This is an author produced version of GeSn lasers for monolithic integration on Si.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/97146/

Proceedings Paper:

https://doi.org/10.1109/PHOSST.2015.7248191

(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
GeSn lasers for monolithic integration on Si

Peter Gruenberg Institute 9, Forschungszentrum Juelich
Juelich, Germany
d.m.buca@fz-juelich.de

R. Geiger*, T. Zabel, H. Sigg
Laboratory for Micro- and Nanotechnology (LMN)
Paul Scherer Institute Villingen, Switzerland
* Institute for Quantum Electronics, ETH Zürich

Abstract—Lasing under optical pumping is shown in suspended GeSn microdisks fabricated on a Ge virtual substrate with a lasing threshold below 1 mW at 20K.

Keywords—GeSn; group IV photonics, microdisk lasers, group IV lasers, Si photonics, monolithic integration

I. INTRODUCTION

Intensive research has been carried out in the last years on novel materials for the integration of advanced optoelectronic and photonic systems on silicon motivated by the prospect of cost-effectiveness resulting from compatibility with complementary metal-oxide-semiconductor (CMOS) circuits. To allow compatibility with silicon IC manufacturing facilities, group IV elements and their alloys have attracted special attention as active materials [1]. GeSn is one of the most promising group IV alloys for laser applications due to the transition to a direct bandgap under tensile strain and/or sufficiently high Sn alloy content [2]. Moreover, the smaller bandgap energy of GeSn alloys enables laser operation at the higher end of the near-IR range / lower end of the mid-IR wavelength range, enabling new sensing and bio-photonics applications.

Two types or resonators are mainly considered for monolithic integration on a Si platform: waveguide structures and microdisk resonators (MDRs). Lasing was recently demonstrated using waveguide structures [2]. These may also serve as waveguide photodetectors in which the long cavity (absorption length) allows the efficient collection of photons [3]. Laser cavities based on whispering gallery mode (WGM), such as MDRs, have been intensely investigated because of their simple device structure, high quality factor and relative ease of integration.

Here we present the fabrication on MDRs based on GeSn/Ge/Si heterostructures grown by chemical vapor deposition (CVD) and investigate their suitability as lasers cavities. Optically pumped lasing is demonstrated.

II. EXPERIMENTAL AND RESULTS

The GeSn layers were grown on Ge/Si(001) virtual substrates (Ge-VS) using a 200 mm wafer AIXTRON TRICENT reduced-pressure CVD reactor with showerhead design which offers an uniform distribution of precursor gases over the wafer surface [4]. Partially strain relaxed GeSn layers with low residual compressive strain and relatively high Sn contents were used in order to induce a direct bandgap [2]. An increase of the Sn content also leads to a decrease of the GeSn bandgap. This is illustrated in Fig. 1a by reflectance spectra of partially relaxed GeSn layers with Sn contents between 8.5 and 14 at.%. The spectrum of the Ge-VS is shown for comparison. Band structure calculations and experimental data indicate that all investigated GeSn layers are fundamental direct bandgap semiconductors [2]. The temperature dependence of the PL spectrum of a 800 nm thick GeSn layer with a Sn content of 8.5% is shown in Fig. 1b. The Γ-valley luminescence increases towards lower temperatures and shifts to higher energies, as expected for direct bandgap semiconductors.

![Fig. 1: (a) room temperature reflectance spectra of 800 to 1µm thick GeSn alloys with different Sn concentrations. (b) Temperature dependent PL spectra of a 800 nm thick GeSn alloy containing 8.5 at.% Sn. The spectra are shifted vertically for better readability.](https://example.com/fig1.png)
Mode calculations (Fig 2) indicate that TE$_0$ and TM$_0$ ground modes are fully confined in the suspended disk region for undercuts larger than 2 µm. The modes are unperturbed by the Ge pillar at the center of the structure and the effective index is identical to that of a structure with a vanishing pillar. GeSn microdisks with underetching of approx. 3 µm (see SEM image in Fig. 3) are presented here.

Fig 2: Mode calculations for (a) 1.5 µm and (b) 2 µm undercut. For undercuts above 2 µm the modes are unperturbed by the Ge pillar.

Strain mapping measurements using micro-Raman spectroscopy indicate complete strain relaxation over a large portion of the under-etched region and even slight tensile strain at the microdisk edges. A reduction of the compressive strain in the GeSn active region translates into an increased energy separation between the Γ and L valleys, which leads to an increased electron population of the of the Γ-valley as well as a suppression of Γ- to L-valley carrier transfer. This is shown in Fig. 4a. The bandgap of the alloy is modified by the biaxial strain of the thin film; therefore, an increased relaxation also leads to a reduction of the bandgap energy. The shift of the laser emission towards lower energies relative to the residual PL background presumably originating from the non-suspended central region of the microdisk is consistent with the mode confinement in the periphery of the MDR (whispering gallery mode).

Fig. 3: Scanning electron micrograph of a Ge$_{0.875}$Sn$_{0.125}$ microdisk with a diameter of 20 µm and 3 µm undercut.

Fig. 4: (a) Calculated electron fraction occupying the Γ valley at 100K and 295K for a total electron concentration of 1x1017 cm$^{-3}$. (b) PL spectra at 20K as a function of optical excitation. The linewidth narrowing above the lasing threshold is shown in the inset.

Laser emission of the micro-disk resonators is in excellent agreement with the recently demonstrated lasing with a waveguide resonator geometry [2]. Furthermore, lasing in GeSn microdisks with different GeSn layer thicknesses, Sn contents and diameters will be discussed as well as the temperature dependence of the laser emission. The MDR structures investigated here will serve as a basis towards further investigation of electrically pumped structures.

ACKNOWLEDGMENT
J.W. and B.M. acknowledge funding by the European Research Council under contract 2797770. This research received funding for CVD growth investigations from the European Community's Seventh Framework Programme (grant agreement no. 619509; project E2SWITCH) and the BMBF project UltraLowPow (16ES0060 K).

REFERENCES