The simulator outputs a set of points corresponding to the
positions of each individual in the crowd at each sampling step. The
positions of the individuals represent the measurement sources.
Additionally, clutter measurements are also present, uniformly
located in a region about the crowd.

6.2. Rectangular group object simulator results

This section presents results based on the Rectangular group
object simulator. The parameters are as follows:

• Simulation: The mean number of measurement sources: λT =

100, Simulation time duration: Ttot = 40 s, Sampling time,
Ts = 0.125 s, Initial rectangular object kinematic state: X0 =

[100m, 0m/s, 100m, 0m/s]T , Initial rectangular object extent
parameters: 20 = [40 m, 40 m]

T , Crowd centre dynamics
parameters: Velocity correlation time constant, Tcv = 15 s,
Velocity standard deviation parameters, σv,x = σv,y = 10 m/s,
Group extent dynamics parameters σa = σb = 1 m per time
step.

• Sensor: Measurement uncertainty: σz1 = σz2 = 0.1 m. Clutter
parameters: Clutter density, ρ = 1 × 10−2. Clutter area =

Circular region with radius of 100 m about the centre of the
crowd subtracted by the area of the crowd.

• Filter parameters: The CPF and SIR PF utilise a uniform
distribution for each state to initialise the particles. In the case
of the Box PF, the same uniform region where the CPF and SIR
PF randomly generate particles from is subdivided so that the
entire region is encompassedby all the boxparticles. This region
for each state is: x(p)

0 = [x0−50; x0+50]m, ẋ(p)
0 = [ẋ0−10; ẋ0+

10]m/s, y(p)
0 = [y0−50; y0+50]m, ẏ(p)

0 = [ẏ−10; ẏ+10]m/s,
a(p)
0 = [a0 − 30; a0 + 30] m, and b(p)

0 = [b0 − 30; b0 + 30] m.

The rootmean square error (RMSE) of the box PF and CPF estimates
are illustrated in this section. The RMSE values for each time
step are calculated over a number of Monte Carlo simulation runs
according to

RMSE =

 1
NMC

NMC
i=1

x̂i − xi
2, (55)

where xi represents the ground truth, x̂i represents the filter
estimate, and NMC represents the number of Monte Carlo runs.
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(a) RMSE corresponding to the location of the centre
in the x-coordinate.

(b) RMSE corresponding to the location of the centre
in the y-coordinate.

(c) RMSE corresponding to the velocity of the centre
in the x-coordinate.

(d) RMSE corresponding to the velocity of the centre
in the y-coordinate.

(e) RMSE corresponding to the length of side A. (f) RMSE corresponding to the length of side B.

Fig. 2. Comparison of the RMSE for the states of the box PF, CPF and SIR PF with equal computational complexity.
The first set of results illustrate how the box PF, CPF and SIR
PF perform when estimating the marginal posterior distribution,
p(xk|Z1:k, λk), with measurement and clutter rates assumed
known. Only 4 box particles are required to track the crowd.
For comparison, the CPF and SIR PF were also run with 4
particles, however, this resulted in consistent filter divergence
due to particle degeneracy. Instead the number of particles were
selected based on achieving a similar computational expense
for all algorithms. The number of Monte Carlo runs is 100. The
resultant RMSE values are illustrated in Fig. 2. The comparison
of the computational complexity for these results are presented
in Table 4. It is worth noting that the implementation of
the box PF utilises the INTLAB toolbox for performing interval
operations. INTLAB was initially designed and optimised for
estimating rounding errors. We believe that utilising alternative
methods for the interval operations could significantly reduce the
computational complexity of the box PF. The box PF and CPF are
able to lock on to the crowd significantly faster than the SIR PF. It
is noted that the RMSE is generally higher for the box PF once all
filters have locked onto the crowd. This can be attributed to the
approximations made in the derivation of the marginal posterior
pdf. The SIR PF is also matched in terms of the model noise and
likelihood expression.

The interested reader is referred to our previous works for Box
PFs for point targets where a detailed comparison is presented,
with Bernoulli filters in Gning, Ristic, and Mihaylova (2012) and
with a Probability Hypothesis density (PHD) filter (Schikora et al.,
2014). In these works it is shown that the Box PF for point target
tracking requires a significantly smaller number of box particles
compared with the particles needed in the Bernoulli and PHD
filters, including the computational cost. The Box PF can be used in
sensor network systems as it has been shown in Haj Chadé, Gning,
Abdallah, Mougharbel, and Julier (2014) and its key advantage is
that it provides accurate estimation results with a small number
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(a) RMSE corresponding to the location of the centre
in the x-coordinate.

(b) RMSE corresponding to the location of the centre
in the y-coordinate.

(c) RMSE corresponding to the velocity of the centre
in the x-coordinate.

(d) RMSE corresponding to the velocity of the centre
in the y-coordinate.

(e) RMSE corresponding to the length of side A. (f) RMSE corresponding to the length of side B.

Fig. 3. Comparison of the RMSE for the states of the box PF, CPF and SIR PF for maximised performance.
Table 4
Matlab computational time corresponding to the results in Fig. 2.

Algorithm Computation time (s)

Box PF 13.47
CPF 14.43
SIR PF 13.01

of particles. The Box PF can also be used in industrial applications,
e.g. such as those in Liu et al. (2014) andWang, Gao, and Qiu (2016)
and other network control systems.

The second set of results re-iterate the experiment with a
significant increase in the number of particles for the CPF and SIR
PF in order to improve tracking performance with an increase in
computational expense. The resultant RMSE values are illustrated
in Fig. 3, and the computational cost comparison for these results
are presented in Table 5. Increasing the number of particles in the
CPF and SIR PF decrease the amount of time required to lock on to
Table 5
Matlab computational time corresponding to the results in Fig. 3.

Algorithm Computation time (s)

Box PF 13.47
CPF 42.16
SIR PF 45.58

the crowd, however, the faster lock comes at a significantly larger
computational burden.

The third set of results focus on the effect of jointly estimating
the crowd and clutter measurement rates on the box PF
performance. This is compared with the performance of the box
PF for the ideal case where crowd and clutter measurement rates
are known. The resultant RMSE values are illustrated in Fig. 4. The
computational cost comparison for these results are presented in
Table 6. The joint estimation results in an increase in the time
required to lock onto the crowd, however, this is overcome by
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(a) RMSE corresponding to the location of the centre
in the x-coordinate.

(b) RMSE corresponding to the location of the centre
in the y-coordinate.

(c) RMSE corresponding to the velocity of the centre
in the x-coordinate.

(d) RMSE corresponding to the velocity of the centre
in the y-coordinate.

(e) RMSE corresponding to the length of side A. (f) RMSE corresponding to the length of side B.

(g) RMSE corresponding to the crowd measurement
rate.

(h) RMSE corresponding to the clutter measurement
rate.

Fig. 4. Comparison of the RMSE for the states of the box PF with crowd and clutter rate estimation.
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Table 6
Matlab computational time corresponding to the results in Fig. 4.

Number of Box particles Computation time (s)

4 13.47
16 25.22

Fig. 5. Initialisation of the realistic crowd simulator.

increasing the number of box particles at the cost of an increased
computational burden.

6.3. The realistic crowd simulator results

In the realistic crowd simulator the crowd moves through a
corridor which consists of a bottleneck. The crowd is initialised at
the entrance of the bottleneck. This is illustrated in Fig. 5. In this
section a comparison between the box PF and CPF is presented to
illustrate the filters operation on the realistic crowd simulator. The
SIR PF is not included since it is incapable of operating without
knowledge of the crowd and clutter measurements which are not
available in a realistic situation. The parameters for the simulations
are as follows:

• Simulation: The number of entities in the crowd: NT = 100,
Simulation time duration: Ttot = 150 s, Sampling time, Ts =

0.125 s,
• Sensor: Measurement uncertainty: σz1 = σz2 = 0.1 m, Clutter

parameters: Clutter density, ρ = 1 × 10−3, Clutter area =

Circular region with radius of 100 m about the centre of the
crowd,

• Filter parameters: Number of box particles: N = 16, Number of
CPF particles: N = 1000, Crowd centre dynamics parameters:
Velocity correlation time constant, Tcv = 30 s, Velocity
standard deviation parameters, σv,x = σv,y = 1 m/s,
Group extent dynamics parameters σa = σb = 0.1 m per
time step. Measurement uncertainties: matched to the sensor
parameters. Initialisation: Initialised in the same manner as for
the rectangular group object simulator.

The RMSE for each state, based on the ground truth extracted from
the crowd measurements, are illustrated in Fig. 6 for both the box
PF and CPF. The number of Monte Carlo runs is 50. The crowd
moves through the bottleneck in the vicinity of 60 s. Initially, the
CPF struggles to lock on to the target. Once locked, and after the
crowd has passed through the bottleneck, the RMSE for the length
corresponding to side a is increased. This is due to several crowd
entities spreading out further away from themajority of the crowd
and thus being mistaken as a clutter measurements.
7. Conclusions

This paper proposes a box PF and CPF framework for
tracking a large crowd of entities. A theoretical derivation for
the generalised likelihood function for the box PF is presented
when the state vector consists of kinematic states and extent
parameters. The likelihood is calculated based on optimisation,
by solving a constraint satisfaction problem (CSP) with multiple
measurements. An adaptive CPF is proposed able to deal with
multiple measurements, including a high level of clutter. It is
able to resolve the data association problem without the need to
estimate the clutter parameters.

The filters adaptively track the envelop of a crowd. Both filters
resolve the data association problem in an efficient way. These are
two different types of filters—the Box PF works with box particles,
whereas the CPF represents the probabilistic distributions with
point samples. The Box PF and the CPF are compared with
the generic SIR PF. The filters are both robust to sensor error
characteristics. The experiments show that the Box PF is also robust
to initialisation errors. The Box PF requires a significantly smaller
number of (box) particles than the SIR PF and the CPF.
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Appendix A. Likelihood derivation

In Section 4.2 the following approximation is presented:
U[zmk ]


h̃

xmk


Uq(xk)

xmk

dxmk ≈ Ur(xk)


zmk

. (A.1)

In this Appendix a detailed description supporting this approxima-
tion is presented.

In order to evaluate the integral, it is required to transform the
domain of the uniform distribution relating a measurement to a
measurement source. The explicit expression for the pdf of this
distribution is given by:

U[zmk ]


h̃

xmk


=


1
6σ

: h̃

xmk


∈ [zmk − 3σ, zmk + 3σ]

0 : elsewhere.
(A.2)

We define h̃−1( · ) as the inverse function of h̃(·). When the inverse
function exists, a change of variable can be straightforwardlymade
that results in:

g

xmk


=


1
6σ


d

h̃(xmk )


dxmk

 : xmk ∈ X

0 : elsewhere

(A.3)

where X = [h̃−1(zmk − 3σ), h̃−1(zmk + 3σ)]. Thus the integral in
Eq. (A.1) is directly solvable in the following form:

U[zmk ]


h̃

xmk


Uq(xk)

xmk

dxmk

=


g

xmk

Uq(xk)


xmk

dxmk . (A.4)

It is worth noting that after the transformation, the expression in
(A.3) is not necessarily uniform.
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(a) RMSE corresponding to the location of the centre
in the x-coordinate.

(b) RMSE corresponding to the velocity of the centre
in the x-coordinate.

(c) RMSE corresponding to the location of the centre
in the y-coordinate.

(d) RMSE corresponding to the velocity of the centre
in the y-coordinate.

(e) RMSE corresponding to the length of side A. (f) RMSE corresponding to the length of side B.

(g) RMSE corresponding to the crowd measurement
rate estimated by the Box PF.

(h) RMSE corresponding to the clutter measurement
rate estimated by the Box PF.

Fig. 6. RMSE of the box PF and CPF estimates for the realistic crowd simulator.
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Fig. A.1. Example solution of Eq. (A.1) with xk = 10 and ak = 10 with varying σ .

A.1. The linear case

For the linear observation model, given in (12), the expression
in (A.3) remains uniform:

g

xmk


=


1
6σ

: xmk ∈ [zmk − 3σ, zmk + 3σ]

0 : elsewhere.
(A.5)

The range of the uniform distribution is dependent on the noise
characteristics of the sensor. The range of the second uniform
distribution, Uq(xk)


xmk

, in (A.1) is dependent on the extent

parameters of the target. The integral in (A.4) only exists when
the two uniform distributions overlap. The overlapping region is
defined by:

r(xk) =


xk −

ak
2

− 3σ1 ≤ zm1,k ≤ xk +
ak
2

+ 3σ1

yk −
bk
2

− 3σ2 ≤ zm2,k ≤ yk +
bk
2

+ 3σ2.

(A.6)

The approximation in (A.1) is based upon the assumption that
the length of the extent is significantly larger than the sensor
noise characteristics. For instance, the case when the extent tends
towards an infinite lengthwith fixed sensor noise is also equivalent
to an extent with a fixed length size, and with a sensor noise
tending towards zero. In this case the uniform distribution in (A.5)
tends towards the Dirac delta function, i.e.

g

xmk


=


+∞ : xmk = zmk
0 : elsewhere. (A.7)

Consequently resulting in equivalence in (A.1):
g

xmk

Uq(xk)


xmk

dxmk = Ur(xk)


zmk

. (A.8)

In reality, the extent is not infinite, however in general, it is
considered significantly larger than the range of the sensor noise.
This is the motivating factor for the result in (A.1).

A.2. The non-linear case

A toy example is presented to illustrate the effect of a non-
linear relationship between the sensor and ameasurement source.
Considering a single dimension with the following relationship,

zmk = h̃(xmk ) + ξ1,k = (xmk )2 + ξ1,k, (A.9)
results in the following transformation:

g

xmk


=


1
2σ

xmk : xmk ∈ [


zmk − 3σ ,


zmk + 3σ ]

0 : elsewhere.
(A.10)

In this case, the function g

xmk

is clearly no longer uniform. An

example of the solution of the integration in (A.4) is illustrated in
Fig. A.1.

This example illustrates that although non-linearities may
result in the non-uniformity of g(x), when the extent parameters
are significantly larger than the measurement error noise, a
uniform approximation for Eq. (A.1) may still be valid. The effect
of greater non-linearities is a topic for future research.

Appendix B. Crowd and clutter measurement rate estimation

The clutter rate λC and the crowd rate λT can be updated based
on the assumption that they can be drawn from the Gamma distri-
bution, similarly to Granström and Orguner (2012). For λC we have

p(λC |Zk) = GAM(λC ; αC
k|k, β

C
k|k)L(αC

k|k−1, β
C
k|k−1,MC,k) (B.1)

and the updated parameters of the Gamma distribution for the
clutter measurement rate are:

αC
k|k = αC

k|k−1 + MC,k,

βC
k|k = βC

k|k−1 + 1. (B.2)

For λT the same relations as (B.2) are valid for the Gamma distribu-
tion parameters. In the box PF implementation,MT ,k = minp

S(p)
E


and for the clutter measurement rate,MC,k = Mk − MT ,k.
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