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1. Introduction  

This paper provides preparatory reading, to facilitate discussion during the 

meeting on “The Challenge of Early Crossover in Oncology Trials” to be held in 

Adelaide, Australia, in October 2014.  The paper is not exhaustive, and does not 

cover every issue associated with treatment crossover (also called treatment 

switching) in detail.  However it aims to provide an overview of the key issues 

associated with treatment crossover in the context of oncology randomised 

controlled trials (RCTs). 

In Section 2 of this paper we will define what we mean by treatment switching.  

In Section 3 we will describe why treatment switching causes a problem for the 

analysis of trials, from the perspective of a range of stakeholders.  This will take 

into account clinical development programmes and the challenges of designing 

these in the face of international variations in clinical, regulatory and coverage 

practice with respect to evidence requirements and expectations.  In Section 4 

we will introduce approaches that may be taken to adjust for treatment 

switching and in Section 5 we will summarise the performance of these methods 

in simulation studies.  This paper is supplemented by five additional papers: 

Background Paper 2 provides details on case studies submitted by Workshop 

participants; Background Papers 3-5 provide relevant guidance and 

recommendations on the use of switching adjustment methods made by 

regulatory and reimbursement agencies from around the world.  Brief 

background and introduction to these papers are provided in Sections 6 and 7 of 

this paper.  Background Paper 6 presents the proposed confidentiality rules for 
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the Workshop.  In the final section of the current paper, we highlight areas that 

have not been addressed by currently available guidance documents. 

2. Treatment Switching – definitions 

In this paper treatment switching is generally defined as the switch from control 

treatment to experimental treatment by patients randomised to the control 

group of an RCT.  It is worthy of note that some authors use the term “treatment 

crossover” rather than “treatment switching” – here we have used “switching” 

because “crossover” may evoke crossover trials, which are a different entity.  As 

defined here, treatment switching does not involve experimental group patients 

switching onto the control treatment, or patients randomised to either group 

receiving other post-study treatments.  This is in line with definitions of 

treatment switching previously given in the literature.[1]  However, what is 

classified as treatment switching may differ depending upon the perspective 

taken. 

Previous definitions of treatment switching given in the literature have focused 

upon an economic evaluation context.[1,2]  Generally an economic evaluation 

seeks to compare a state of the world in which the novel intervention is used and 

is given to a cohort of indicated patients, to a state of the world where the novel 

intervention is not used and standard treatments are received.  If an 

experimental group patient discontinues the novel therapy and receives a 

standard treatment (either that received in the control group or a separate 

standard treatment) this is likely to have occurred due to treatment failure, 

toxicity, tolerability, or adverse events.  Such events and subsequent treatment 
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switches are likely to occur in reality and therefore they form a relevant part of 

the analysis of outcomes in the state of the world in which the new treatment is 

available.  Hence, in general, for an economic evaluation we would not wish to 

adjust for these treatment changes.  Similarly, if control (or experimental) group 

patients received standard post-study therapies that do not include the 

experimental treatment, this reflects a realistic treatment pathway and we 

would not wish to adjust for this in an economic analysis.  Even if differential 

proportions of patients receive different post-study therapies this may reflect 

appropriate treatment pathways given the initial treatment.   

However, from a clinical perspective, these treatment changes might be regarded 

as treatment switching and there may be a desire to adjust for them.  It may be 

relevant to estimate the treatment effect specific to the experimental treatment, 

excluding the impact of subsequent treatments (even if the subsequent 

treatment received is commonly available).  In addition, from a clinical or an 

economic perspective, if subsequent treatments received in a trial represent 

other novel agents that are not part of the standard treatment pathway, or 

include non-standard treatments that are of the same class as the experimental 

agent, adjustment may be required because the trial results will neither isolate 

the survival impact of the new treatment, or demonstrate the impact of adding 

the new treatment to the pathway of care.   

Therefore, the treatments received during an RCT should be carefully considered 

when assessing what should be defined as treatment switching and the scope for 

adjustment.  This should include an assessment of what constitutes “standard 

care”.  In situations where several existing treatments are commonly available it 
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is likely to be difficult to ascertain the long-term effect of a novel therapy in 

isolation from potential confounding from all other available treatments.  Hence, 

generally it may be considered that switches to standard therapies do not 

represent switches that require attention and adjustment.     

Switching from the control treatment onto the experimental treatment 

represents a clear case where adjustment is required, but it may also be 

justifiable to adjust for switching onto other therapies in some situations – for 

instance, where these therapies are novel and are not commonly available.  

However it is important to note that if switches to “other” therapies are to be 

adjusted for, it may be necessary to make adjustments to survival estimates in 

the control group and the experimental group: it may appear counterintuitive to 

adjust for switches to non-study drug x in the control group but not for similar 

switches in experimental group patients.   

In this paper we generally define treatment switching as switching from control 

to experimental treatment, but we include within this definition switching in 

either the control or the experimental group to other non-standard treatments.  

3. Problems caused by treatment switching 

Treatment switching causes issues for various decision makers involved in the 

development, regulation and use of drugs, each of whom may have different 

concepts of the value delivered by drugs and hence the evidence they seek from 

clinical trials. 
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These issues all stem from the fundamental problem associated with treatment 

switching: when patients in the control group switch to – and benefit from – the 

experimental treatment a standard intention to treat (ITT) analysis (a 

comparison of groups as randomised) will underestimate the “true” survival 

benefit associated with the new treatment – that is, the benefit that would have 

been observed if switching had not been permitted.  In this paper we define bias 

as the difference (error) between the estimated treatment effect and the effect 

that would have been observed in the absence of treatment switching.  The bias 

that may be created by treatment switching and the theoretical problems that it 

creates for clinical and economic analyses are illustrated in Figure 1 (also 

presented in [1]).   

The first two rows (“Control Treatment” and “Intervention”) illustrate the 

“perfect” trial, where no treatment switching occurs.  Survival time is on the x-

axis, and in this example the new intervention extends PFS and post progression 

survival (PPS).  This results in the “True OS difference” identified in the diagram.  

In this case, a standard ITT analysis will usually give us the information that we 

need (ignoring any need for extrapolation).  However, the third row (“Control  

Intervention”) demonstrates what may happen to survival in the control group if 

treatment switching is permitted (in this case, after disease progression).  PPS is 

extended compared to the “Control Treatment” comparator, under the 

assumption that some control group patients switch and benefit from the new 

intervention after disease progression.  The result of this is that the OS difference 

observed in the RCT ITT analysis (labelled “RCT OS difference” in Figure 1) is 

smaller than the true OS difference that would have been observed if no 
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treatment switching had occurred.  The simple ITT analysis will result in bias 

equal to the difference between the “true OS difference” and the “RCT OS 

difference” when treatment switching occurs.  The extent of this bias will be 

unknown, as the true OS difference will be unobserved.  However it is clear that 

provided switching patients benefit to any extent from the new intervention, 

some bias will exist.  The extent to which estimates of the treatment effect on OS 

are likely to be confounded is likely to depend upon the crossover proportion, 

and survival times post progression.[3]   

Figure 1: The potential impact of treatment switching illustrated 

 
Notes: PFS = Progression Free Survival; PPS = Post Progression Survival; OS = Overall Survival; RCT = Randomised 

Controlled Trial 

It is worthy of note that here we focus on a situation where treatment switching 

results in the observed treatment effect being smaller than the “true” treatment 

effect – assuming that treatment switchers benefit from switching treatment.  

This may not always be the case – if a novel therapy has little benefit, or is not 

useful after disease has progressed, it is possible to envisage a situation where 

treatment switching could inadvertently benefit the experimental arm of a 
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trial.[4]  This highlights the importance of an intimate understanding of the 

mechanism of action of the new intervention, and the disease.  This does not 

alter the fundamental problem associated with treatment switching – the 

observed treatment effect is still likely to be different to the “true” treatment 

effect. 

Given this fundamental problem, it is useful to consider how this impacts upon 

patients, present and future, the decision making of manufacturers, regulators 

and health technology assessment (HTA) agencies.  

Patients 

Patients, both present and future, are fundamentally affected by treatment 

switching.  Patients who consent to take part in clinical trials do so on the 

understanding that the research being undertaken will be of benefit to future 

patients.  If evidence on the overall survival benefit associated with a new 

treatment is required to obtain regulatory approval and reimbursement, it may 

be argued that those future patients are best served by a trial that does not 

permit treatment switching.  In contrast, it may be argued that switching should 

be permitted, given that it may be possible to make good predictions of OS 

benefits by commissioning additional observational studies, through analysis of 

registry data, or by collecting enough relevant information during the trial to 

enhance the likelihood that robust adjustments can be made using statistical 

methods.  In situations where novel therapies show strong effects on 

progression-free survival at interim analyses, it is ethically problematic to refuse 

patients randomised to the control treatment access to the new therapy.[5,6,7]   
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The case for permitting switching might be affected by the properties of the 

control treatment – arguments in favour are likely to be particularly strong if the 

comparator is placebo, whereas the need for switching might be less if other 

active treatments are available.  However, from the patient perspective the issue 

remains the same – if the experimental treatment is shown to be superior to the 

control treatment at interim analyses it is in the trial participants’ interest to be 

permitted to switch treatments, if randomised to the control group.   

Manufacturers 

Treatment switching must be considered by manufacturers during drug 

development, and during the analysis phase, when the results of confounded 

RCTs are presented to regulatory and reimbursement agencies. 

For each new therapy under development, the issues associated with treatment 

switching are likely to first become apparent at the design stage of RCTs.  A 

manufacturer may decide to take one of two approaches when designing a trial 

that may or may not permit treatment switching: 

a) Despite the ethical and practical rationale for treatment switching, the 

trial will not permit treatment switching. 

b) Despite the problems associated with allowing treatment switching, the 

trial will permit treatment switching. 

Under case (a) treatment switching is not permitted and therefore trial results 

will not be confounded by it.  However, taking this position may be ethically and 

practically difficult.  Ethically, when there are no other non-palliative treatments 
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available it may be deemed inappropriate to deny control group patients the new 

treatment if interim analyses indicate a positive treatment effect.  Practically, it 

may be difficult to recruit to a trial that does not allow treatment switching.  In 

addition, pharmaceutical companies have responded to incentives associated 

with the acceptance of progression free survival (PFS) as a primary endpoint for 

drug regulatory approval by agencies such as the United States Food and Drug 

Administration (FDA) and the European Medicines Agency (EMA).[8,9]  Adopting 

PFS as the primary outcome measure in an RCT means that there is less 

motivation for pharmaceutical companies to ensure that randomised groups are 

maintained beyond disease progression.   

Given these issues, approach (b) may be taken.  Once in this position the 

manufacturer is faced with the likelihood that trial results will be confounded, 

and should therefore consider how to design the whole clinical development 

programme in such a way that will allow strong evidence on the effectiveness of 

the therapy to be produced, even in the presence of treatment switching.   

This may involve ensuring that the primary endpoint chosen for the trial is not 

affected by treatment switching – for instance by dictating that switching can 

only occur after disease progression (allowing an unconfounded analysis of PFS.  

Aside from this, several steps may be taken to improve the likelihood that useful 

estimates of overall survival can be obtained.   

Firstly, trial designers may attempt to ensure that sufficient data are collected 

during the trial to enhance the probability that adjustment methods can be 

successfully applied when the trial data are analysed: as will be described in 
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Section 4, different adjustment methods have different data requirements and 

some are particularly data-intensive, necessitating data collection during the 

trial that may be more burdensome than usual. Ensuring suitable data collection 

and pre-specifying which adjustment methods will be used represent important 

tasks for the designers of RCTs that will permit treatment switching.  

An alternative approach that may be taken to lessen the problems associated 

with treatment switching may be to conduct a second randomisation upon 

disease progression – such that it is random as to which control group patients 

switch onto the experimental treatment and which continue on a control 

therapy.[10,11]  One of the potential methods for adjusting for the impact of 

treatment switching is to consider the trial follow-up period in two segments: an 

initial period that is randomized, and a second period following disease 

progression that essentially resembles an observational study.  The “two-stage” 

adjustment method described in Section 4 attempts to address the switching 

problem by first estimating the treatment effect associated with switchers in this 

second, observational period, and then by estimating how long switchers would 

have lived for if they had not switched.  This is a useful approach, but it is 

difficult to account for the selection bias that may arise when treatment 

switching is at the discretion of the treating clinician.  A second randomisation 

after disease progression could avoid this problem, and robust estimates of 

overall survival could be obtained from control group patients who were not 

randomised to switch.  However, conducting a secondary randomisation in this 

way may not satisfy the ethical objectives of the trial, because some control 
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group patients would not be offered the opportunity to receive the novel 

therapy. 

Finally, manufacturers may decide to commission additional studies to provide 

supplementary data to aid future adjustment attempts.  For instance, 

observational data might be collected on similar patient cohorts who receive 

standard therapies, in order to provide historical case-matched estimates of 

survival in the absence of the novel therapy. 

Regulators 

Treatment switching causes confounding in the estimate of the clinical effect of 

novel therapies – therefore, it is clearly relevant for regulators.  However, as 

noted above, PFS has been accepted as a primary endpoint for drug regulatory 

approval by agencies such as the FDA and the EMA,[8,9] and therefore treatment 

switching that only occurs after disease progression may not pose a serious 

problem from a regulatory perspective.  However, it is important to note that it is 

by no means certain that PFS will be accepted as evidence sufficient for licensing.  

The FDA state that it is critical to show direct evidence of clinical benefit or 

improvement in an established surrogate endpoint for clinical benefit – whether 

an improvement in PFS is sufficient depends on the magnitude of effect and the 

risk–benefit profile of the new treatment compared with available therapies.[8]  

The EMA states that precise estimates of OS may not be needed for approval in 

situations in which a large effect on PFS, an extended expected survival after 

progression, or a clearly favourable safety profile is observed.[12]  Clearly, this 

does not mean that accurate OS estimates are never required.   
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Treatment switching will represent an important problem for regulators in 

situations where PFS is not a well-established surrogate for OS (it is worthy of 

note that the FDA states that data are usually insufficient to allow for a robust 

evaluation of the correlation between effects on PFS and on OS); where PFS 

effects are not deemed to be of sufficient magnitude; or where PFS estimates are 

themselves confounded by treatment switching.  In these situations it is likely to 

be relevant for regulatory agencies to consider adjusted estimates of the 

treatment benefit associated with the new treatment.  The impact of treatment 

switching on a selection of cases seen by regulatory agencies is highlighted by 

the case studies presented in the supplementary background paper, summarised 

in Section 6 of this report. 

Reimbursement / Health Technology Assessment Agencies 

Treatment switching is likely to cause more serious problems for health 

technology assessment (HTA) agencies than for licensing bodies.  HTA agencies 

generally use economic evaluation to provide estimates of the cost-effectiveness 

of new treatments – allowing decisions to be made upon whether novel 

therapies represent value for money.  To reflect the cost-effectiveness of treating 

an entire disease population with a novel treatment, and to take into account all 

the potential benefits and costs associated with providing the new treatment, a 

life-time horizon is generally advocated in economic evaluations, especially for 

interventions that impact upon survival.[13,14,15,16] Therefore, whilst 

providing accurate estimates of an OS advantage may not be essential for gaining 

a license,  accurate estimates of the treatment effect on OS are almost always 

required by HTA agencies. 
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In the presence of treatment switching, an economic evaluation that relies upon 

this ITT analysis would produce inaccurate cost-effectiveness results.  In the case 

where control group patients benefit from the experimental treatment the 

survival advantage of the novel therapy would be underestimated and the 

incremental cost effectiveness ratio (ICER) would likely be over-estimated 

(although this would depend upon whether the costs of the experimental 

treatment are incorporated for treatment switchers in the economic model, and 

the cost-effectiveness of the experimental treatment in switchers).  As a result, 

inappropriate resource allocation decisions may be made.  Therefore, in the vast 

majority of cases in which treatment switching occurs, it is likely to be relevant 

for reimbursement/HTA agencies to consider adjusted estimates of the 

treatment benefit associated with the new treatment, and to assess the 

sensitivity of cost-effectiveness results to these adjustments.  The impact of 

treatment switching on a selection of cases seen by HTA agencies is highlighted 

by the case studies presented in the supplementary background paper, 

summarised in Section 6 of this report.  

4. Treatment switching adjustment methods 

In this section we introduce treatment switching adjustment methods.  We begin 

with relatively simple methods, before moving on to more complex methods.  

The simpler methods are more commonly used in HTA, but more complex 

methods are beginning to be used more regularly.[1]  Here we discuss the key 

assumptions and limitations of the key methods.  We focus on the key principles 

of the methods rather than their mathematics – though further details on the 

more complex methods are provided in Appendix A. 
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Simple methods 

Intention to treat 

An ITT analysis does not attempt to adjust for treatment switching.  Groups are 

compared as randomised, and thus the randomisation-balance of the trial is 

respected.  The ITT analysis represents a valid comparison of randomised 

groups, but in the presence of treatment switching this is unlikely to be what is 

required for an economic evaluation because the “true” survival benefit 

associated with the novel intervention will be diluted due to the switching of 

control group patients onto the novel therapy.   

Per protocol – excluding and censoring switchers 

Per protocol (PP) analyses have been commonly used in previous HTAs.[1]  Data 

from patients that switch are either excluded entirely from the analysis, or are 

censored at the point of the switch.  Such analyses are prone to selection bias 

because the randomisation balance between groups is broken if switching is 

associated with prognostic patient characteristics – for instance, if patients with 

either good or poor prognosis are more likely to switch.[17,18]  This is highly 

likely in the case of treatment switching in clinical trials – clinicians decide 

whether it is appropriate for individual patients to switch and this decision will 

be made based upon patient characteristics rather than being random.  

Complex methods  

Inverse Probability of Censoring Weights 
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The IPCW method has been used in recent HTAs.[19,20]  It represents an 

approach for adjusting estimates of a treatment effect in the presence of any type 

of informative censoring.  In the context of treatment switching, patients are 

artificially censored at the time of switch, and remaining observations are 

weighted based upon covariate values and a model of the probability of being 

censored.  This allows patients who have not been artificially censored to be 

weighted in order to reflect their similarities to patients who have been censored 

in an attempt to remove selection bias.   

The key assumption made by the IPCW method is the “no unmeasured 

confounders” assumption – that is, data must be available on all baseline and 

time-dependent prognostic factors for mortality that independently predict 

informative censoring (switching) and models of censoring risk must be 

correctly specified.[21]  In practice, this is unlikely to be perfectly true, but the 

method is likely to work adequately if the “no unmeasured confounders” 

assumption is approximately true – that is, there are no important independent 

predictors missing.  If this is the case, the selection bias associated with the 

dependence between censoring and failure can be corrected for by replacing the 

Kaplan-Meier estimator, log-rank test, and Cox partial likelihood estimator of the 

hazard ratio (HR) with their IPCW versions.[21]   

The “no unmeasured confounders” assumption represents a key limitation of the 

IPCW method.  It cannot be tested using the observed data [22,23] and is 

particularly problematic in an RCT context.  The IPCW method represents a type 

of Marginal Structural Model (MSM), which were originally developed for use 

with observational data.[24,25]  Typically RCT datasets are much smaller than 
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observational datasets and when fewer data are available (particularly on 

control group patients who do not switch) the IPCW method may become less 

stable and confidence intervals may become wide.  In addition, some key 

predictors of treatment switching are usually not collected in RCTs (such as 

patient preference for switching) and often data collection on key indicators is 

stopped at some point (e.g. upon treatment discontinuation or disease 

progression), which hampers the applicability of the IPCW method.  Also, the 

IPCW method cannot work if there are levels of any covariates which ensure 

(that is, the probability equals 1) treatment switching will occur.[23,24,25]     

Although the “no unmeasured confounders” assumption cannot be tested, an 

assessment of the measured covariates alongside findings from previous studies 

in similar disease areas combined with an elicitation of expert clinical opinion 

may provide valuable information.  The treatment switching mechanism within 

the trial of interest should also be explored in order to ascertain how and why 

treatment switching decisions were made, as this may provide information upon 

whether data on key switching indicators were collected.  Linked to this data 

issue is that of sample size and event numbers.  The IPCW method bases its 

adjustment on the survival experiences of control group patients who do not 

switch treatments; if almost all patients switch, and/or very few events are 

observed in patients who do not switch, the method is unlikely to perform 

reliably. 

Rank Preserving Structural Failure Time Model 
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The RPSFTM method was designed specifically for an RCT context and has been 

used recently in HTAs.[19,20,26]  It uses a counterfactual framework to estimate 

the causal effect of the treatment in question,[27] where counterfactual survival 

times refer to those that would have been observed if no treatment had been 

given.  It is assumed that counterfactual survival times are independent of 

treatment group and g-estimation is used to determine a value for the treatment 

effect which satisfies this constraint.   

The RPSFTM does not rely upon the “no unmeasured confounders” assumption 

and identifies the treatment effect using only the randomisation of the trial, 

observed survival and observed treatment history.  It is assumed that the 

treatment effect (an “acceleration factor”, or “time ratio”) is equal (relative to the 

time for which the treatment is taken) for all patients no matter when the 

treatment is received (the “common treatment effect” assumption), and that the 

randomisation of the trial means that there is only random variation between 

treatment groups at baseline, apart from treatment allocated – untreated 

survival times must be independent of the randomised treatment group.[27]  

This randomisation assumption should be reasonable in the context of an RCT, 

but the potential remains for important differences at baseline in small and in 

larger trials.[28]  It is therefore relevant to note that it is possible to adjust for 

baseline covariates within an RPSFTM analysis, which is useful to increase 

power.[29]   

The clinical and biological plausibility of the “common treatment effect” 

assumption is more problematic.  If patients who switch on to the experimental 

treatment part way through the trial receive a different treatment effect 
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compared to patients originally randomised to the experimental group, the 

RPSFTM estimate of the treatment effect received by patients in the 

experimental group will be biased.  Given that treatment switching is often only 

permitted after disease progression – at which time the capacity for a patient to 

benefit may be different compared to pre-progression – the “common treatment 

effect” assumption may not be clinically plausible.  As for the “no unmeasured 

confounders” assumption, it is unlikely that the “common treatment effect” 

assumption will ever be exactly true.  However, of more concern is whether the 

assumption is likely to be approximately true – that is, that the treatment effect 

received by switchers can at least be expected to be similar to the effect received 

by patients initially randomised to the experimental group.  The problems 

associated with the “common treatment effect” assumption are compounded by 

the fact that it is not possible to definitively test the assumption:  while some 

assessment may be made using trial data (by, for example, estimating the 

treatment effect received by switchers compared to non-switchers) such 

analyses are likely to be prone to time-dependent confounding and are therefore 

unreliable.  Hence understanding the mechanism of action of the intervention 

and eliciting clinical expert opinion on its likely effectiveness at different points 

of the disease progression pathway is important.   

 

In an attempt to relax the “common treatment effect” assumption, analysts have 

attempted to apply a multi-parameter version of the RPSFTM.  However these 

have not been successful, with meaningful point estimates for causal effects 

difficult to determine.[22,30,31]   
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Use of the RPSFTM method is also made problematic if the comparator 

treatment used in the RCT is active.  The RPSFTM counterfactual survival model 

requires that patients are either “on treatment” or “off treatment” at any one 

time.  If patients in the control group receive an active treatment followed by 

supportive care upon treatment failure the “off treatment” category represents 

more than one type of treatment and the counterfactual survival model is not 

appropriate unless additional causal parameters are added to the model, but, as 

stated above, attempts to apply multi-parameter RPSFTMs have not been 

successful.  A standard RPSFTM could still be applied, but several important 

assumptions about treatment strategies and their effectiveness in the 

experimental and control groups would be required.[1]  Linked to this, the 

RPSFTM counterfactual survival model assumes that the treatment effect is only 

received while a patient is “on treatment” – it disappears as soon as treatment is 

discontinued.  The clinical plausibility of this assumption should be considered.  

If a continuing treatment effect is expected the RPSFTM or IPE methods could be 

applied assuming a lagged treatment effect, or on a “treatment group” basis – 

where patients in the experimental group are always considered to be “on 

treatment” and patients that switch remain “on treatment” from the time of 

switch until death.  This analysis ignores treatment discontinuation times and 

requires there to be a common treatment effect associated with the sequence of 

treatments received by patients randomised to the experimental group and the 

sequence of treatments received by switchers after the point of switch.  Any 

benefits associated with post study treatments will be attributed to the 

experimental treatment, though similarly any benefits from post-study 

treatments received by control group non-switchers would be attributed to the 
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control group.  If the post study treatments received in all groups represent 

realistic treatment pathways this approach may appropriately address the 

economic evaluation decision problem – particularly if the costs of the post-

study treatments are also incorporated within the economic model.  Hence such 

an approach might be considered if the comparator is active, or if a continuing 

treatment effect is expected.  

An additional limitation associated with the RPSFTM method involves 

recensoring.  White et al. demonstrate that recensoring is required in order to 

avoid bias in the estimation of counterfactual survival times.[30]  Recensoring is 

required because a positive or negative treatment effect may increase or 

decrease the probability that the survival time of an individual is censored, and, 

where treatment switching occurs, treatment received is likely to be associated 

with prognosis.  This means that counterfactual censoring times may be related 

to prognosis and may therefore be informative (see Appendix A for more 

details).[30]  Recensoring involves data being recensored at an earlier time-

point to avoid informative censoring and is therefore associated with a loss of 

longer-term survival information.  Some observed events will become censored 

if the recensoring time is shorter than the counterfactual event time.  The time-

point at which recensoring occurs is related to the magnitude of the estimated 

treatment effect – the larger the treatment effect the earlier the recensoring 

time-point.  Loss of long-term information is likely to be detrimental to the 

extrapolation of survival data, which is of particular importance in the context of 

HTA and economic evaluation due to the requirement to estimate the mean 

survival advantages associated with novel interventions.[13,14,15,16,32,33]  In 



23 
 

addition, recensoring may lead to biased estimates of the “average” treatment 

effect in circumstances where the treatment effect changes over time, because 

longer term data on the effect of treatment may be lost.   

Finally, it is worthy of note that the RPSFTM typically loses power in the 

presence of treatment switching, like the ITT analysis.  By design, the RPSFTM 

maintains the significance level associated with the ITT analysis, and therefore 

confidence intervals are often relatively wide.  In comparison, the IPCW is not 

restricted in this way, but IPCW confidence intervals may also be wide if data are 

relatively sparse.   

Iterative Parameter Estimation algorithm 

Branson and Whitehead (2002) extended the RPSFTM method using parametric 

methods, developing a novel iterative parameter estimation (IPE) 

procedure.[34]  The same accelerated failure time model is used, but a 

parametric failure time model is fitted to the original, unadjusted ITT data to 

obtain an initial estimate of the treatment effect.  The failure times of switching 

patients are then re-estimated using this, and this iterative procedure continues 

until the new estimate is very close to the previous estimate, at which point the 

process is said to have converged.[34]   

The IPE procedure makes similar assumptions to the RPSFTM method – for 

example the randomisation assumption is made, as is the “common treatment 

effect” assumption.  Therefore, similar limitations exist, including problems with 

multi-parameter models, active trial parameters and recensoring.  An additional 

assumption is that survival times follow a parametric distribution, and thus it is 
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important to identify suitable parametric models, which in itself can be 

problematic.[32]   

Alternative “two-stage” methods 

In addition to the “standard” adjustment methods described so far, “two-stage” 

methods might be considered.  To our knowledge, these have not yet been used 

in HTA, but have been described recently in the literature.[1]  These methods 

involve first estimating a treatment effect specific to switching patients, and then 

using this to derive a counterfactual dataset unaffected by switching.  Then a 

treatment effect specific to patients randomised to the experimental group can 

be estimated.  Robins and Greenland (1994) and Yamaguchi and Ohashi (2004) 

have previously used such an approach, making use of a structural nested failure 

time model (SNM) with g-estimation to estimate the treatment effect in 

switchers.[22,23]  The SNM is essentially an observational version of the 

RPSFTM and attempts to account for time dependent confounding using the “no 

unmeasured confounders” assumption.  It therefore has similar limitations to the 

IPCW.   

A previously unused two-stage approach that does not rely upon g-estimation 

may provide a good fit to the treatment switching mechanism often observed in 

oncology RCTs.  When switching is only permitted after disease progression, the 

time of progression can be used as a secondary baseline.  Using this secondary 

baseline a parametric accelerated failure time model (such as a Weibull model) 

that includes covariates measured at the time of progression can be fitted to the 

post-progression control group data.  This model could then be used to estimate 
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the effect of switching to the treatment post-progression, by contrasting post-

progression survival times in those control group patients who switch post 

progression with those who do not.  The resulting acceleration factor can then be 

used to “shrink” the survival times of switching patients in order to derive a 

counterfactual dataset unaffected by switching.   

This method effectively recognises that the clinical trial is randomised up until 

the point of disease progression, but beyond that point it essentially becomes an 

observational study.  This is a simplification of the method used by Robins and 

Greenland[22] and Yamaguchi and Ohashi[23] and is theoretically inferior to 

these because no attempt is made to adjust for time-dependent confounding 

between the point of disease progression and the time of treatment switch – and 

therefore a strong assumption is made that there is no time-dependent 

confounding between these time-points.  However, this simplified method 

remains relevant due to the convergence issues which have been shown to lead 

the more complex two-stage SNM methods to perform poorly in simulation 

studies, as will be described in Section 5 of this paper.  In addition, if switching is 

likely to happen soon after disease progression any time-dependent confounding 

associated with the lag between disease progression and treatment switch would 

be small.   

The simplified two-stage method may not be generalisable because it is reliant 

on the ability to identify a secondary baseline.  The key limitation of the method 

relates to its assumption of no time-dependent confounding between the point of 

disease progression and the time of treatment switch, but in addition to this 

other potential limitations exist.  Firstly, the method requires that the “no 
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unmeasured confounders” assumption holds at the point of the secondary 

baseline – hence data must be available on all baseline and time-dependent 

prognostic factors for mortality that independently predict switching.  In 

addition, because counterfactual survival times are estimated recensoring is 

required, which may lead to inaccurate estimates of the average long-term 

treatment effect if the treatment effect changes over time.  However, in the 

method’s favour, it does not require data to be collected on prognostic factors or 

predictors of switching to be collected at time-points other than baseline and the 

secondary baseline, and hence data-collection requirements are less 

burdensome than those associated with the IPCW.  Finally, the method does not 

require the “common treatment effect” assumption, the key limitation associated 

with RPSFTM and IPE methods.   

Use of external data 

In some instances it might be possible to estimate OS based upon external data, 

rather than relying upon confounded RCT data.  External trials that incorporated 

the comparator treatment and that were not confounded by treatment switching 

may exist, or long-term registry data for the disease in question may be available.  

While such data sources are valuable, the use of external data may be associated 

with important limitations.  Patient populations may differ between different 

trials due to inclusion criteria, and standards of care may differ if the trials were 

undertaken at different times and in different locations.  Definitions of disease 

events may also differ, making it difficult to draw appropriate comparisons 

between trials.  These issues are likely to be exacerbated further if the external 

data source is a registry rather than a clinical trial.  If patient-level data are 
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available from the external datasets it may be possible to adjust for differences in 

patient characteristics, allowing more accurate estimates of what counterfactual 

survival would have been in the control group of the RCT under investigation 

(such an approach was taken in Technology Appraisal 171 conducted by NICE on 

lenalidomide for multiple myeloma[35]).  However, this requires that all 

important prognostic variables are available from both the novel clinical trial, 

and the external trial(s).  In the absence of these, different trial populations 

cannot be adjusted appropriately for comparison.  Finally, it may be the case that 

relevant external datasets do not exist, or that the patient-level data associated 

with these are not available, hence using external data to adjust survival time 

estimates in the presence of treatment switching is unlikely to represent a 

generalisable approach.     

However, given the problems created by treatment switching, and the limitations 

associated with statistical adjustment approaches, attempting to obtain external 

data to inform estimates of long-term survival represents a worthwhile 

approach.  Manufacturers may consider designing their clinical development 

programme to facilitate the collection of such data.  If steps were taken to 

enhance the probability that suitable external data were available, the use of 

such data to estimate what survival times would have been in the absence of 

treatment switching could become a much more reliable and acceptable 

approach. 

 

 



28 
 

5. Results of simulation studies 

Several simulation studies have been undertaken to assess the performance of 

treatment switching adjustment methods in a range of scenarios.  In this section 

we briefly summarise the key results of these. 

Morden et al. demonstrated that in circumstances where the “common treatment 

effect” assumption holds, RPSFTM and IPE methods perform very well, 

producing very little bias in their estimation of the “true” treatment effect.[2]  In 

comparison, naïve adjustment methods that involved either censoring crossover 

patients at the point of treatment switch, or excluding them entirely from the 

analysis, often produced very high levels of bias.  Although useful, the study 

conducted by Morden et al. was limited because it only considered scenarios in 

which the “common treatment effect” assumption held, did not consider time-

dependent treatment effects, and did not include IPCW or two-stage methods.   

In an extension to the Morden et al. study Latimer et al. conducted a more 

extensive simulation study that evaluated the performance of treatment 

switching adjustment methods across a wide range of scenarios.[1,36]  A joint 

longitudinal and survival model was used to simultaneously generate a time-

dependent prognostic covariate and survival times.  Parameter values were 

selected such that simulated survival times were reflective of the type of data 

often observed in metastatic cancer trials.  Different levels were tested for 

switching proportion, treatment effect, and censoring, as were different 

switching mechanisms.  Results confirmed those found by Morden et al. – that is, 

RPSFTM and IPE methods perform very well when the “common treatment 
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effect” assumption holds, producing bias equivalent to approximately 0.05-

1.02% of the treatment effect, while simple censoring and exclusion methods 

produce very high levels of bias (up to 171.69% of the treatment effect).  In 

addition to this Latimer et al. provided evidence on the comparative 

performance of relevant methods in scenarios in which their key assumptions 

did not hold.[36]   

The IPCW method represented a substantial improvement compared to simple 

methods (bias as a proportion of the treatment effect often in the region of 5-

9%), but produced higher bias than RPSFTM and IPE methods when the 

“common treatment effect” assumption held.[36]  This was likely to be due to the 

error associated with applying an observational-based method to a relatively 

small RCT dataset (with simulated sample size 500), and was in line with 

findings in a previous simulation study reported by Howe et al. that focused 

upon the IPCW.[37]  Bias associated with the IPCW method became much higher 

(bias as a proportion of the treatment effect often in the region of 30-45%) in 

scenarios in which the proportion of control group patients that switched 

treatments increased to approximately 90%, leaving approximately 20 patients 

in the control group who did not switch.[36]  It was also found that excluding a 

covariate that influenced the probability of treatment switching (thus violating 

the “no unmeasured confounders” assumption) only had a minimal impact on 

the bias produced by the method – however, this was likely to be due to the high 

level of correlation between the simulated prognostic covariates.  The IPCW 

method resulted in substantially lower bias than the simple censoring method, 

which demonstrated the importance of the “no unmeasured confounders” 
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assumption, as the IPCW reduces to simple censoring when all confounders are 

unmeasured. 

In scenarios in which the treatment effect received by switchers was 

approximately 15% lower than the average effect received by patients initially 

randomised to the experimental group (violating the “common treatment effect” 

assumption) it was found that the RPSFTM, IPE and IPCW methods produced 

similar levels of bias in their estimates of the treatment effect, with all producing 

bias equivalent to approximately 5-10% of the treatment effect.[36]  In scenarios 

where the treatment effect received by switchers was approximately 25% lower 

than the average effect received by patients initially randomised to the 

experimental group the IPCW method produced lower bias than the RPSFTM and 

IPE methods (which often produced bias of over 10%) and in these scenarios the 

ITT analysis often produced least bias (0-5%) if the treatment effect was 

relatively low (equivalent to a hazard ratio (HR) of approximately 0.75 in 

experimental group patients).[36]  This is logical, because in these scenarios 

patients who switch receive very little benefit from the experimental treatment.    

In addition to the “standard” treatment switching adjustment methods described 

so far, Latimer et al. tested two “two-stage” methods – a structural nested model 

(SNM) with g-estimation and a simplified two-stage approach that used a 

Weibull parametric model.  The two-stage SNM performed relatively poorly, 

particularly when switching proportions were very high.[36]  The simple 

Weibull two-stage method performed much better, producing relatively low bias 

across all scenarios.  Bias was higher in scenarios with very high switching 

proportions, but even in these rarely exceeded 6%.  The simplified two-stage 
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method generally produced lower bias and was much less sensitive to the 

switching proportion than the IPCW method – perhaps reflecting its lower data 

and modelling requirements.  While RPSFTM and IPE methods produced 

marginally less bias than the two-stage Weibull method when the “common 

treatment effect” assumption held, the opposite was true when that assumption 

was violated.   

However, the authors note that the results associated with the simple two-stage 

Weibull method should be interpreted with some caution because it was well 

suited to the switching mechanism incorporated within the simulation study – in 

particular, switching could only occur soon after disease progression.[36]  

However, it is noteworthy that the switching mechanism simulated was similar 

to that often observed in metastatic cancer trials, and thus the good results 

associated with the simple two-stage Weibull method should not be ignored.  

This method is appears to be worthy of consideration in situations in which 

treatment switching can only occur after an identifiable secondary baseline, 

where switching occurs soon after that secondary baseline, where data on 

important prognostic factors are available at that secondary baseline and where 

RPSFTM, IPE and IPCW methods seem inappropriate.   

In a follow-up to their first simulation study Latimer et al. undertook a second 

study that tested different data generation models for the simulated data, and 

which considered further scenarios based around reduced switching 

proportions and sample sizes, and higher censoring proportions, in order to 

address limitations associated with their initial study.[38]  In general, results 

supported those found in the authors’ previous study.  New findings were that all 
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methods generally produced higher bias when the simulated sample size was 

smaller, when the censoring proportion was higher, and when the switching 

proportion was lower – although the effects of these changes were often small.  

The authors note, however, that the adjustment methods are reliant on the 

absolute number of control group patients who do not switch treatments – and 

when this number becomes very small adjustment methods become much more 

prone to bias.  In trials with lower sample sizes critically low numbers of non-

switching control group patients will be reached with lower switching 

proportions.  For instance, with a control group sample size of 200, a switching 

proportion of 90% leaves 20 patients in the control group who do not switch.  

With a control group sample size of 100 the same number of control group non-

switchers is left with a switching proportion of only 80%.   

Importantly, the authors noted that levels of bias were generally lower in their 

follow-up study, compared to those found in their initial study; for the RPSFTM, 

IPE, IPCW and two-stage methods levels of bias rarely exceeded 2-3% of the 

treatment effect across all scenarios.[38]  A key reason for this was the lower 

switching proportions simulated (20-50%, compared to 50-95% in the initial 

study), but the authors also noted that differences in the size of the acceleration 

factor were important.  Survival time treatment effects are usually summarised 

as a hazard ratio (HR), which is the ratio of the hazards of the event of interest in 

the control group and the experimental group.  An HR of lower than 1 means that 

being randomised to the experimental group reduces the hazard of the event.  

Survival time treatment effects can also be presented as an acceleration factor 

(AF), which works on the time scale and denotes the extent to which time to the 
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event of interest is accelerated.  An AF of greater than 1 means that being 

randomised to the experimental group extends the time until the event occurs. 

In both their simulation studies, Latimer et al. aimed to investigate two levels of 

treatment effect – scenarios in which the treatment effect on overall survival was 

high (equivalent to an average HR of 0.50), and scenarios where the effect was 

more moderate (equivalent to an average HR of 0.75).[36,38]  However, the 

different data generating models used in the two studies meant that the 

simulated survival time distributions had different shapes – which makes it 

possible for the same hazard ratio to be associated with a substantially different 

acceleration factor.  In the first simulation study the average AF across all 

scenarios varied between 1.44 and 3.58, and was over 2.0 in 60 of the 72 

scenarios.  In the second study the AF across scenarios ranged between 1.22 and 

1.78, despite the fact that data were simulated that produced similar average 

hazard ratios in the two studies.   

Latimer et al.  note that both of their simulation studies indicate that the 

performance of each of the switching adjustment methods is affected by the size 

of the treatment effect – particularly the IPCW, which produced more bias when 

the treatment effect was higher.[38]  The authors suggest that due to this, it is 

important to assess the size of the treatment effect not only in terms of a hazard 

ratio, but also in terms of an acceleration factor, since this might more accurately 

predict the scope for bias associated with the adjustment methods.  For instance, 

in a situation where the hazard ratio is in the region of 0.50, the scope for bias in 

adjustment methods may appear to be relatively high.  However, if the associated 
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acceleration factor is only around 1.5, the scope for bias is considerably less than 

if the AF is greater than 2.0. 

A consideration of the AF is particularly important for RPSFTM and IPE methods, 

due to their use of an accelerated failure time counterfactual survival model and 

their reliance on the “common treatment effect” assumption.  These methods 

result in bias when the absolute difference in the treatment effect received by 

treatment switchers and patients initially randomised to the experimental group 

is important.  Because the methods use an accelerated failure time model 

framework, the common treatment effect referred to relates to an acceleration 

factor.  Clearly, the scope for an important violation of the common treatment 

effect assumption reduces as the AF tends towards 1.0. 

To highlight this, in the second simulation study reported by Latimer et al. it was 

found that the RPSFTM and IPE methods generally produced low (in the region 

of 1-2%) bias, and slightly less bias than the IPCW methods even when the 

treatment effect received by switchers was 20% lower than that received by 

patients randomised to the experimental group.  This is likely to be because the 

true AF was relatively low compared to the authors’ first simulation study, 

where it was found that decrements in the treatment effect of 20% or more were 

associated with very significant increases in bias associated with the RPSFTM 

and IPE methods.   

Summary 

To summarise, simulation studies have shown that a number of factors need to 

be taken into account when assessing the likely performance of treatment 
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switching adjustment methods.[2.36,37,38]  RPSFTM and IPE methods are likely 

to produce very low levels of bias when the “common treatment effect” 

assumption holds, and even if this assumption is unlikely to hold these methods 

may produce low levels of bias if the acceleration factor associated with 

treatment is likely to be low (in the region of 1-1.8).  However, if the acceleration 

factor is higher (in the region of 2.0-4.0) and switchers are likely to receive a 

reduced treatment effect, bias associated with the RPSFTM and IPE methods may 

increase substantially.  

The IPCW method is generally prone to higher levels of bias than the RPSFTM 

methods when applied to relatively small RCT datasets (with sample size 

approximately 300-500).  When switching proportions are very high, leaving less 

than approximately 20 patients in the control group who do not switch 

treatments, the IPCW becomes prone to much higher levels of bias.  

Simple two-stage methods appear to produce low levels of bias across a wide-

range of scenarios, and are much less sensitive to the switching proportion than 

the IPCW.  However, this finding is restricted to scenarios in which switching can 

only happen very soon after disease progression. 

Simple adjustment approaches, such as censoring switchers at the point of 

switch, or excluding them entirely from the analysis, are prone to extreme bias 

when switching is associated with prognosis.   
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6. Case studies 

Workshop participants have kindly submitted case studies, to provide real-world 

examples of the impact of treatment switching.  The submitted case studies are 

summarised briefly here; more details on each are provided in Background 

Paper 2, which consists of detailed report templates completed for each case 

study by the workshop participants.  

Overview of the submitted case studies 

Eight case studies were submitted by the meeting participants to the scientific 

committee. A brief summary of each case study is given below. Case studies 3, 4 

and 8 have been selected for focussed discussion during the meeting.  These 

provide a mix of trial characteristics with respect to the disease, comparator 

treatment and the switching proportion.  These cases also cover a variety of 

adjustment methods, including some use of external datasets.   The issue of 

switching to “other” post-study treatments is also highlighted, and these studies 

allow us to see the response of a variety of agencies to the use of adjustment 

methods. 

Whilst cases (iii), (iv) and (viii) will provide the focus of the case study session 

during the workshop, additional issues highlighted by the other case studies will 

also be highlighted.  These include: 

 Difficulties obtaining the clinical data to specifically perform adjustment 

analysis that had not been pre-specified and would be used only for 

reimbursement issues (case study (vii)).   
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 Adjustment methods were presented to the HTA body but not the 

regulator in the dabrafenib examples (case studies (i) and (ii)).   

 Problems associated with trial design including the lack of long term 

survival data / power to compare survival outcomes, rather than the 

crossover (case studies (v) and (vi)). 

 

i. Dabrafenib for advanced melanoma.  Submitted to Therapeutic Goods 

Administration (TGA) Australia, September 2012.  Decision made August 

2013. 

Dabrafenib is a treatment for advanced melanoma. In the BREAK-3 trial, patients 

were randomised 3:1 to dabrafenib (n=187) and dacarbazine (n=63).  Around 

50% of the patients crossed over onto dabrafenib.  The initial trial design 

allowed patients to crossover after disease progression.  In this case study there 

was no attempt to apply complex statistical methods to correct for bias created 

by treatment switching.  The analysis was based upon PFS as the primary end 

point and relies upon the assumption that OS benefits are consistent with PFS 

benefits.  The switching protocol was amended during the trial to allow patients 

to switch before disease progression, and therefore estimated PFS treatment 

effects may also be subject to crossover bias. 

ii. Dabrafenib for advanced melanoma.  Submitted to Institut fur Qualitat 

und Wirtschaftlichkeit im Gesundheitswesen (IQWiG), Germany, October 

2013.  Decision made January 2014  
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This case study is also based on the BREAK-3 trial (dabrafenib vs dacarbazine) 

therefore the characteristics of the trial data are identical to case study (i).  In 

this case study, a naïve adjustment which censored patients at the point of 

crossover was applied.  More complex RPSFTM and IPE methods were also used.  

The IPCW was not applied because no events were observed in the non-

switching control group patients.  A key issue in this case study was that the 

crossover adjustment analyses were not accepted by the HTA agency because 

the underlying methodological assumptions were deemed to be strong and not 

justified in the manufacturer’s dossier.  

iii. Everolimus for the second-line treatment of advanced renal cell 

carcinoma.  Submitted to the National Institute for Health and Care 

Excellence (NICE) (TA219), England and Wales, October 2009.  Decision 

made November 2010 

In the RECORD-1 trial, patients were randomised 2:1 to everolimus (n=277) and 

placebo (n=139).   81% of placebo patients had switched onto everolimus at the 

most recent analysis.  Crossover was allowed after a decision to terminate the 

double-blind phase of the trial at an interim analysis.  IPCW and RPSFTM 

analyses were performed.  The manufacturer favoured the IPCW method, but it 

was incorrectly applied in the initial analysis and some of the model’s key 

assumptions were not considered.  The independent Evidence Review Group 

preferred the RPSFTM, a preference which was justified on the basis that the “no 

unmeasured confounders” assumption required by the IPCW could not be 

satisfied.  The fact that the RPSFTM had been used in previous submissions acted 

as further justification, but  the validity of the key assumptions in the context of 
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this trial were not discussed.  The NICE Appraisal Committee agreed that it was 

appropriate to adjust the ITT analysis to control for crossover, but noted that 

this increased the level of uncertainty present in the analysis.  The Appraisal 

involved 5 Appraisal Committee meetings, compared to the usual 2. 

iv. Vemurafenib for metastatic melanoma.  Latest data-cut December 2012.  

Roche 

In the BRIM-3 trial, patients were randomised 1:1 to vemurafenib (n=337) and 

dacarbazine (n=338).  Switching to vemurafenib was permitted after the 

December 2010 interim analysis showed evidence of efficacy.  Although disease 

progression was not specified as a pre-requisite for switching, most crossover 

patients had progressed prior to their switch.  At the most recent data-cut 

(December 2012) 25% of control group patients had switched to vermurafenib, 

and 34% had switched to any BRAF inhibitor (including vemurafenib).  Making 

adjustments for switches to other BRAF inhibitors was a methodological issue 

highlighted by the manufacturer.  The methods applied to adjust for crossover 

were censoring at time of crossover, a “discount” method, and the RPSFTM.  

Censoring was argued to be non-informative because the data monitoring board 

placed no restrictions on when patients could cross over.  The discount method 

involved presenting five OS analyses with a range of assumptions about the 

treatment effect after switching.  The acceptance of the adjustment methods 

applied varied internationally across different regulatory and HTA bodies. 
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v. Ruxolitinib for myelofibrosis.  Submitted to the pan-Canadian Oncology 

Drug Review (pCODR), Canada, February 2012.  Decision made August 

2012 

This case study describes 2 trials, COMFORT-1 and COMFORT-2.  The COMFORT-

1 trial compared ruxolitninib (n=155) to placebo (n=154) and COMFORT-2 

compared ruxolitninib (n=146) to best available care (n=73).  Both trial designs 

permitted crossover at a specified disease progression stage relative to the 

baseline.  Crossover was also permitted in the COMFORT-2 trial after the efficacy 

of ruxolitinib had been demonstrated.  A naïve crossover adjustment was applied 

to COMFORT- 1; patients who crossed over were deemed to have had no 

response to initial treatment, but no adjustment for crossover was made in 

COMFORT- 2.  The HTA agency Methods Panel conducted a critical appraisal of a 

matched historical control analysis to assess long-term efficacy, survival and 

safety of ruxolitinib.  The panel noted that due to limitations, conclusions from 

this should be drawn with caution.  It appears that the main problem for the HTA 

agency was the lack of evidence of survival benefit from the key trials.  One cause 

of this was crossover, but also neither trial was designed to detect a survival 

difference.  The Appraisal Committee was unable to conclude that ruxlotinib 

improves OS.  

vi. Everolimus for pancreatic neuroendocrine tumours.  Submitted to 

pCODR, Canada, February 2012.  Decision made August 2012 

In the RADIANT-3 trial, patients were randomised 1:1 to everolimus (n=207) or 

placebo (n=203).  Crossover was included in the trial design and was not 
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permitted until the disease had progressed.  Around 75% of control group 

patients switched onto everolimus after disease progression.  No adjustment 

methods were applied to correct for the crossover bias in OS estimates.  Other 

post-progression treatments also presented an issue – 37.7% of patients in the 

everolimus arm received antineoplastic therapies, compared to 28.6% in the 

control arm.  The HTA agency noted that OS estimates would be confounded by 

crossover, and also that the short duration of the trial presented limitations in 

terms of modelling the potential long-term benefits in OS and PFS. 

vii. Sunitinib for second line treatment of gastrointestinal stromal tumour.  

Reimbursement submission to Pharmaceutical Benefits Advisory 

Committee (PBAC), Australia, 2009.  Pfizer 

In the A618-1004 trial, patients were randomised 2:1 to sunitinib (n=243) or 

placebo (n=118).  87% of placebo patients switched onto sunitinib.  Crossover 

was planned to occur following disease progression, but at the time of the first 

interim analysis the data safety monitoring committee recommended that all 

patients who remained on placebo should switch on to sunitinib, based upon its 

superiority.  At the first interim analysis, the OS HR was 0.49, compared to 0.88 

at the final analysis.  In the PBAC submission, the manufacturer presented 

several analyses.  The base case was the interim analysis.  This was supported by 

an RPSFTM analysis (HR=0.51); analyses of the HR at an early time point and at 

points through time (with crossover proportions gradually increasing); an OS 

Kaplan-Meier curve presented based upon 15 patients who did not crossover; 

and external data to compare median OS estimates.  This multi-faceted approach 

appeared to be accepted by PBAC.  An interesting practical issue faced by the 
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manufacturer was obtaining access to patient data for the purposes of analysis 

solely for reimbursement and performing analyses that were not pre-specified 

which could potentially appear in the public domain. 

viii. Gefitinib for first line treatment of EGFR mutation advanced non-small 

cell lung cancer. Submitted to NICE, England and Wales, January 2010, 

guidance made in July 2010 

In the IPASS trial, patients were randomised to gefitinib (n=132) or carboplatin-

paclitaxel (n=129).  64.3% of control group patients switched onto gefitinib or 

another tyrosine-kinase inhibitor (TKI), and some patients had multiple lines of 

therapy in both arms.  At the time the clinical trial took place, gefitinib was 

approved for second-line therapy in all countries that took part in the study.  

Several methods were used to adjust for the crossover, in order to isolate the 

effect of gefitinib on overall survival, compared to a carboplatin-paclitaxel 

treatment pathway that did not include receipt of a TKI.  Adjustments were not 

made for second-line TKIs received in the gefitinib arm of the trial.  One analysis 

excluded crossover patients, and the RPSFTM and IPCW methods were also used.  

The manufacturer states that the characteristics of the trial and the observed 

crossover matched the assumptions of the simple exclusion approach well, 

because there was no evidence of major selection bias.  For the IPCW method the 

main issue was that key time-dependent covariate data were only collected up 

until the first disease progression.  For the RPSFTM method the issue was that 

the ITT HR was 1.00, described by the manufacturer as representing the 

method’s “blind spot”.  Historical control data were available to provide evidence 

on the outcomes associated with 1st line doublet chemotherapy treatment prior 
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to the introduction of TKIs, and real world observational studies of OS before 

and after the introduction of gefitinib are now available to serve as extrinsic 

validation.  The analysis in which switchers were excluded has been provided to 

NICE as part of the ongoing multiple technology appraisal of second-line TKI in 

advanced non-small cell lung cancer.   

ix. Bortezomib for relapsed multiple myeloma. Prepared for re-review by 

NICE but not needed, 2011 

In the APEX trial, patients were randomised 1:1 to bortezomib (n=333) and 

dexamethasone (n=336).  71% of dexamethasone patients switched onto 

bortezomib.  Crossover was planned to occur after disease progression, but after 

an interim analysis all control group patients were offered crossover, regardless 

of disease status.  Approximately 75% of crossover occurred prior to the interim 

analysis.  The ITT analysis resulted in an OS HR of 0.77.  Post-hoc, IPE, RPSFTM, 

and IPCW analyses were undertaken, as was a naïve analysis that included 

treatment as a time-dependent covariate in a Cox regression model.  IPE and 

RPSFTM results were consistent and provided an adjusted HR of 0.59.  IPCW 

analyses were not presented, but it is stated that problems were encountered 

when applying the method due to heavy censoring and high weights estimated 

for control group non-crossover patients.  

7. Recommendations made by regulatory and HTA agencies 

In order to provide an overview of recommendations made by regulatory bodies 

and HTA agencies around the world on methods to address the treatment 

switching issue, we requested that workshop participants provide us with any 
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relevant guidance that they are aware of.  At present, we believe specific 

reference to the treatment switching problem is only made by NICE in its Guide 

to the Methods of Technology Appraisal.[13]  A technical support document on 

the topic has also been published by NICE’s Decision Support Unit (DSU), but this 

does not constitute NICE guidance.[39]  PBAC is currently developing a 

document on the topic, a draft version of which has been provided to stimulate 

discussion during the Workshop.[40]  Whilst there is considerable agreement 

between the DSU and PBAC documents, it is notable that the PBAC analysis 

framework takes a broader perspective, with less emphasis on statistical 

methods for adjusting for switching (although these retain an important role). 

Relevant excerpts from the NICE Methods Guide and the DSU and PBAC 

documents are provided as Background Papers 3, 4 and 5. 

It is worthy of note that IQWiG have recently held an “In Dialogue” session on the 

topic of treatment switching.  The aim of these sessions is to offer 

representatives from science, industry and IQWiG the opportunity for scientific 

and technical discussion on various topics related to the work of the institute.  

There has been no output as a result of the session, but presentations made 

during the session (in German) and an English summary of the session are 

available from: https://www.iqwig.de/en/events/iqwig-in-dialogue/iqwig-in-

dialogue-2014.6046.html 

8. Potential gaps – areas not currently covered by guidance 

NICE explicitly states that analyses that adjust for treatment crossover can be 

presented alongside an ITT analysis when the ITT analysis is likely to be 
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confounded and therefore inappropriate.[13]  Using simple censoring or 

exclusion adjustment methods is discouraged, but “acceptable” methods are not 

named.  It is stated that chosen methods must be justified in relation to the 

specific characteristics of the dataset in question, taking into account the 

mechanism of crossover used in the trial, the availability of data on baseline and 

time-dependent characteristics, and expectations around the treatment effect if 

the patients had remained on the treatment to which they were allocated.[13]  

This would appear to allude to the key assumptions associated with RPSFTM, 

IPE, IPCW and two-stage methods, and that these should be considered on a 

case-by-case basis.  Thus the NICE guidance is focused upon justifying the use of 

adjustment methods.  This is also true of the DSU technical support document 

and the PBAC guide, whilst the PBAC guide also recommends analyses to assess 

whether the treatment switching is likely to have materially affected the 

comparative treatment effect on OS.[39,40]   In addition, whilst the DSU 

document addresses the use of external data, it does not consider this in detail.  

Hence, it may be considered that guidance on treatment switching is lacking in 

the following areas: 

 How to design clinical development programmes to ensure the treatment 

switching problem can be appropriately addressed at a later date.  This 

includes: 

o Commissioning of additional studies 

o RCT design, regarding data collection and switching protocols 

 How to appropriately use external datasets to address the treatment 

switching problem. 



46 
 

It is anticipated that these and other issues will be discussed during the 

Workshop. 
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Appendix A: Adjustment method details 

IPCW 

Robins and Finkelstein (2000) recommend using “stabilised” inverse probability 

of censoring weights, as these are shown to be more efficient.[21]  Unstabilised 

weights are simply the inverse of the conditional probability of having remained 

uncensored until time t conditional on baseline and time-dependent covariates, 

whereas stabilised weights are the conditional probability of having remained 

uncensored until time t given baseline covariates, divided by the conditional 

probability of having remained uncensored until time 𝑡 given baseline and time-

dependent covariates.  The stabilised weight will be equal to 1 for all 𝑡 if the 

histories of the included prognostic factors for failure do not impact upon the 

hazard of censoring at 𝑡 – thus there would be no informative censoring and 

treatment switching would be random.[21]   

Formally, the stabilised weights applied to each individual for time interval (𝑡), 

as specified by Hernan et al (2001) are:[24]  

�̂�(𝑡) = ∏
𝑃𝑟[𝐶(𝑘)=0|�̅�(𝑘−1)=0,�̅�(𝑘−1),𝑉,𝑇>𝑘]

𝑃𝑟[𝐶(𝑘)=0|�̅�(𝑘−1)=0,�̅�(𝑘−1),�̅�(𝑘),𝑇>𝑘]
𝑡
𝑘=0     [A1] 

where 𝐶(𝑘) is an indicator function demonstrating whether or not informative 

censoring (switching) had occurred at the end of interval k, and 𝐶̅(𝑘 − 1) 

denotes censoring history up to the end of the previous interval (k-1).  �̅�(𝑘 − 1) 

denotes an individual’s treatment history up until the end of the previous 

interval (k-1), and V is an array of an individual’s baseline covariates.  �̅�(𝑘) 

denotes the history of an individual’s time-dependent covariates measured at or 
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prior to the beginning of interval k, and includes V.  Hence the numerator of [A1] 

represents the probability of an individual remaining uncensored (not switched) 

at the end of interval k given that that individual was uncensored at the end of 

the previous interval (k-1), conditional on baseline characteristics and past 

treatment history.  The denominator represents that same probability 

conditional on baseline characteristics, time-dependent characteristics and past 

treatment history.  When the cause of informative censoring is treatment 

switching, past treatment history is removed from the model because as soon as 

switching occurs the individual is censored. 

The IPCW adjusted Cox hazard ratio (HR) can be estimated by fitting a time-

dependent Cox model to a dataset in which switching patients are artificially 

censored.  The model includes baseline covariates and uses the time-varying 

stabilised weights for each patient and each time interval.  Robust variance 

estimators or bootstrapping should be used to estimate confidence 

intervals.[24,25] 

RPSFTM 

An accelerated failure time counterfactual survival model such as that presented 

by Robins (1998) is used:[41] 

𝑈 = ∫ 𝑒𝑥𝑝[𝜓𝐴𝑖(𝑡)]𝑑𝑡
𝑇

0
      [A2]  

where U is the counterfactual survival time for each patient, which is a known 

function of observed survival time (T), observed treatment (A(t), where A(t) is a 
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binary time-dependent variable equal to 1 or 0 over time), and the unknown 

treatment effect parameter ψ.   

Counterfactual survival time is a sum of observed time spent on treatment and 

observed time spent off treatment, where time spent on treatment is multiplied 

by the factor exp(ψ).  The value of the treatment effect (ψ0) is estimated as the 

value of ψ for which counterfactual survival is independent of randomised 

groups.  A log-rank or Wilcoxon test can be used for the RPSFTM g-test in a non-

parametric setting, testing the hypothesis that the baseline survival curves are 

identical in the two treatment groups, or a Wald test could be used for 

parametric models.[42]  The point estimate of ψ is that for which the test (z) 

statistic equals zero.  Because the RPSFTM is a randomisation-based efficacy 

estimator (RBEE) the p-value from the ITT analysis is maintained.[30]    

White et al. demonstrate that censoring is problematic for the RPSFTM.[23]  A 

positive or negative treatment effect may increase or decrease the probability 

that the survival time of an individual is censored, and, where treatment 

switching occurs, treatment received is likely to be associated with prognosis.  In 

turn, this means that the censoring of counterfactual survival times may depend 

on prognostic factors and therefore be informative.[30]  Bias associated with this 

can be avoided by recensoring counterfactual survival times at the earliest 

possible censoring time given the treatment effect ψ.[30]  Thus for each patient 

in treatment groups at risk of switching the recensored censoring time is the 

minimum of the observed administrative censoring time (Ci) and the product 

exp(ψ)Ci.  If the a patient experienced an event, but the recensoring time is less 
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than the event time, that patient has their survival time recensored and their 

event is no longer observed. 

IPE algorithm 

This method uses the same accelerated failure time model as the RPSFTM, but a 

parametric failure time model is fitted to the original, unadjusted ITT data to 

obtain an initial estimate of ψ.  The observed failure times of switching patients 

are then re-estimated using exp(ψ) and the counterfactual survival time model 

presented in equation [A2], and the treatment groups are then compared again 

using a parametric failure time model.  This will give an updated estimate of ψ, 

and the process of re-estimating the observed survival times of switching 

patients is repeated.  This iterative process is continued until the new estimate 

for exp(ψ) is very close to the previous estimate (the authors suggest within 10-5 

of the previous estimate but offer no particular rationale for this), at which point 

the process is said to have converged.[34]  Bootstrapping is recommended to 

obtain standard errors and confidence intervals for the treatment effect.[34]     

Two-stage method 

When switching is only permitted after disease progression, but is likely to 

happen soon after this time-point, we can use the time of disease progression as 

a secondary baseline in a two-stage analysis.  If we assume that all patients are at 

a similar stage of disease at the point of disease progression, we can estimate the 

effect of the new treatment on extending survival from the point of disease 

progression to death, specifically for control group patients who switch.  Disease 

progression is used as the secondary baseline – that is, a time-point from which 
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analysis time can be reset to zero – and data for patients in the control group can 

be treated as an observational dataset.  By fitting an accelerated failure time 

model (such as a Weibull model) to this data (excluding patients in the 

experimental group) including covariates measured at the secondary baseline 

and including a time-varying covariate indicating treatment switch, an estimate 

of the treatment effect received by patients who switched compared to control 

group patients who did not switch can be obtained.  This would be expected to 

produce a reasonable estimate of the treatment effect associated with switching, 

provided the model fits the data, there are “no unmeasured confounders” at the 

point of the secondary baseline and provided switching occurs soon after the 

secondary baseline.  Counterfactual survival times for switchers could then be 

obtained using:   

𝑈𝑖 = 𝑇𝐴𝑖
+

𝑇𝐵𝑖

𝜇𝐵
       [A3] 

Where 𝑇𝐴𝑖
 represents the time spent on control treatment, 𝑇𝐵𝑖

 represents the 

time spent on the new intervention, and 𝜇𝐵is the treatment effect (acceleration 

factor) in switching patients.  
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